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H I G H L I G H T S

! Comparison between time-averaged
Euler particle velocity profiles and
PEPT results.

! Prediction of double toroidal recir-
culation loops for large solid wall
shear stress.

! Testing of No-slip wall boundary
condition for Euler particle velocity.
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a b s t r a c t

3D numerical simulations of dense pressurized fluidized bed are presented. The numerical prediction of
the mean vertical solid velocity are compared with experimental data obtained from Positron Emission
Particle Tracking. The results show that in the core of the reactor the numerical simulations are in
accordance with the experimental data. The time-averaged particle velocity field exhibits a large-scale
toroidal (donut shape) circulation loop. Two families of boundary conditions for the solid phase are used:
rough wall boundary conditions (Johnson and Jackson, 1987 and No-slip) and smooth wall boundary
conditions (Sakiz and Simonin, 1999 and Free-slip). Rough wall boundary conditions may lead to larger
values of bed height with flat smooth wall boundary conditions and are in better agreement with the
experimental data in the near-wall region. No-slip or Johnson and Jackson's wall boundary conditions,
with sufficiently large value of the specularity coefficient ðϕZ0:1Þ, lead to two counter rotating mac-
roscopic toroidal loops whereas with smooth wall boundary conditions only one large macroscopic loop
is observed. The effect of the particle-particle restitution coefficient on the dynamic behaviour of flui-
dized bed is analysed. Decreasing the restitution coefficient tends to increase the formation of bubbles
and, consequently, to reduce the bed expansion.

1. Introduction

Pressurized gas–solid fluidized beds are used in a wide range of
industrial applications such as coal combustion, catalytic poly-
merization, uranium fluoration and biomass pyrolysis. The math-
ematical modelling and numerical simulation of such industrial
fluidized beds are challenging because many complex phenomena
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are in competition (particle–turbulence interaction, particle–par-
ticle and particle–wall collisions, heat and mass transfers) and
because of the large-scale geometry of the industrial facilities
compared to the characteristic length scales of the fluid and
particles.

The development of numerical modelling of dense fluidized
bed hydrodynamics started about three decades ago (Gidaspow,
1994). Basically two approaches can be used for the numerical
prediction of dense fluidized bed hydrodynamic: the Euler-
Lagrange approach, where filtered Navier–Stokes equations are
solved for the gas and Discrete Element Method (DEM) for the
particles (Kaneko et al., 1999; Deen et al., 2007; DiRenzo and Di
Maio, 2007; Olaofe et al., 2014), or the multi–fluid approach where
all phases are treated as continuum media. In the DEM approach,
the Lagrangian trajectories of each particle are computed and the
inter–particle collisions are treated in a deterministic manner.
Even if DEM can be used up to a few millions of particles (Cape-
celatro and Desjardins, 2013) it cannot yet be used for most of
industrial full-scale simulations. Typically, to simulate the lab-
scale fluidized bed studied in the present paper, the whole number
of particles to be accounted for in the frame of the DEM approach
is about 10 millions while for an industrial pressurized gas-phase
olefin polymerization reactor (Neau et al., 2013) the corresponding
number of particles should be larger than 40 billions. In contrast,
nowadays it is possible to perform realistic 3D simulations of
industrial configurations by using an unsteady Eulerian reactive
multi-fluid approach. Numerical simulations of industrial-, pilot-
and lab-scale pressurized reactors were carried out with such an
approach showing a good agreement with the qualitative knowl-
edge of the process but detailed experimental validations were
missing (Gobin et al., 2003; Fede et al., 2010; Rokkam et al., 2010;
Fede et al., 2011a, 2011b; Rokkam et al., 2013). Indeed, the Euler–
Euler approach is extensively used for circulating or dense gas-
solid fluidized bed predictions but the model assessment is com-
monly restricted to a comparison between the predicted and the
experimentally measured pressure drop, or local mass flux.
Obviously such restrictions come from the complexity of doing
measurements inside a dense particulate phase. Recently, an ori-
ginal experimental technique, called Positron Emission Particle
Tracking (PEPT), has emerged allowing to measure the trajectory
of an individual particle moving in dense particulate flows. From
the trajectory it is possible to compute the particle dispersion
properties and then to perform fruitful comparison between
experiments and numerical prediction (Link et al., 2008; Fede et
al., 2009).

The present paper shows numerical results from Euler–Euler
simulations carried out with the mathematical model proposed by
Balzer et al. (1995) (see Appendix A). Such a modelling approach
involves several assumptions however there is no empirical con-
stant in the model. In fact the model, like all Lagrangian or
Eulerian ones, requires the value of the normal restitution coeffi-
cient for particle-particle collision. Precisely speaking, the normal
restitution coefficient is not an adjustable parameter because it
represents the physical loss of kinetic energy during a collision.
However, as this parameter is very difficult to measure for a
practical powder (Foerster et al., 1994; Sommerfeld and Huber,
1999), it can be seen as a parameter of the modelling approach
(Goldschmidt et al., 2001). In the present paper a comprehensive
analysis is made for showing how the normal restitution coeffi-
cient may modify the macroscopic properties of a dense
fluidized bed.

In the framework of the kinetic theory of dry granular flows,
several wall boundary conditions for the solid phase have been
derived for rough or flat walls, with or without frictional effect
(Hui et al., 1984; Johnson and Jackson, 1987; Jenkins and Richman,
1986; Jenkins, 1992; Jenkins and Louge, 1997; Sakiz and Simonin,

1999; Konan et al., 2006b; Schneiderbauer et al., 2012; Soleimani
et al., 2015). For the numerical simulation of a circulating or dense
fluidized bed the most popular wall boundary conditions are the
ones derived by Johnson and Jackson (1987) which introduced a
specularity coefficient that is an ad-hoc parameter depending on
the large-scale roughness of the walls but which cannot be mea-
sured directly from experiment, in contrast to the normal resti-
tution coefficient (Sommerfeld and Huber, 1999). In the case of
dilute gas-solid flow in a pipe, Benyahia et al. (2005) showed that
the specularity coefficient must be very small for correct agree-
ment with experimental data. Li et al. (2010) analysed the effect of
the specularity coefficient on the predicted 2D and 3D hydro-
dynamic of dense bubbling fluidized beds. Unfortunately, the 3D
study considered only small values of the specularity coefficient
ranging from 0.0 to 0.05. In parallel, wall boundary conditions
have been derived for flat frictional walls (Jenkins and Richman,
1986; Jenkins, 1992; Louge, 1994; Jenkins and Louge, 1997; Sakiz
and Simonin, 1999; Schneiderbauer et al., 2012). The development
and validation of such boundary conditions were mainly per-
formed by comparison with predictions from the Discrete Element
Method (DEM).

It is important to note that the original Johnson and Jackson
boundary conditions do not account for particle/wall frictional
effects. In contrast, the more recent boundary conditions of Konan
et al. (2006a, 2006b) and Soleimani et al. (2015) extend different
approaches, originally developed for smooth walls, by using the
idea of virtual wall angle of Sommerfeld and Huber (1999).

The paper is organized as follows. The second section gives an
overview of the experiment where the PEPT technique was used
for obtaining local statistics of the solid inside the fluidized bed.
The boundary conditions for the solid phase employed in the
present study are described in the third section. The description of
the numerical simulation, in terms of equations, mesh, material
properties and statistics are given in the fourth section. The results
are presented in section five and, finally, an analysis is carried out
in section six on the specific dependence of the simulation results
on the particle-particle collision restitution coefficient and on the
solid wall boundary conditions. Conclusions and prospects are
given in the last section.

2. Experimental overview

This study concerns the hydrodynamics of an isothermal gas-
solid dense fluidized bed in a low-scale pressurized axisymmetric
reactor with a cylindrical column of internal radius R¼ 77 mm and
height 1 074 mm (see Fig. 1). The vertical distance between the
horizontal gas fluidization distributor plate and the widening
(with an enlargement half-angle of 10°) is 924 mm. Nitrogen
enters at the distribution plate with a fluidization velocity V f ¼
0:32 m=s and the pressure in the fluidized bed is 12 bar. The gas
and solid material properties are given in Table 1. The particle
phase is almost monodisperse with a median diameter of 875 μm
and a material density of 740 kg=m3.

Positron Emission Particle Tracking (PEPT) is an experimental
technique developed at the University of Birmingham derived
from the medical imaging method Positron Emission Tomography
(PET) (Stellema et al., 1998). PEPT enables the tracking of a single
particle in an opaque or otherwise impenetrable system such as
dense fluidized beds. PEPT tracers are labelled with a specific class
of radioisotope which decays through the emission of a positron
(βþ decay). The emitted positron collides with a local electron,
annihilates and produces a pair of back-to-back gamma photons.
The usual isotope is Fluorine-18; this has excellent characteristics
of decaying solely through βþ , is easily manufactured by Helium-3
ion irradiation of oxygen-containing materials such as water or



silica, and has a half-life of about 2 hours giving a good balance
between activity and tracer life (4–6 h). Tracers will have decayed
by a factor greater than 4000 within 24 hours so there is no
concern for equipment contamination.

Adapted PET cameras are used to detect the photon pairs and
generate the so-called Lines Of Responses (LORs) that connect each
pair. Triangulation of successive LORs should give the point in
space where the annihilation occurred - the tracer location. In
practice there is some corruption of data due to a mixture of
Compton scattering of photons and incorrect pairing. The

algorithm developed at Birmingham over many years (Ingram et
al., 2007a) eliminates corrupted data thorough a statistical pro-
cedure; typically aliquots of 200–500 LORs will be used to com-
pute the tracer location to within 0.5–1.0 mm at a frequency
between 100 and 1000 Hz. The reliability and frequency of loca-
tion depends on many factors such as tracer activity, tracer velo-
city, size of rig and mass of material to be penetrated by the
photons.

Historically, the PEPT facility has progressed from the home-
made multiwire positron camera in 1984, through the ADAC Forte
Medical PET camera in 1999 (giving a 20–fold increase in data
frequency) to more recent developments of the flexible, modular
PEPT system built from the components of redundant PET scan-
ners.This latter development has enabled exploitation of the
technique for larger and/or more complicated geometries (Ingram
et al., 2007b).

During the experimental data acquisition Ne particle positions
have been recorded. The time–averaged Eulerian solid velocity,
volume–averaged in a cell CðxÞ, centred at x, is defined by

UpðxÞ ¼

P

Ne

k ¼ 1
upðtkÞΔtkδk

P

Ne

k ¼ 1
Δtkδk

with δk ¼
1 if xpðtkÞACðxÞ
0 otherwise

"

ð1Þ

where xpðtkÞ is the instantaneous particle position at the time tk.
Link et al. (2008) proposed the following expression for the time-
averaged Eulerian solid velocity

UpðxÞ ¼

P

Ne

k ¼ 1
upðtkÞδk

P

Ne

k ¼ 1
δk

: ð2Þ

These equations give the same result when Δt is uniform so the
difference in weighting is not related to the time spent in the cell,
rather the activity of the tracer at the time it passes through. At the
start of the experiment, the tracer is strong so will be seen more
frequently and Eq. (2), being a count average of observed velo-
cities, would unfairly weight in favor of early data. Eq. (1) is
effectively averaging according to distance traveled through the
cell so will be unaffected by tracer activity. Actually for a given
data frequency, slow particles will be observed more times (and
vice-versa for rapid particle) so both expressions weight according
to time spent in the cell and will give more emphasis to the slower
particles. This analysis remains valid if the data frequency is
varying but not correlated with the instantaneous particle velocity,
meaning that the tracer activity and the sensor system is unaf-
fected by the particle motion. In the following, even if we did not
find significant differences between the two definitions, Eq. (1) is
used to compute the time-averaged Eulerian solid velocity in a cell
because this definition is more consistent with the one of the
time-averaged Eulerian solid velocity in the frame of the statistical
approach.

It must be noticed that the accuracy of the time–averaged
Eulerian solid velocity defined by either Eqs. (1) or (2) depends on
the cell size. Indeed, if the number of events in a cell is too small,
the computed Eulerian solid velocity becomes unrepresentative.
Conversely, if the cell is too large, the number of events is large
enough with respect to the statistical averaging but the spatial
accuracy of the local information is lost due to spatial averaging
(Fede et al., 2009). But, owing to the axisymmetry of the reactor
geometry, the time-averaged flow may be assumed to obey
cylindrical symmetry. So, the spatial averaging of the time-
averaged variables can be performed in the azimuthal direction
without loss of accuracy. Consequently, the effective volume-

Fig. 1. Geometry of the low–scale fluidized bed.

Table 1

Gas and particle material properties given for the operating conditions Pg ¼ 12 bar
and T ¼ 298 K .

Nitrogen Density, ρg [kg/m3] 13.595
Viscosity, μg [Pa.s] 1:7982& 10'5

Fluidization velocity, Vf [m/s] 0.32
Particles Density, ρp [kg/m3] 740

Mean diameter, dp [μ m] 875
Solid mass, ms [kg] 2.5



averaging cell CðrÞ, in Eqs. (1) and (2), is a cylindrical ring, of radius
r, centered on the symmetry axis.

3. Wall boundary conditions

The Euler-Euler modelling approach is a hybrid two-fluid
approach (Morioka and Nakajima, 1987) where separate trans-
port equations (mass, momentum, and fluctuating kinetic energy)
are solved for each phase and coupled through interphase transfer
terms. The transport equations are derived by phase ensemble
averaging weighted by the gas density for the continuous phase
and by using kinetic theory of granular flows supplemented by
fluid effects for the dispersed phase (Balzer et al., 1995). In the
present study the gas flow is considered as laminar and, for the
solid phase stress tensor modeling, a viscosity assumption is used
(Boëlle et al., 1995) with a transport equation for the random
particle kinetic energy qp

2 (the so-called granular temperature in
the frame of dry granular kinetic theory). The set of equations used
in the numerical simulations are given in Appendix A.

In the following we present the wall boundary conditions with
the focus on the solid phase. According to the modelling approach,
boundary conditions are needed for the solid phase mean wall–
tangential velocity component, Up;τ , and for the particle random
kinetic energy, qp

2. Assuming no deposition, the solid phase mean
wall-normal velocity component is equal to zero.

3.1. Wall boundary conditions for the gas

The fluid flow is laminar so the true wall boundary condition
for the gas is No–slip. However, such a condition is questionable in
practice because, according to the strong coupling with the solid
flow, the gas velocity No–slip condition is correctly taken into
account in CFD simulation only if the wall–distance of the first
internal computational node is of the order of the particle dia-
meter. This question remains an open issue requiring further
investigation but we assume that the particle–wall interaction is
the dominant effect in the present study.

3.2. Smooth wall boundary conditions

In the framework of the kinetic theory of granular media sev-
eral propositions have been made to take into account inelastic,
frictional particle collision with smooth wall in the derivation of
the solid wall boundary conditions (Hui et al., 1984; Johnson and
Jackson, 1987; Jenkins and Richman, 1986; Jenkins, 1992; Jenkins
and Louge, 1997; Sakiz and Simonin, 1999; Schneiderbauer et al.,
2012). Considering collisions of inelastic rigid spheres with a flat
frictional wall involving always sliding at the contact point (the
”small friction/all sliding” limit), the boundary conditions may be
written as,

νp
∂Up;τ

∂n

# $

wall

¼ μw

2
3
½q2p)wall; ð3Þ

Kp

∂q2p
∂n

 !

wall

¼ gðew;μwÞ
2
3
½q2p)wall

# $3=2

ð4Þ

where νp ¼ νcolp þνkinp is the viscosity, Kp ¼ Kkin
p þKcol

p the diffusivity
of the dispersed phase and ½q2p)wall the random kinetic energy of
the particles in contact with the wall, namely at a distance dp=2
(see Appendix B). The unit normal to the wall vector, n, is directed
into the flow and wall-tangential mean particle velocity compo-
nent, Up;τ , is defined by Up;τ ¼ jUp'ðUp:nÞ:nj . The coefficient ew is
the particle-wall normal restitution coefficient and μw the
particle-wall dynamic friction coefficient. In Eq. (4), gðew;μwÞ is an

algebraic function which depends on both parameters. For exam-
ple, Jenkins (1992) derived the following expression,

gðew;μwÞ ¼
3
8

ð1'ewÞ'
7
2
ð1þewÞμ2

w

' (

: ð5Þ

In the frame of the ”small friction/all sliding” limit, He and
Simonin (1993) derived separated wall boundary conditions for
the particle kinetic stress tensor components assuming a half
Gaussian distribution of the incident particle velocities. Sakiz and
Simonin (1999) show that these boundary conditions are in very
good agreement with DEM simulation for vertical particle-laden
channel flows. Assuming that the particle kinetic normal stress can
be approximated by 〈u0

nu
0
n〉, 2=3q2p , the approach proposed by He

and Simonin (1993) leads to,

gðew;μwÞ ¼
1'ew
ffiffiffiffiffiffi

ew
p

ffiffiffiffi

2
π

r

1'μ2
w

+ ,

: ð6Þ

We should point out that in dilute flows, especially in the near
wall regions, the particle kinetic stress tensor may be strongly
anisotropic (Rogers and Eaton, 1990; He and Simonin, 1993) and
the assumption 〈u0

nu
0
n〉, 2=3q2p may overestimate the friction at the

Fig. 2. Mesh geometry with 80245 hexahedra. Right: front view, top-left: the
chimney and bottom-left: distribution plate.

Table 2

Summary of numerical simulations differing by particle-particle and particle-wall
parameters. It must be noticed that μw ¼ 0:0 corresponds to Free-slip boundary
conditions for the mean particle velocity.

ec ϕ ew μw

1.00, 0.98, 0.95, 0.90, 0.80 – 1.00 0.00
1.00, 0.98, 0.95, 0.90, 0.80 – 1.00 0.00
0.90 0.01, 0.10, 1.00, No-slip 1.00 –

0.01, 0.10, 1.00, No-slip 0.86 –

– 1.00 0.00, 0.02, 0.30
– 0.75 0.00, 0.02, 0.3



wall. According to Eqs. (3) and (4) written in the frame of the
proposed modelling approach, it is important to note for the dis-
cussion about the simulation results, that:

! on one hand, the particle wall shear stress increases linearly
with the random kinetic energy and the dynamic friction
coefficient;

! on the other hand, the particle wall random kinetic energy flux
is always directed towards the wall (for realistic dynamic fric-
tion coefficient values : μwo1) and represents the dissipation
by particle-wall inelastic collisions ðewo1Þ.

For frictionless ðμw ¼ 0Þ and elastic bouncing at the walls
(ew¼1), Eqs. (3) and (4) lead to

νp
∂Up;τ

∂n

# $

wall

¼ 0; ð7Þ

Kp

∂q2p
∂n

 !

wall

¼ 0: ð8Þ

This set of equations corresponds to Free-slip wall boundary
conditions that can be interpreted as pure elastic frictionless (i.e.
specular) rebounds of spherical particles on a flat wall.

3.3. Rough wall boundary conditions

As shown by Sommerfeld and Huber (1999) the roughness can
play a very important role and should be probably accounted for in
numerical simulation. In the literature, the most popular wall
boundary conditions for the solid phase in fluidized beds were
proposed by Johnson and Jackson (1987):

νp
∂Up;τ

∂n

# $

wall

¼
ϕπ g0
+ ,

wall

2
ffiffiffi

3
p

αmax
p

½Up;τ)wall

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
½q2p)wall

r

; ð9Þ

Kp

∂q2p
∂n

 !

wall

¼ '
ϕπ g0
+ ,

wall

2
ffiffiffi

3
p

αmax
p

½U2
p;τ)wall

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
3
½q2p)wall

r

þ
ffiffiffi

3
p

π g0
+ ,

wall
ð1'e2wÞ

4αmax
p

2
3
½q2p)wall

# $3=2

ð10Þ

Fig. 3. Vertical distribution of the time-averaged gas pressure measured at the wall. Upper panels: effect of the wall boundary conditions (with the particle-particle
restitution coefficient ec¼0.9), bottom panels: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions, right panels: smooth wall
boundary conditions.



as for the random particle kinetic energy, ½Up;τ )wall is the tangential
component of the mean velocity of the particles in contact with
the wall. The parameter ϕ is the specularity coefficient ranging
from zero, for specular bouncing, to unity, for pure diffuse
rebounds. Between these two extrema, the value of the specularity
coefficient is questionable. The specularity coefficient was first
introduced by Hui et al. (1984) to measure the fraction of collisions
that transfer a significant amount of tangential momentum to
the wall.

According to Eqs. (9) and (10), it is important to note for the
discussion about the simulation results that:

! on one hand, the particle wall shear stress increases linearly
with the square root of the random kinetic energy and with the
mean tangential velocity of the particle in contact with the wall;

! on the other hand, the particle wall random kinetic energy flux
is the sum of two contributions with opposite effects, the first
one is always directed towards the flow and represents the

transfer of kinetic energy from the mean tangential solid
motion towards the random wall-normal particle motion due to
the roughness effect (Konan et al., 2006b) while the second one
is always directed towards the wall and represents the dissipa-
tion by particle–wall inelastic collisions ðewo1Þ.

One can notice that for ϕ-0, Eqs. (9) and (10) lead to flat
frictionless wall boundary conditions corresponding to Eqs.
(9) and (10) with

μw ¼ 0; ð11Þ

gðew;μwÞ ¼
ffiffiffi

3
p

π g0
+ ,

wall
ð1'e2wÞ

4αmax
p

: ð12Þ

By analysing experimental data, Fede et al. (2009) observed
that in the considered fluidized bed the mean particle velocity at
the wall is nearly equal to zero. Imposing such a condition may
look questionable but in fact we believe that the No-slip boundary

Fig. 4. Vertical distribution of the time-averaged solid volume fraction measured at the wall. Upper panels: effect of the wall boundary conditions (with the particle-particle
restitution coefficient ec¼0.9), bottom panels: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions, right panels: smooth wall
boundary conditions. The maximum particle solid volume fraction is αmax ¼ 0:64.



Fig. 5. Height of the bed with respect to the specularity coefficient and particle-particle restitution coefficient.

Fig. 6. Radial profiles of time-averaged solid vertical velocity normalized by the fluidization velocity measured at z=R¼ 1:50. Upper panels: effect of the wall boundary
conditions (with the particle-particle restitution coefficient ec¼0.9), bottom panels: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary
conditions, right panels: smooth wall boundary conditions.



conditions could represent accurately the effect of elastic bouncing
of spherical particles on a very rough wall.

Indeed, according to the derivation of Navier-Stokes wall
boundary conditions in the frame of kinetic theory of rarefied
gases (Cercignani, 1975) it must be emphasized that the No-slip
condition is a result of the isotropic re-emission of the molecules
from the wall and does not imply a zero velocity for any single
bouncing molecules. By analogy, it is expected that the No-slip
boundary condition for solid particles should represent the limit
case of very rough walls leading to pure diffuse rebounds. In
contrast to the kinetic theory of gases, where molecules are re-
emitted at the temperature of the walls, the solid particles only
exchange with the wall a part of their kinetic energy depending on
the bouncing model.

In particular, if we assume elastic frictionless bouncing on the
rough wall, we should have zero flux of kinetic energy from the
particulate flow to the wall. Hence, the proposed elastic No-slip
particle boundary conditions used in the paper reads

½Up;τ )wall ¼ 0; ð13Þ

Kp

∂q2p
∂n

 !

wall

¼ 0: ð14Þ

To account for non-elastic particle bouncing we modified the
boundary condition for the random kinetic energy by extension of
Johnson and Jackson's boundary condition as

Kp

∂q2p
∂n

 !

wall

¼
ffiffiffi

3
p

π g0
+ ,

wall
ð1'e2wÞ

4αmax
p

2
3
½q2p)wall

# $3=2

: ð15Þ

4. Numerical simulation

Three dimensional numerical simulations of the fluidized bed
have been carried out using an Eulerian n-fluid modeling approach
for gas-solid turbulent polydisperse flows developed and imple-
mented by IMFT (Institut de Mécanique des Fluides de Toulouse)
in the NEPTUNE_CFD V1.08@Tlse version. NEPTUNE_CFD is a
multiphase flow software developed in the framework of the
NEPTUNE project, financially supported by CEA (Commissariat à

Fig. 7. Radial profiles of time-averaged solid vertical velocity normalized by the fluidization velocity measured at z=R¼ 3:45. Upper panels: effect of the wall boundary
conditions (with the particle-particle restitution coefficient ec¼0.9), bottom panels: effect of particle–particle normal restitution coefficient, left panels: rough wall boundary
conditions, right panels: smooth wall boundary conditions.



l'Énergie Atomique), EDF (Électricité de France), IRSN (Institut de
Radioprotection et de Sûreté Nucléaire) and AREVA-NP. The
numerical solver has been developed for High Performance Com-
puting (Neau et al., 2010, 2013).

4.1. Geometry and mesh

Fig. 2 shows a front view, a bottom-view (fluidization grid) and
a top-view of the reactor. The mesh has been constructed using
the O-grid technique in order to have nearly uniform cells in
horizontal section and contains 80245 hexahedra.

In recent years the issue of the effect of the cell size on the
numerical solution of fluidized bed has been addressed (Agrawal
et al., 2001; Heynderickx et al., 2004; Igci et al., 2008; Parmentier
et al., 2012; Ozel et al., 2013; Sundaresan et al., 2013). As discussed
by Sundaresan et al. (2013) the appropriate length scale for the
grid resolution is is still an open issue and seems to be dependent
on the given gas-solid flow configuration. However, Parmentier
et al. (2008) carried out an analysis of the effect of the grid reso-
lution on dense fluidized beds with flow conditions roughly
similar to the present study. Following Parmentier et al. (2008) the
effect of the mesh is negligible when Δn is smaller than 0.04 where

Δ
n ¼Δ=ð2RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L=τStp V f

q

with τStp ¼ ρpd
2
p=18μg the particle response

time based on Stokes law. In this numerical simulation, the typical
cell size is about Δ¼ 5& 10'3 m, which leads to Δn ¼ 0:017 which
is small compared to the limiting value. More, Fede et al. (2009)
analyzed the effect of the mesh on the present geometry. They

showed that a finer mesh, with 440 962 cells and a typical cell size
Δ¼ 2:5& 10'3 m, does not significantly change the results.

The distribution plate is an inlet for the gas with an imposed
velocity corresponding to the one of experiments (see Table 1).
The imposed surfacic gas velocity is uniformly distributed on the
fluidization grid. For the particles, the distribution plate is a wall.
The chimney, located at the top of the fluidized bed, is a free outlet
for the gas and for the particles as well.

4.2. Physical parameters

All physical parameters of the particles and the gas are the same as
in experiments. The normal restitution coefficient of particle-particle
collisions ranges between 1.00 and 0.80. For analysing the effect of the
wall boundary conditions on the hydrodynamics of the fluidized bed
several particle-wall restitution and friction coefficients have been
considered. As mentioned by Benyahia et al. (2005), realistic values of
such coefficients are rarely available in the literature. Table 2 gathers
all parameters of the boundary conditions. For the restitution and
friction coefficients the values are close to those from the experiments
of Sommerfeld and Huber (1999). Additional values have been used
for the analysis.

4.3. Statistics and simulation organization

The numerical simulations are performed during 240 s of
experimental time. A first period of 120 s is needed to establish
steady state and then time-averaged statistics are computed
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Fig. 8. Effect of the wall boundary conditions for the solid phase on the time-averaged solid velocity field. This vertical plane is passing through the symmetry axis and is
defined by y¼0 in the simulation mesh. Left: Free-slip, middle: No–slip and right: Johnson and Jackson's rough wall with ϕ¼ 0:1 and ew¼1.0 boundary conditions for the
solid phase.



during the remaining 120 s. The time-averaged solid volume
fraction is then defined by

αpðxÞ ¼

P

n
αpðx; tnÞΔtn
P

n
Δtn

ð16Þ

and the variance of the solid volume fraction by

α0
pðxÞ

2 ¼

P

n
αpðx; tnÞ'αpðxÞ
+ ,2

Δtn
P

n
Δtn

ð17Þ

For the gas and particle velocities the time-averaging is weighted
by the solid volume fraction. Then the time-averaged Eulerian
particle phase velocity becomes

Up;iðxÞ ¼

P

n
αpðx; tnÞUp;iðx; tnÞΔtn
P

n
αpðx; tnÞΔtn

: ð18Þ

The radial profiles are extracted at z=R¼ 1.50 and 3.45. These

specific horizontal positions correspond to the locations where the
experimental error is minimal (Fede et al., 2009).

The time-averaged results over 120 s obey the cylindrical
symmetry sufficiently that the fields and radial profiles of theses
variables are nearly identical for any given vertical plane crossing
the symmetry axis. In the following, the chosen vertical plane of
reference is defined by y¼0 in the simulation mesh (see Fig. 2).

5. Presentation of the results

5.1. Vertical distribution of time-averaged gas pressure and solid

volume fraction

The effects of the solid wall boundary conditions and of the
particle-particle restitution coefficient on the vertical distribution
of time–averaged gas pressure measured at the wall are shown by
Fig. 3. As expected, the vertical profile of the gas pressure has two
parts. Above the fluidized bed, z=R46, the profile is linear

Fig. 9. Radial profiles of time-averaged gas vertical velocity normalized by the fluidization velocity. Upper panels: effect of the wall boundary conditions (with the particle-
particle restitution coefficient ec¼0.9), bottom panel: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions, right panels:
smooth wall boundary conditions.



corresponding to the hydrostatic law for the gas. At the bottom of
the reactor, z=Ro3:5, the vertical profile of the gas pressure is also
linear but with a different slope due to the weight of the solid. The
bed height is located in the intermediate zone 3:5oz=Ro6 also
called free-board zone. Fig. 3 shows that the smooth wall
boundary conditions have no significant effect on the vertical
distribution of time-averaged gas pressure for a given value of
particle-particle restitution coefficient (ec¼0.9).

Fig. 3 shows that the particle-particle restitution coefficient
may have a strong effect on the vertical distribution of the gas
pressure profiles. As ec increases the bed height is increasing and
the free-board seems narrowed.

These trends are also observed with the vertical distribution of
the time-averaged solid volume fraction measured at the wall, αp .
Indeed, Fig. 4 shows that the smooth wall boundary conditions do
not affect the vertical distribution of the solid in the reactor. The
solid volume fraction increases almost linearly between the flui-
dization grid and z=R, 0:5. Then the solid volume fraction is
uniform for 0:5oz=Ro3:5. Finally the solid volume fraction
decreases linearly for z=R43:5. Different behaviour is observed for

rough wall boundary conditions. Here, the solid volume fraction
increases linearly from the bottom of the reactor up to z=R, 4:5
and decreases linearly for z=R44:5. The profiles between the No-
slip and Free-slip cases are obtained with intermediate specularity
coefficient. As expected, for the smallest value of the specularity
coefficient ðϕ¼ 0:01Þ the vertical profile of αp is similar to the one
obtained with the smooth wall boundary conditions.

As shown by Fig. 4, the normal restitution coefficient sig-
nificantly modifies the vertical distribution of the solid inside the
reactor for the given boundary conditions. The shapes of the ver-
tical profiles are conserved (and seem to be controlled by the
nature of the wall boundary conditions) but when ec increases the
time averaged solid volume fraction decreases.

The bed height, Hbed, is computed as the intersection of the two
linear zones previously defined for the vertical profile of the time-
averaged gas pressure distribution (Fig. 3). The bed height with
respect to the specularity coefficient is shown by Fig. 5. For ϕ-0 the
bed height given by rough wall boundary conditions moves towards
the value given by the Free-slip conditions ðHbed=R¼ 4:21Þ. As
expected from section 3.3, for ϕ-1 the bed height tends towards the

Fig. 10. Radial profiles of time-averaged solid volume fraction. Upper panels: effect of the wall boundary conditions (with the particle-particle restitution coefficient ec¼0.9),
bottom panel: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions, right panels: smooth wall boundary conditions.



value obtained with No-slip wall boundary conditions ðHbed=R¼
5:25Þ. As already shown by Fede et al. (2009) the bed height obtained
with No-slip wall boundary conditions is larger than the one obtained
with Free-slip.

5.2. Time-averaged vertical velocities and solid mass flux

Figs. 6 and 7 show the time-averaged Eulerian solid velocity
measured in the experiment and in the numerical simulations. The
profiles are extracted at two heights z=R¼ 1:50 (Fig. 6) and z=R¼
3:45 (Fig. 7). In the centre of the reactor the experiment exhibits
an upward mean solid velocity between 0or=Ro0:5 at z=R¼ 1:50
and between 0or=Ro0:6 at z=R¼ 3:45. In this region the mean
solid upward velocity is increasing between the two heights. Close
to the wall a downward solid flow is observed. The maximum of
the downward solid velocity is found at r=R¼ 0:75 and the mag-
nitude increases from 0:25V f at z=R¼ 1:50 to 0:6V f at z=R¼ 3:45.
Between r=R¼ 0:75 and the wall, the slope changes and the
measured mean solid velocity at the wall is nearly equal to zero.

Figs. 6 and 7 show that the smooth wall boundary conditions
all give nearly the same trend. The predictions of these boundary
conditions are in good accordance with the experiments at the
centre of the reactor but in the near wall region the downward
solid velocity is overestimated by the numerical simulation. In
contrast, rough wall boundary conditions improve the predictions
in the near-wall region even if the position of the point where the
slope of the profile changes is not exactly predicted. Finally, the
flat frictional wall boundary conditions (for physical values of the
dynamic friction coefficient, μwr0:3) lead to a particle wall shear
stress effect too small in comparison with the experimental
results. In contrast, the rough wall boundary condition of Johnson
and Jackson (with specularity coefficient equal to or larger than
0.1) or the No-slip boundary conditions lead to a particle wall
shear stress effect comparable with the experimental study.

The dependence of the mean solid velocity on the particle-
particle restitution coefficient is also shown by Figs. 6 and 7. For
rough wall boundary conditions, the normal restitution coefficient
modifies the magnitude of the mean vertical solid velocity. In the
central zone of the reactor, with decreasing normal restitution

Fig. 11. Radial profile of the time-averaged downward solid mass flux normalized by the inlet gas mass flux. Upper panels: effect of the wall boundary conditions (with the
particle-particle restitution coefficient ec¼0.9), bottom panel: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions, right
panels: smooth wall boundary conditions.



coefficient, we observe an increase in the mean vertical gas velo-
city while an opposite trend is observed close to the wall. For
smooth wall boundary conditions the effect of the normal resti-
tution coefficient is less clear.

Fig. 8 shows the time-averaged solid velocity field in a vertical
plane passing through the symmetry axis , corresponding to y¼0
in the simulation mesh (see Fig. 2) for Free-slip, No-slip and
Johnson and Jackson's rough wall boundary conditions with
ϕ¼ 0:1. In the case of Free-slip boundary conditions, the figure
shows that, on average, the particles move upwards at the center
of the reactor and downwards close to the wall. The time-averaged
solid velocity field exhibits a single clockwise macroscopic mixing
loop. According to the cylindrical symmetry of these time-
averaged results, the 3D structure has a toroidal shape or a
donut shape. The rough wall boundary conditions, No-slip and
Johnson and Jackson's conditions with ϕ¼ 0:1, both lead to a more
complex structure of the flow. Indeed two large-scale mixing loops
are depicted by Fig. 8. In the upper part of the reactor, a clockwise
mixing loop is still observed whereas, in the bottom part of the
reactor, a counter clockwise loop is observed. Also it can be noticed

that the position of centre of the upper loop has moved upward,
significantly, compared to the case with Free-slip boundary con-
ditions. The analysis of the time-averaged solid velocity field,
obtained for specularity coefficient smaller than 0.1 (ϕ¼ 0:01 and
0.001), shows the full disappearance of the second counter
clockwise loop in the bottom part of the reactor. So the transition
between single- and double-loop structure is controlled by the
solid wall shear stress intensity.

The radial profiles of time-averaged vertical gas velocity are
shown by Fig. 9. At the centre of the reactor, all profiles exhibit an
upward gas velocity up to 3.5 times the fluidization velocity.
Downward gas velocity is observed close to the wall with smooth
wall boundary conditions. As shown by Fig. 7 with such boundary
conditions, the solid goes towards the bottom of the reactor
without, or with very small, friction with the wall. Then the gas is
entrained by the solid and also moves downward. In contrast, for a
specularity coefficient ϕZ0:1 the rough wall boundary conditions
predict an upward gas velocity in the near wall region. Fig. 9
shows that the normal restitution coefficient has the same effect

Fig. 12. Radial profile of the time-averaged upward solid mass flux normalized by the inlet gas mass flux. Upper panels: effect of the wall boundary conditions (with the
particle-particle restitution coefficient ec¼0.9), bottom panels: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions, right
panels: smooth wall boundary conditions.



on the mean vertical gas velocity as on the mean vertical solid
velocity.

Fig. 10 shows the radial profile of the time-averaged solid
volume fraction . For a given value of the particle-particle normal
restitution coefficient (ec¼0.9) the smooth boundary conditions all
give the same profiles. The profile of solid volume fraction has a
minimum at the centre of the reactor and for the smooth
boundary conditions the maximum is found at the wall. For rough
wall boundary conditions with a significant specularity coefficient
ðϕZ0:1Þ, or for No-slip boundary conditions, the maximum is
found not at the wall but at a small distance away from the wall.
By decreasing the particle-particle restitution coefficient, the solid
volume fraction is found to increase.

Downward and upward time-averaged solid mass fluxes are
shown by Figs. 11 and 12 respectively. As expected, downward
solid mass flux is observed in the near-wall region and an upward
flux at the centre of the reactor. The largest downward mass flux is
obtained with smooth boundary conditions. Rough wall boundary
conditions lead to more complex profiles. Indeed, downward solid
mass flux profiles exhibits peaks located approximately at r=R¼
0:80 and at the wall the downward solid mass flux is four times

smaller than that obtained with smooth wall boundary conditions.
Figs. 11 and 12 show that the particle-particle restitution coeffi-
cient modifies the upward and downward solid mass flux. By
decreasing the particle-particle restitution coefficient the magni-
tude of upward and downward solid mass fluxes are both found to
increase for all kinds of boundary conditions.

5.3. Meso-scale fluctuating motion in the bed

Time-averaged variance of the solid volume fraction is shown
by Fig. 13 to characterize the meso-scale variations of the local
instantaneous particle concentration corresponding to the so-
called bubbles in the dense fluidized bed. At the centre of the
reactor, approximately between '0:5or=Ro0:5, flat profiles are
exhibited. Close to the walls, the solid volume fraction variance
decreases quickly. As shown by Fig. 13 the wall boundary condi-
tions do not affect the profiles of the time-averaged variance of the
solid volume fraction. In contrast, the normal restitution coeffi-
cient strongly modifies the magnitude of solid volume fraction
variance - yet keeping the shape of the profile more or less

Fig. 13. Radial profile of the time-averaged variance of solid volume fraction. Upper panels: effect of the wall boundary conditions (with the particle-particle restitution
coefficient ec¼0.9), bottom panels: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions, right panels: smooth wall boundary
conditions.



unchanged. The fluctuations of the solid volume fraction are
increased as the normal restitution coefficient decreases.

The variance of the vertical solid velocity normalized by the
square of the fluidization velocity shown by Fig. 14 is an indicator
of the large scale fluctuating motion of the solid phase. First of all
it can be observed that the fluctuations of the mean vertical solid
velocity are large - of the same order, or larger, than the fluidiza-
tion velocity. Smooth wall boundary conditions lead to very large
fluctuations of solid velocity in particular close to the wall

ðU0
p;32 V2

f , 3Þ:
.

. In contrast, the rough wall boundary conditions

damped the fluctuations of solid velocity and close to the wall the
fluctuations go to zero (except for the smallest specularity coeffi-
cient value, ϕ¼ 0:01). Fig. 14 shows that, at the centre of the
reactor, decreasing the normal restitution coefficient tends to
increase the fluctuations of the mean vertical solid velocity.

The random particle kinetic energy is shown by Fig. 15. The
smooth wall boundary conditions have no effect on the radial
profile of particle kinetic energy. The particle kinetic energy is
nearly uniform at the centre of the reactor (between

'0:5or=Ro0:5). Two peaks appear at r=R¼ 70:75 and qp
2 is

decreasing close to the wall. As the qp
2 profile is only slightly

dependent on the wall boundary conditions, the decrease of the
random particle kinetic energy in the near-wall region is probably
due to the decrease in the production rate by the mean shear
when approaching the wall (as shown by Fig. 7). Fig. 15 (left-upper
panel) shows that the radial profile of the time-averaged random
kinetic energy is slightly dependent on the particle wall restitution
coefficient and on the specularity coefficient. In contrast with the
smooth boundary condition effect, the random kinetic energy
strongly increases when approaching the wall. This very different
behavior from the smooth wall case, may be analyzed in two steps.
First, as for the smooth wall case, the first dominant effect on the
random kinetic energy profile is probably the production by the
solid mean velocity gradient (see Eq. (A.21)) which is increasing
when approaching the wall due to the large friction induced by the
wall boundary condition on the solid mean velocity. This effect is
also very noticeable when using the No-slip boundary conditions.
Second, as pointed out in Section 3.3, the Johnson and Jackson wall
boundary condition of the random particle kinetic energy accounts

Fig. 14. Radial profile of the time-averaged variance of vertical solid velocity normalized by the square of fluidization velocity. Upper panels: effect of the wall boundary
conditions (with the particle-particle restitution coefficient ec¼0.9), bottom panel: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary
conditions, right panels: smooth wall boundary conditions.



for two competitive effects: a source term, due to the wall
roughness, representing the transfer of kinetic energy from the
mean solid motion and a sink term representing the dissipation by
inelastic collision by the wall. Then, as shown by Fig. 15, the ran-
dom kinetic energy is increasing up to the wall meaning that the
production due to the roughness effect is dominant over the dis-
sipation due to inelastic wall-particle collision. According to Eqs.
(9) and (10), these production effects in the near wall region
should disappear for lower values of the specularity coefficients,
leading to random kinetic energy profiles with minimum values at
the wall, similar to the ones obtained for the smooth wall
boundary conditions.

Fig. 15 shows that the normal particle-particle restitution
coefficient has a strong effect on the random particle kinetic
energy for both No-slip and Free-slip boundary conditions.
According to the dissipation effect of inelastic collisions, decreas-
ing the normal restitution coefficient leads to a decrease in the
time-averaged random particle kinetic energy in the whole bed.
Typically, with No-slip boundary conditions, the random particle
agitation is q2p ¼ 4:2& 10'3 m2=s2 for ec¼1.0 and for ec¼0.8 we
have q2p ¼ 7:2& 10'4 rmm2=s2. The shapes of the profiles of qp

2

close to the wall are conserved for a given wall boundary
condition type.

6. Discussion of the influence of the particle–particle restitu-

tion coefficient and the solid wall boundary conditions

6.1. Effect of the normal particle-particle restitution coefficient on

the hydrodynamics of dense fluidized bed

Fig. 5 shows that decreasing the normal restitution coefficient
leads to a decrease in the height of the bed. This effect is due to the
increasing solid segregation effect in the fluidized bed with the
formation of bubbles corresponding to regions with very low
values of particle volume fraction surrounded by dense particle
regions (Balzer et al., 1995). According to the non linear depen-
dence of the drag on the particle volume fraction, the mean drag
force in such a heterogeneous system is smaller than in the
homogeneous case.

Fig. 16 shows instantaneous fields of volume fraction for dif-
ferent values of the restitution coefficient and boundary condition

Fig. 15. Radial profile of the time-averaged particle kinetic energy normalized by the square of fluidization velocity. Upper panels: effect of the wall boundary conditions
(with the particle-particle restitution coefficient ec¼0.9), bottom panel: effect of particle-particle normal restitution coefficient, left panels: rough wall boundary conditions,
right panels: smooth wall boundary conditions.



type. It is clear that for ec¼1 the distribution of solid in the reactor
is much more homogeneous than in case of eco1. The formation
of bubbles is observed with both No–slip and Free–slip boundary
conditions. This trend was also shown by Fig. 13 where the var-
iance of the solid volume fraction was found to decrease with
increasing particle-particle restitution coefficient.

Fig. 17 shows the probability density function of the solid
volume fraction in a test–cylinder located at the centre of the
reactor. The peak of probability moves towards large volume
fraction as the normal restitution coefficient decreases.

The presence of the mesoscale particle collective motion leads
also to larger fluctuations of the vertical solid velocity as shown by
Fig. 14. In contrast, the particle kinetic energy decreases with
decreases in the normal restitution coefficient. This tendency is
expected because according to the transport equation of the ran-
dom particle kinetic energy, Eq. (A.21), the collisions lead to a sink
term proportional to 1'e2c .

The results are in accordance with those of Goldschmidt et al.
(2001). Indeed Goldschmidt et al. (2001) observed that the
intensity of gas pressure fluctuations in the bed increases gradu-
ally when the coefficient of restitution is decreasing. Such an
increase of the pressure fluctuation intensity is typically related to
increases in the variances of the solid volume fraction and the
mean solid velocity, when the restitution coefficient is decreasing,
as shown in the paper simulations. In addition, Goldschmidt et al.
(2001) showed, in accordance with these simulations presented
here, that a decrease in the restitution coefficient leads to a
decrease in the random particle kinetic energy.

6.2. Effect of wall boundary conditions for the solid phase

The effect of the wall boundary conditions for the solid phase
comes from two contributions: the boundary conditions on the
mean solid velocity and that on the random particle kinetic
energy. Figs. 3 and 4 show that if only the wall-normal restitution
coefficient is modified, which affects only the random particle
kinetic energy boundary condition, no significant modification of
the bed height is observed. In contrast, changing the wall
boundary condition on the mean solid velocity leads to different
vertical profiles of gas pressure and solid volume fraction.

The radial profile of the mean solid vertical velocity (Figs. 6 and
7) shows that the smooth wall boundary conditions lead to a large
downward solid velocity at the wall. In contrast, the downward
velocity is reduced by using rough wall boundary conditions
meaning that the effective friction of the particulate flow with the
wall is increased. Figs. 6 and 7 show no drastic effect of varying the

Fig. 16. Instantaneous solid volume fraction fields for different boundary conditions for the solid phase and different values of particle-particle restitution coefficient. From
the left to the right; Free-slip and ec¼1.00, Free-slip and ec¼0.95, Free-slip and ec¼0.80, No-slip and ec¼1.00, No-slip and ec¼0.95, No-slip and ec¼0.80.

Fig. 17. Probability density function of the solid volume fraction in a cylinder
defined such as '0:5rr=Rr0:5 and 0:5rz=Rr3:5 for different values of particle-
particle restitution coefficient and wall boundary type.



wall-normal restitution coefficient from ew¼1.00 to ew¼0.86 on
the mean solid vertical velocity. As a matter of fact, ew is not
affecting directly the mean velocity boundary condition but might
be effective through the modification of the random kinetic
energy. However, Fig. 15 shows that ew has no effect on the radial
profile of random kinetic energy when using smooth boundary
condition and will not affect the mean solid velocity either. As
discussed in Section 5.3, the dependence of the random particle
kinetic energy on the wall-normal restitution coefficient for the
rough wall boundary conditions is more complex. Decreasing ew
should lead to a decrease of qp

2 and should decrease the friction of
the particulate flow with the wall. But for the typical values of the
specularity coefficient used in the paper simulations (ϕ¼ 0:01 to
1), the dissipation of random particle kinetic energy due to wall-
normal restitution coefficient looks negligible compared to the
kinetic energy transfer from the mean particulate flow due wall
roughness effect.

7. Conclusions

Numerical simulations of pressurized dense fluidized bed have
been performed with an Euler-Euler approach. The effect of the
particle-particle restitution coefficient and wall boundary condi-
tions for the solid phase have been investigated. Two kinds of
boundary conditions have been used: rough wall boundary con-
ditions (Johnson and Jackson (1987) and No-slip) and smooth wall
boundary conditions (Sakiz and Simonin (1999) and Free-slip).

The time-averaged Eulerian solid vertical velocity component
has been compared with experimental measurements obtained by
Positron Emission Particle Tracking. The time-averaged solid ver-
tical velocity from the numerical simulations is in good agreement
with the experimental data. It has been shown that the numerical
predictions may be improved by using rough wall boundary con-
ditions. The analysis of the time-averaged solid velocity fields
showed that the Free-slip boundary condition leads to a macro-
scopic toroidal (donut shape) circulation loop. In contrast, No-slip
or Johnson and Jackson's boundary conditions, with a large value
of the specularity coefficient ðϕZ0:1Þ, lead to two counter-
rotating mixing toroidal loops.

A detailed analysis of the role of the boundary conditions on
the Eulerian solid velocity and on the random particle kinetic
energy has been performed. It has been shown that, in such a
fluidized bed, the boundary conditions on the Eulerian solid
velocity are of much more importance than those on the random
particle kinetic energy. Finally the No–slip boundary condition for
the mean particle velocity supplemented with zero flux boundary
condition for the random particle kinetic energy are found to be
good and effective approximations for solid wall boundary con-
ditions representing particle-wall interaction with large roughness
effects leading to predictions in satisfactory agreement with PEPT
experimental data.

Nomenclature

Subscripts
k k¼g: gas phase, k¼p: particulate phase
wall value at the wall

Latin symbols
Cd drag coefficient, [—–]
dp particle diameter, [m]
Dp;ij particle strain rate tensor, ½rms'1)
ec particle-particle normal restitution coefficient, [–]
ew wall-normal restitution coefficient, [–]

g0 radial distribution function, [–]
gi ith component of the gravitational acceleration, ½m=s2)
Hbed mean height of the fluidized bed, [m]
Kp granular diffusivity, ½m2=s)
Kp

col collisional granular diffusivity, ½m2=s)
Kp

kin kinetic granular diffusivity, ½m2=s)
np particle number density ðnpmp ¼ αpρpÞ, ½m'3)
ms solid mass in the reactor, [kg]
Pg gas pressure, [Pa]
qp

2 random particle kinetic energy, ½m2=s2)
R internal radius of the fluidization column, [m]
Rep particle Reynolds number, [–]
Uk;i ith component of the mean velocity of the phase k, [m/s]
Up;τ mean particle velocity tangent to the wall, [m/s]
Vf fluidization velocity, [m/s]
Vr gas-particle mean relative velocity, [m/s]

Greek symbols

αp
solid volume fraction, [–]

αp
max maximum solid packing, [–]

Δ characteristic grid width, [m]

Δn dimensionless characteristic grid width, [–]

μg
dynamical gas viscosity, [kg/m/s]

μw
wall-normal dynamic friction coefficient, [–]

νp kinetic viscosity of the phase k, ½m2=s)
νp

col collisional granular viscosity, ½m2=s)
νp

kin kinetic granular viscosity, ½m2=s)
ϕ specularity coefficient, [–]

ρg gas density, ½kg=m3)
ρp particle density, ½kg=m3)
Σk;ij kinetic stress tensor of the phase k, ½kg=m=s2)
τc collision time scale, [s]

τp
St particle response time based on Stokes law, [s]

τgp
F particle response time, [s]
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Appendix A. Mathematical model

This appendix gives the set of equations of the multi-fluid
Eulerian model. In the following when subscript k¼g we refer to
the gas and k¼p to the particulate phase.

The mass balance equation (without interphase mass transfer)
is written

∂

∂t
αkρkþ

∂

∂xj
αkρkUk;j ¼ 0 ðA:1Þ

where αk is the volume fraction of the phase k, ρk the material
density and Uk;i the ith component of the k' phase mean velocity.
It must be noted that αpρp represent npmp where np is the number
density of p-particle centers and mp the mass of a single p-particle.
Then αp ¼ npmp=ρp is an approximation of the local volume



fraction of the dispersed phase. Hence, gas and particle volume
fractions αg and αp should satisfy αpþαg ¼ 1.

The mean momentum transport equation is written

αkρk

∂

∂t
þUk;j

∂

∂xj

' (

Uk;i ¼ 'αk
∂Pg

∂xi
þαkρkgiþ Ik;i'

∂Σk;ij

∂xj
ðA:2Þ

where Pg is the mean gas pressure, gi the gravity acceleration and
Σk;ij the effective stress tensor. In Eq. (A.2), Ik;i is the mean gas-
particle interphase momentum transfer without the mean gas
pressure contribution. According to the large particle to gas den-
sity ratio, only the drag force is acting on the particles. The mean
gas-particle interphase momentum transfer term is written as:

Ip;i ¼ 'αpρp

V r;i

τFgp
and Ig;i ¼ ' Ip;i: ðA:3Þ

The particle relaxation time scale is written

1
τFgp

¼ 3
4

ρg

ρp

〈jvr j 〉
dp

Cd ðA:4Þ

where Cd is the drag coefficient. To take into account the effect of
large solid volume fraction Gobin et al. (2003) proposed the fol-
lowing correlation for the drag coefficient

Cd ¼
minðCd;Erg ;Cd;WY Þ if αp40:3

Cd;WY otherwise

(

ðA:5Þ

where Cd;Erg is the drag coefficient proposed by Ergun (1952):

Cd;Erg ¼ 200
αp

Rep
þ7
3

ðA:6Þ

and Cd;WY by Wen and Yu (1965):

Cd;WY ¼
0:44α'1:7

g if RepZ1000

24
Rep

1þ0:15Re0:687p

0 1

α'1:7
g otherwise

8

>

<

>

:

: ðA:7Þ

The particle Reynolds number is given by

Rep ¼ αg

ρg〈jvr j 〉dp
μg

: ðA:8Þ

The mean fluid-particle relative velocity, V r;i, is given in terms of
the mean gas and solid velocities: V r;i ¼Up;i'Uf ;i.

The solid stress tensor is written

Σp;ij ¼ αpρpou0
p;iu

0
p;j4þΘp;ij ðA:9Þ

where u0
p;i is the fluctuating part of the instantaneous solid velocity

and Θp;ij the collisional particle stress tensor. The solid stress
tensor is expressed as (Boëlle et al., 1995; Ferschneider and Mège,
2002; Balzer, 2000),

Σp;ij ¼ Pp'λpDp;mm

+ ,

δij'2μp
~Dp;ij ðA:10Þ

where the strain rate tensor is defined by

~Dp;ij ¼Dp;ij'
1
3
Dp;mmδij with Dp;ij ¼

1
2

∂Up;i

∂xj
þ
∂Up;j

∂xi

' (

: ðA:11Þ

The granular pressure, viscosities and model coefficients are
given by

Pp ¼
2
3
αpρpq

2
p 1þ2αpg0ð1þecÞ
+ ,

ðA:12Þ

λp ¼
4
3
α2
pρpdpg0ð1þecÞ

ffiffiffiffiffiffiffiffiffi

2
3

q2p
π

s

ðA:13Þ

μp ¼ αpρp νkinp þνcolp

0 1

ðA:14Þ

νkinp ¼ 1
2
τFgp

2
3
q2pð1þαpg0ζÞ= 1þσ

2

τFgp
τc

" #

ðA:15Þ

νcolp ¼ 4
5
αpg0ð1þecÞ νkinp þdp

ffiffiffiffiffiffiffiffiffi

2
3

q2p
π

s2

4

3

5 ðA:16Þ

ζ ¼ 2
5
ð1þecÞð3ec'1Þ ðA:17Þ

σ ¼ 1
5
ð1þecÞð3'ecÞ: ðA:18Þ

The collision time scale τc is given by

1
τc

¼ 4πg0nqd
2
p

ffiffiffiffiffiffiffiffiffiffiffi

2
3π

q2p

r

ðA:19Þ

where the radial distribution function, g0, is computed according
to Lun and Savage (1986) as

g0ðαpÞ ¼ 1' αp

αmax

' ('2:5αmax

ðA:20Þ

where αmax ¼ 0:64 is the closest random packing.
The solid random kinetic energy transport equation is written:

αpρp

∂q2p
∂t

þUp;j

∂q2p
∂xj

" #

¼ ' ∂

∂xj
αpρp Kkin

p þKcol
p

0 1∂q2p
∂xj

" #

'Σp;ij

∂Up;i

∂xj

'
αpρp

τFgp
2q2p

'1
3
1'e2c
τc

2
3
q2p: ðA:21Þ

In Eq. (A.21), the first term on the right–hand–side represents
the transport of the random particle kinetic energy due to the
particle agitation and the collisional effects. That term is written
by introducing the diffusivity coefficients:

Kkin
p ¼ 2

3
q2p
5
9
τFgp 1þαpg0ζc
= >

= 1þ5
9
τFgp

ξc
τc

' (

ðA:22Þ

Kcol
p ¼ αpg0ð1þecÞ

6
5
Kkin
p þ4

3
dp

ffiffiffiffiffiffiffiffiffi

2
3

q2p
π

s2

4

3

5 ðA:23Þ

ζc ¼
3
5
1þecð Þ2ð2ec'1Þ ðA:24Þ

ξc ¼
ð1þecÞð49'33ecÞ

100
: ðA:25Þ

The second term on the right-hand-side of Eq. (A.21) represents
the production of particle agitation by the gradients of the mean
solid velocity. The third term is the interaction with the gas. Finally
the fourth term is the particle agitation dissipation by inelastic
collisions.

Appendix B. Numerical implementation of wall boundary

conditions

This appendix is dedicated to the detailed description of the
numerical implementation of the boundary conditions for the
solid phase mean velocity and random kinetic energy.

According to part 3.2, the flat frictional wall boundary condi-
tions can be written in the following generic forms:

νp
∂Up;τ

∂n

# $

wall

¼ A q2p

h i

wall
ðB:1Þ



Kp
∂Up;τ

∂n

# $

wall

¼ B q2p

h i

wall

0 13=2
ðB:2Þ

where A and B are two given parameters of the modelling
approach.

For computing the solid wall shear stress and random kinetic
energy wall flux effects in the transport equation resolution
method, the numerical approach implemented in NEPTUNE_CFD
uses a first order gradient approximation between the computed
variables at the wall distance Yc and fictitious imposed variables at
the wall (as shown on Fig. 18B), so the above equations are written
in the frame of the numerical code approach as,

νp Yc=2
A BUp;τ Ycf g' Up;τ

+ ,imp

Yc
¼ A q2p

h i

wall

Kp Yc=2
A B

q2p Ycf g' q2p

h iimp

Yc
¼ B q2p

h i

wall

0 13=2

where νp Yc=2
A B

and Kp Yc=2
A B

represent the effective particle
viscosity and diffusivity used in the frame of the numerical code
approach for the flux computation in the diffusion step resolution
method and they are chosen equal to the computed value at Yc.

Then the fictitious imposed values of the solid mean velocity
and random kinetic energy at the wall are written,

Up;τ

+ ,imp ¼Up;τ Ycf g' A Yc

νp Ycf g q2p

h i

wall

q2p

h iimp
¼ q2p Ycf g' B Yc

Kp Ycf g q2p

h i

wall

0 13=2

Finally, the fictitious variables, used as Dirichlet wall boundary
conditions, are directly written in terms of the computed variables
at Yc by assuming a low variation of the random particle kinetic
energy between Yc and dp=2, so that:

Up;τ

+ ,imp ¼Up;τ Ycf g' A Yc

νp Ycf gq
2
p Ycf g ðB:3Þ

q2p

h iimp
¼ q2p Ycf g' B Yc

Kp Ycf g q2p Ycf g
0 13=2

ðB:4Þ

According to part Section 3.3, the Johnson and Jackson's rough
wall boundary conditions can be written in the following generic
forms:

νp
∂Up;τ

∂n

# $

wall

¼ A g0
+ ,

wall
Up;τ

+ ,

wall
q2p

h i

wall

0 11=2
ðB:5Þ

Kp

∂q2p
∂n

 !

wall

¼ 'A g0
+ ,

wall
Up;τ

+ ,

wall

= >2
q2p

h i

wall

0 11=2

þB g0
+ ,

wall
q2p

h i

wall

0 13=2
ðB:6Þ

where A and B are two given parameters of the modelling
approach.

According to the numerical approach implemented in NEPTU-
NE_CFD, the solid wall shear stress and random kinetic energy
wall flux are written in the numerical code approach as,

νp Yc=2
A BUp;τ Ycf g' Up;τ

+ ,imp

Yc
¼ A g0

+ ,

wall
Up;τ

+ ,

wall
q2p

h i

wall

0 11=2

Kp Yc=2
A B

q2p Ycf g' q2p

h iimp

Yc
¼ 'A g0

+ ,

wall
Up;τ

+ ,

wall

= >2
q2p

h i

wall

0 11=2

þB g0
+ ,

wall
q2p

h i

wall

0 13=2

As previously, the effective particle viscosity and diffusivity used in
the frame of the numerical code approach for the flux computa-
tion in the diffusion step resolution method are chosen equal to
the computed value at Yc and the fictitious imposed values of the
mean particle velocity and random kinetic energy are written,

Up;τ

+ ,imp ¼ Up;τ Ycf g

' A Yc

νp Ycf g g0
+ ,

wall
Up;τ

+ ,

wall
q2p

h i

wall

0 11=2

q2p

h iimp
¼ q2p Ycf g

þ A Yc

νp Ycf g g0
+ ,

wall
Up;τ

+ ,

wall

= >2
q2p

h i

wall

0 11=2

' B Yc

Kp Ycf g q2p

h i

wall

0 13=2

The above Dirichlet wall boundary conditions are written in
practice assuming a low variation of the random particle kinetic
energy between Yc and dp=2: q2p

h i

wall
¼ q2p Ycf g and by computing

the pair distribution function using the solid volume fraction
computed at Yc: g0

+ ,

wall
¼ g0 Ycf g. But, in contrast, specific numer-

ical sensitivity analysis, carried out with the numerical code, have
shown that the computation of Up;τ

+ ,

wall
, the ”true” mean trans-

lation particle velocity at the distance dp=2 from the wall, needs
special care, especially for large roughness effects corresponding

to large value of An ¼ AYcg0

ffiffiffiffiffi

q2p

q

=νp (when An is in the order of or

larger than 1).
So, an approximation of Up;τ

+ ,

wall
is derived from the solid wall

shear stress written in terms of the mean particle translation
velocity defined at Yc and dp=2 using the values predicted at Yc for
the solid viscosity, pair distribution function and random particle
kinetic energy:

νp Ycf g
Up;τ Ycf g' Up;τ

+ ,imp

Yc'dp=2
¼ A g0

+ ,

wall
Up;τ

+ ,

wall
q2p

h i

wall

0 11=2

then, the mean tangential velocity of the particles in contact with
the wall is written,

Up;τ

+ ,

wall
¼ Up;τ Ycf g 1þ

A Yc'dp=2
= >

νp Ycf g g0 Ycf g q2p Ycf g
0 11=2

' ('1

ðB:7Þ

Finally, using the above equation for Up;τ

+ ,

wall
, the fictitious vari-

ables, used as Dirichlet wall boundary conditions, may be written
in terms of computed variables at Yc only by using the following
equations,

Up;τ

+ ,imp ¼ Up;τ Ycf g

' A Yc

νp Ycf gg0 Ycf g Up;τ

+ ,

wall
q2p Ycf g
0 11=2

ðB:8Þ

q2p

h iimp
¼ q2p Ycf g

Fig. B1. Sketch of the mesh at the wall.



þ A Yc

Kp Ycf gg0 Ycf g Up;τ

+ ,

wall

= >2
q2p Ycf g
0 11=2

' B Yc

Kp Ycf g q2p Ycf g
0 13=2

ðB:9Þ
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