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OPTIMAL CONTROL OF PDES
IN A COMPLEX SPACE SETTING;
APPLICATION TO THE SCHRODINGER EQUATION *

MARIA SOLEDAD ARONNA*, JOSEPH FREDERIC BONNANS, AND AXEL KRONER!

May 4, 2016

Abstract. In this paper we discuss optimality conditions for abstract optimization problems
over complex spaces. We then apply these results to optimal control problems with a semigroup
structure. As an application we detail the case when the state equation is the Schrédinger one,
with pointwise constraints on the “bilinear” control. We derive first and second order optimality
conditions and address in particular the case that the control enters the state equation and cost
function linearly.
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spaces, second-order optimality conditions, Goh-transform, semigroup theory, Schrodinger equation,
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1. Introduction. In this paper we derive no gap second order optimality condi-
tions for optimal control problems in a complex Banach space setting with pointwise
constraints on the control. This general framework includes, in particular, optimal
control problems for the bilinear Schrédinger equation.

Let us consider T > 0, @ C R™ an open bounded set, n € N, @ := (0,7) x €,
and ¥ = (0,7) x 0f2. The Schrédinger equation is given by

iV (t, ) + AU(t,x) — u(t)B(x)¥(t,z) =0, ¥(x,0) = Uy(z), (1.1)

where t € (0,T), z € Q, and with « : [0,7] — R the time-dependent electric field,
U :[0,T] x Q — C the wave function, and B : Q — R the coefficient of the magnetic
field. The system describes the probability of position of a quantum particle subject
to the electric field u; that will be considered as the control throughout this paper.
The wave function ¥ belongs to the unitary sphere in L?(;C).

For a; € R and ay > 0, the optimal control problem is given as

min J(u, ¥) ::%/ |\I/(T)—\Ide|2dx+%/ | — U 4|*dadt
Q Q
. (1.2)

—l—/ (aru(t) + %agu(t)Q)dt, subject to (1.1)) and u € Uayg,
0

with Unq := {u € L®(0,T) : up, < u(t) <wupp ae. in (0,1)}, um,unm € R, t <
and |z| ;== v/2Z for z € C, and desired running and final states U4: (0,T) x Q — C
and Uyr: Q@ — C, resp. The control of the Schrodinger equation is an important
question in quantum physics. For the optimal control of semigroups, the reader is
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referred to Li et al. [37, B8], Fattorini et al. [29] 28] and Goldberg and Troltzsch [33].
In the context of optimal control of partial differential equations for systems in which
the control enters linearly in both the state equation and cost function (we speak of
control-linear problems), in a companion paper [3], we have extended the results of
Bonnans [I7] (about necessary and sufficient second order optimality conditions for
a bilinear heat equation) to problems governed by general bilinear systems in a real
Banach space setting, and presented applications to the heat and wave equation.

The contribution of this paper is the extension to a complex Banach space setting
of the optimality conditions of a general class of optimization problems and of the
framework developed in [3]. More precisely, we consider optimal control problems
governed by a strongly continuous semigroup operator defined in a complex Banach
space and derive necessary and sufficient optimality conditions. In particular (i) the
study of strong solutions when ay > 0, and (ii) the control-affine case, i.e. when
ag = 0, are addressed. The results are applied to the Schrédinger equation.

While the literature on optimal control of the heat equation is quite rich (see, e.g.,
the monograph by Troltzsch [43]), much less is available for the optimal control of
the Schrodinger equation. We list some references on optimal control of Schrédinger
equation and related topics. In Ito and Kunisch [35] necessary optimality conditions
are derived and an algorithm is presented to solve the unconstrained problem, in
Baudouin et al. [7] regularity results for the Schrodinger equation with a singular
potential are presented, further regularity results can be found in Baudouin et al. [§]
and Boscain et al. [2I] and in particular in Ball et al. [5]. For a minimum time
problem and controllability problems for the Schrédinger equation see Beauchard
et al. [12, 13} II]. For second order analysis for control problems of control-affine
ordinary differential systems see [2][32]. About the case of optimal control of nonlinear
Schrédinger equations of Gross-Pitaevskii type arising in the description of Bose-
Einstein condensates, see Hintermiiller et al. [34]; for sparse controls in quantum
systems see Friesecke et al. [31].

The paper is organized as follows. In Section[2] necessary optimality conditions for
general minimization problems in complex Banach spaces are formulated. In Section
the abstract control problem is introduced in a semigroup setting and some basic
calculus rules are established. In Section[dfirst order optimality conditions, in Section
sufficient second order optimality conditions are presented; sufficient second order
optimality conditions for singular problems are presented in Section [f] again in a
general semigroup setting. Section [7] presents the application, resp. the control of
the Schrodinger equation and Section [8] a numerical tests supporting the possibility
of existence of a singular arc.

2. Optimality conditions in complex spaces.

2.1. Real and complex spaces. We consider complex Banach spaces which
can be identified with the product of two identical real Banach spaces. That is,
with a real Banach space X we associate the complex Banach space X with element
represented as 1 + izy, with 21, zo in X and ¢ = /—1, and the usual computing
rules for complex variable, in particular, for v = v + ¢y € C with 1, 2 real, we
define yx = y1x1 — Yoxa + i(y221 + y122). Define the real and imaginary parts of a
x € X by Rz and Sz, resp.

Let X be a real Banach space and X the corresponding complex one. We denote
by (-,-)x (resp. (-,-)x) the duality product (resp. antiduality product, which is linear
w.r.t. the first argument, and antilinear w.r.t. the second). The dual (resp. antidual)
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of X (resp. X), i.e. the set of linear (resp. antilinear) forms, is denoted by X*
(resp. X ).

2.2. Optimality conditions. We next adress the questions of optimality con-
ditions analogous to the obtained in the case of real Banach spaces [I9]. Consider the
problem

Min f(u,z); g(u,z) € Kg; h(u,z) € Kp. (2.1)
U, T
Here U and W are real Banach space, X andf are complex Banach spaces, and K,
K}, are nonempty, closed convex subsets of ¥ and W resp. The mappings f, g, h
from U x X to respectively, R, Y, and W are of class C L. As said before, the complex
space X can be identified to a pair X x X of real Banach spaces, with dual X™* x X*.

Let o* = (27,23) € X x X, & := (z},23) € X* x X*. Setting x := x1 + ixp and
x* 1= af + ixs observe that (by linearity/antilinearity of (-,-)%) that

(% 2)% = (21, 21)x + (25, 22)x + i ({3, 21)x — (2], 22)x), (2.2)

and therefore the ‘real’ duality product in X x X given by (z*, ) xxx = (], 21)x +
(x5, x9) x satisfies

(&%, &) xxx = R(a", 2)%. (2.3)

Let X, Y be two complex spaces associated with the real Banach spaces X and Y.
The conjugate transpose of A € L(X,Y) is the operator A* € L(Y , X ) defined by

(y*, Az)y = (A*y*, 2)%, for all (z,y*) in X x Y. (2.4)

If A€ L(U,Y), identifying the real Banach space U with the space of real parts of
the corresponding complex Banach space U, we may define A* € E(Y*7 U*) by

(A" wg = (y", Au)y- (2.5)
Combining this relation with , we deduce that
R(y*, Au)y = R(A™y", u)g = (RA Y™, u)p. (2.6)
We deduce the following expression of normal cones, for y € Y:
Nk, (y) ={y" € 7*; R(y*, 2z —y)y <0, forall z € K }. (2.7)
For A € Y and p € W the Lagrangian of the problem is defined as
L(u, 2, A, ) = f(u, ) + R, g(u, )5 + (s, h(u, ) w - (2.8)

LEMMA 2.1. The partial derivatives of the Lagrangian are as follows:

oL ) dg* on’T
=f+§R(g A)+ n

ou ou ou ou
oL of dg* oh T

_ 99 2.9
ox, 0x, +¥ (833 A) + ox, Hy (29)

* T
oL 8f+%<3g )\>+8h B
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In particular, we have that

oL oL _of . .9f g~ oh  oh\'
ox, t dx; Oz, Z@xi + Oz At oz, +18$i H- (2.10)
Proof. We have that, skipping arguments:
oL af dg oh
871,&1) a v+ %( au )Y + (/1’7 %U)W
_of on'
= 9 Jrﬁ?((9 ot (5 o (2.11)
of g * oh’
U
for all v € U. We have used that setting g—z =a+1tband A = A\, +i);, then
dg* T .
R u AL = R(a" —ib" )\ +1i\),v)u
U
= (@ A+ b"N),0) (2.12)
=R (%N v
(8°x),
Now, for z, € X:
oL _of dg oh
axr Zr = 3xr Zr + %()\a %ZT)Y + (,U/v aixrrzr)w
_of dg* - oh B
= gu o TG, Az (G- ma)x (2.13)
[ of dg* oh T
o (5‘:& —HR(% A+ Oz, Hozr )
X
and for all z; € X:
oL _of dg B oh
%Zi - 8171 Zi + éR()M 6562‘2 z)y + (/1*7 @ZZ)W
_of _0g " B oh
O 99 e (O '
_azi Z+\$(8 )\7 Z)X—’_(az :[’L7ZZ)X

The result follows. O

REMARK 2.2. Not surprisingly, we obtain the same optimality system as if we
had represented the constraint g(u,x) =0 as an element of the product of real spaces.
The advantage of the complex setting is to allow more compact formulas.

3. The abstract control problem in a semigroup setting. Given a complex
Banach space H, we consider optimal control problems for equations of type

U+ AV = f 4 u(B; + ByV); te(0,T); ¥(0) =T, (3.1)
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where
VocH; fel 0,T;H); B €H; uwe L'0,T); By c L(H), (3.2)

and A is the generator of a strongly continuous semigroup on H, in the sense that,
denoting by e~*A the semigroup generated by A, we have that

= o y—e My
dom(A) := {y €H; lim—— exists} (3.3)
10 t
is dense and for y € dom(A), Ay is equal to the above limit. Then A is closed. Note

that we choose to define 4 and not its opposite as the generator of the semigroup.
We have then

g < cae™t, >0, (3.4)

for some positive ¢4 and A 4. For the semigroup theory in a complex space setting we
refer to Dunford and Schwartz [27, Ch. VIII]. The solution of (3.1) in the semigroup
sense is the function ¥ € C(0,T; ) such that, for all ¢ € [0,T:

U(t) = e AW, + /O e DA (f(s) +u(s)(Br + B2¥(s)))ds. (3.5)

This fixed-point equation (3.5)) is well-posed in the sense that it has a unique solution
in C(0,T;H), see [3]. We recall that the conjugate transpose of A has domain

dom(A*) ;= {@ € H"; for some ¢ > 0: |(, Ay)| < ¢|ly||, for all y € dom(A)},
(3.6)

with antiduality product (-,-) := (-,-)37. Thus, y — (¢, Ay) has a unique extension
to a linear continuous form over H, which by the definition is A*p. This allows to
define weak solutions, extending to the complex setting the definition in [6]:

DEFINITION 3.1. We say that ¥ € C(0,T;H) is a weak solution of if
U(0) = Yo and, for any ¢ € dom(A*), the function t — (¢, U(t)) is absolutely
continuous over [0,T] and satisfies

%((b, U(t)) 4+ (AP, U(t)) = (¢, f +u(t)(B1 + B2U(t))), for a.a. t€[0,T]. (3.7)

We recall the following result, obvious extension to the complex setting of the
corresponding result in [6]:

THEOREM 3.2. Let A be the generator of a strongly continuous semigroup. Then
there is a unique weak solution of that coincides with the semigroup solution.

So in the sequel we can use any of the two equivalent formulations or .
The control and state spaces are, respectively,

U:=LY0,T); Y:=C(0,T;H). (3.8)

For s € [1,00] we set Us := L*(0,T). Let & € U be given and ¥ solution of (3.1). The
linearized state equation at (¥, 1), to be understood in the semigroup sense, is

2(t) + Az(t) = a(t)Baz(t) + v(t)(By 4+ B2 (t));  2(0) =0, (3.9)
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where v € U. Tt is easily checked that given v € U, the equation has a unique
solution denoted by z[v], and that the mapping u +— U[u] from U to Y is of class C*°,
with DU[u]v = z[v].

The results above may allow to prove higher regularity.

DEFINITION 3.3 (Restriction property). Let E be a Banach space, with norm
denoted by || - | g with continuous inclusion in H. Assume that the restriction of e~
to E has image in E, and that it is a continuous semigroup over this space. We let
A’ denote its associated generator, and et the associated semigroup. By we
have that

e—tAy —y
dom(A) := {y € F; lim——~ em'sts} (3.10)
t10 t
so that dom(A’) C dom(A), and A’ is the restriction of A to dom(A"). We have that

HeitA,HL(E) < cA/e)‘A't (3.11)

for some constants car and A 4. Assume that By € E, and denote by BY, the restriction
of B2 to E, which is supposed to have image in E and to be continuous in the topology
of E, that is,

By € E; B,eL(E). (3.12)

In this case we say that E has the restriction property.

3.1. Dual semigroup. Since # is a reflexive Banach space it is known, e.g. [40]
Ch. 1, Cor. 10.6], that A* generates another strongly continuous semigroup called
the dual (backward) semigroup on 7", denoted by e*4", which satisfies

(et = e7tA", (3.13)

The reference [40] above assumes a real setting, but the arguments have an immediate
extension to the complex one. Let (z,p) be solution of the forward-backward system

(i) 24+4Az =az+b,
{ (i) —p+Ap =a'p+y, (3:.14)
where
be L'(0,T;H),
ge LY 0, T;H), (3.15)

a € L>(0,T; L(H)),

and for a.a. t € (0,7), a*(t) is the conjugate transpose operator of a(t), element of
L0, T; L(H")).

The solutions of in the semigroup sense are z € C(0,T;H), p € C(0,T; ﬁ*),
and for a.a. t € (0,7):

(1) z(t) = e A2(0) + / e (=) A(a(s)z(s) + b(s))ds,
0 (3.16)

(i) p(t)=6_(T_“A*p(T)+/t e” 7O (@ (s)p(s) + g(s))ds.
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The following integration by parts (IBP) lemma follows:
LEMMA 3.4. Let (z,p) € C(0,T;H) x C(0,T; ﬁ*) satisfy (3.14)-(3.15). Then,

(p(T), =(T)) + / (9(t), 2(B))dt = (p(0), 2(0)) + / WE.bE)dL  (317)

Proof. This is an obvious extension of [3, Lemma 2.9] to the complex setting. O
4. First order optimality conditions.

4.1. The optimal control problem. Let ¢ and ¢r be continuous quadratic
forms over H, with associated symmetric and continuous operators @ and Q7 in
L(H, ﬁ*), such that ¢(y) = R(Qy, y) and gr(y) = R(Qry,y), where the operators Q
and Qr are self-adjoint, i.e.,

(Qz,y) = (Qy,x) for all x, y in H. (4.1)
Observe that the derivative of g at y in direction zx is
Dq(y)z = 2R(Qy, z). (4.2)

Similar relations for ¢ hold.
REMARK 4.1. The bilinear form associated with the quadratic form q is

3a@+y) — q(@) — q(y)) = R(Qu,y). (4.3)
Then

3(Qz,y) = R(—i(Qz,y)) = R(Qz,iy) = 3(a(z + iy) — a(z) — q(iy)). (4.4)

Given
U, € L®0,T;H); Var € H, (4.5)
we introduce the cost function, where a; € R and ap > 0, assuming that u € L2(0,T)

if ag # 0:

J(u, @) := /0 (cqu(t) + %agu(t)z)dt + %/0 q(U(t) — Uu(t))dt + %qT(\IJ(T) —WUur)

(4.6)
The costate equation is

—p+Ap=Q =Yg +uBsp; p(T) = Qr(¥(T) = Var). (4.7)

We take the solution in the (backward) semigroup sense:

p(t) = " DA Qp(W(T) — Wu(T)) +/ el (Q(W(s) — Wa(s)) + u(s)Bsp(s))ds.

t
(4.8)
The reduced cost is

F(u) := J(u, Ulul). (4.9)



8 MARIA SOLEDAD ARONNA, JOSEPH FREDERIC BONNANS, AND AXEL KRONER

The set of feasible controls is
Upa = {u €U; upm <u(t) <upae on [0,T]} (4.10)
with u,, < ups given real constants. The optimal control problem is
I\/EH F(u); u € Upg- (P)

Given (f,yo) € L*(0,T;H) x H, let y[yo, f] denote the solution in the semigroup sense
of

y(t) + Ay(t) = f(t), t€(0,7),  y(0)=yo. (4.11)

The compactness hypothesis is

{ For given yo € H, the mapping f — Baylyo, f] (4.12)

is compact from L2(0,T;H) to L?(0,T;H).

THEOREM 4.2. Let hold. Then problem (]ED has a nonempty set of solu-
tions.

Proof. Similar to [3| Th. 2.15]. O

We set

A(t) := ay + aga(t) + R(p(t), By + BaW(t)). (4.13)

THEOREM 4.3. The mapping u — F(u) is of class C* from U to R and we have
that

DF(u)v = /OT A(t)v(t)dt, for allv e l. (4.14)

Proof. That F'(u) and J are of class C* follows from classical arguments based
on the implicit function theorem, as in [3]. This also implies that, setting ¥ := ¥[u]
and z := z[u):

T
DF(u)v = /0 (o1 + agu(t) dt+/ R(Q V(1)) z(t))dt

+R(QT(Y(T) — War), 2(T)).
We deduce then (4.14) from lemma O Let for u € Uyq and I, (u) and Ips(u) be
the associated contact sets defined, up to a zero-measure set, as

I(u) :={t €(0,T) : u(t) = um},
Ing(u) :={t € (0,T) : u(t) = up}-

(4.15)

(4.16)

The first order optimality necessary condition is given as follows.
PROPOSITION 4.4. Let 4 be a local solution of problem (]ED Then, up to a set of
measure zero there holds

{t; A(t) >0} C I (q), {t; A(t) <0} C I (). (4.17)

Proof. Same proof as in [3| Proposition 2.17]. O
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5. Second order optimality conditions.

5.1. Technical results. Set 6 := ¥ — . Since u¥ —a¥ = u5\I'—|—v\i/, we have,
in the semigroup sense:

%wu) +ASU(t) = a(s)BadU(s) + v(t)(By + Bo B (1) + BodU(s)).  (5.1)
Thus, n := §¥ — z is solution of
n(t) + An(t) = aBan(t) + v(s)B20¥(s). (5.2)

We get the following estimates.

LEMMA 5.1. The linearized state z solution of (3.9), the solution ¥ of (5.1)),
and n = 0¥ — z solution of (5.2) satisfy, whenever v remains in a bounded set of
LY(0,T):

1[l oo (0.7:72) = Ollvll1), (5:3)
181 oo 0,77y = Ollv][1);
||77HLoc(o,T;ﬂ) = O(”‘S‘I’””Ll(o,T;ﬂ)) = O(HUH%) (5.5)

Proof. Similar to the proof of lemma 2.18 in [3]. O
For (W, ) solution of (3.1), p the corresponding solution of ([4.8), v € L'(0,T),
and z € C(0,T;H), let us set

Q(z,v) = /0 (q(z(t)) + anu(t)? —|—2v(t)§R(ﬁ(t),Bgz(t)))dt+qT(z(T)). (5.6)

PROPOSITION 5.2. Let u belong to U. Set v :=u— 4, ¥ := U[a], ¥ := Ulu.
Then

F(u) = F(a) + DF (@)v + 5Q(6V, v). (5.7)

Proof. We can expand the cost function as follows:
T
F(u) =F(a) + %/0 azv(t)® + q(8¥(1)))dt + 3qr(8¥(T))
+ [+ asittoteyar (5.8)
T
+ R (/O (QUU(t) = Wa(t)),69))dt + (Qr(W(T) — Wa(T)), 5‘II(T)>> :

Applying lemma to the pair (0¥, p), where z is solution of the linearized equation
(3.9), and using the expression of A in (4.13]), we obtain the result. O
COROLLARY 5.3. We have that

F(u) = F(@) + DF(2)v + £ Q(z,v) + O(||v|[}), (5.9)

where z := z[v].
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Proof. We have that

T
Q(0V,v) = Q(z,v) = R ( ; )+ 2(),n(t)) +2’U(t)<p(f),Bzv7(t)>dt>
+R{(Qr(6¥(T) + 2(T)),n(T))) -

By (5.3)-(5.5) this is of order of ||v||3. The conclusion follows. O

(5.10)

5.2. Second order necessary optimality conditions. Given a feasible con-
trol u, the critical cone is defined as

e LY0,7) | A(t)v(t) =0 a.e. 0,7],
o [P EPODIAGO =0ae enoT)
v(t) > 0 a.e. on I, (u), v(t) <0 ae. on Ip(u)
THEOREM 5.4. Let u € U be a local solution of (]E[) and p be the corresponding
costate. Then there holds,

Q(z[v],v) >0 for allv e C(q). (5.12)

Proof. The proof is similar to the one of theorem 3.3 in [3]. O

5.3. Second order sufficient optimality conditions. In this subsection we
assume that as > 0, and obtain second order sufficient optimality conditions. Con-
sider the following condition: there exists ag > 0 such that

T
Q(z,v) > ag / o(t)2dt, for all v € C(a). (5.13)
0

THEOREM 5.5. Let 4 € U satisfy the first order optimality conditions of (]EI), P
being the corresponding costate, as well as Then 0 is a local solution of problem
(P), that satisfies the quadratic growth condition.

Proof. Tt suffices to adapt the arguments in say [15, Thm. 4.3] or Casas and
Troltzsch [24]. O

Using the technique of Bonnans and Osmolovskii [16] we can actually deduce from
theorem that @ is a strong solution in the following sense (natural extension of
the notion of strong solution in the sense of the calculus of variations).

DEFINITION 5.6. We say that a control i € Uyg is a strong solution if there exists
€ > 0 such that, if u € Uag and |[y[u] — y[illl oo r7) <€, then F(i) < F(u).

In the context of optimal control of PDEs, sufficient conditions for strong opti-
mality were recently obtained for elliptic state equations in Bayen et al. [9], and for
parabolic equations by Bayen and Silva [10], and by Casas and Troltzsch [24].

We consider the part of the Hamiltonian depending on the control:

H(t,u) == aju+ taou® + uR(p(t), B(t)), (5.14)
where B(t) := B(t); + B(t)2¥(t). The Hamiltonian inequality reads
H(t,a(t)) < H(t,u), forall u € [um,up], for a.a. t € [0,T]. (5.15)

Since ag > 0, H(t,-) is a strongly convex function, and therefore the Hamiltonian
inequality follows from the first order optimality conditions and in addition we have
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the quadratic growth property

H(t,a(t)) + tao(u—a(t))® < H(t,u), for all u € [uy,,un), for a.a. t € [0,T].

(5.16)
LEMMA 5.7. Let 4 be feasible and satisfy the first order optimality conditions,
with ag > 0. Let ug be also feasible such that the associated states Uy = Ulug]

conwverge to U in C(0,T;H), and limsup,, F(uy) < F(@). Then ux — @ in L2(0,T).

Proof. Since uy, is bounded in L*°(0,T'), from the expression of the cost function
of the optimal control problem in view of theorem and corollary it follows
that

T
0 > limsup(F(uy) — F(i1)) = limsup / (H(t,up(t)) — H(t, a(t)dt.  (5.17)
k k 0

Then the conclusion follows from the quadratic growth property (5.16). O
For uy as in Lemma we have

By = {t € (0,T); |ug(t) —a(t)] > /llug — @l };  Ap:=(0,T)\ By.  (5.18)

Note that

RO —
|Bk|§/0 e = /ol (5.19)

Set for a.a. t:
vt (1) = (ur(t) — a(t))1a, (1);  vP(t) = (up(t) — a(t))1p, (1) (5.20)

We now extend to the semigroup setting the decomposition principle from [16], which
has been extended to the elliptic setting by [9], and to the parabolic setting by [10].

THEOREM 5.8 (Decomposition principle). For uy as in Lemma we have that
|Br| — 0, and

F(ug) = F(a+ vi) + F(a 4 vP) — F(a) 4 o(||ux — @)3). (5.21)
and also

F(i+vP) - F(a) = /B (H(Eun(0) ~ H(a0)d+ ol — ). (5.22)

Proof. Remember the linearized state equation (3.9) whose solution is denoted
by z[v]. Set

vp = u — Gz = 2o 2= z[ul]; 2P = 2P (5.23)
Since Ay N By has null measure, we have that z, = z,? + zB. Also,
oIl < IBxl"?[[vf ll2 = o[lof[|2), (5.24)

since |Bi| — 0 by lemma Then, in view of lemma

2%l oo,r70) = OUlvi ) = o(llvi [12). (5.25)
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Combining with corollary and using the fact that v{(t)vP(t) = 0 a.e., we deduce
that

Flug) = F(a) = (@)vx. + %Q(vkazk)ﬂLO(HUkH )
= DF(@v+ %Q(Ukazk ) + ol[lv13) s
= DF(ﬁ%Uk +39(vit, 2) + DF (v + 3alvi’ |13
2 vk (OR(B(1), Bazi! (1))t + of[|or13)
= DF(a)vil + 3Qvi', zit) + DF(@)v + galof |3 + 0(vk|(|§), |
5.26
where we have used the fact that, by (5.24):
T
/0 v (OR(B(L), Bazi (1))dt| = O |11 l12i | o,7:70) = o(llvel3)- (5.27)
Now
F(a+uvi) = F(a) = DF (@) + 3 Qv zi0) + o(|[vi'[13), (5.28)
and by (5:23)
Fla+vf) - F(@) = DR(@)f + Sasllof 2 + olof]13). (5.20)

Combining the above relations we get the desired result. O
DEFINITION 5.9. We say that u satisfies the quadratic growth condition for
strong solutions if there exists € > 0 and & > 0 such that for any feasible control u:

F(a) +ellu— |3 < F(u), whenever ||¥[u] — Y[all| o077 < g (5.30)

THEOREM 5.10. Let @ satisfy the first order necessary optimality condition ,
and the second order sufficient condition . Then 4 is a strong minimum that
satisfies the above quadratic growth condition.

Proof. If the conclusion is false, then there exists a sequence wuy, of feasible controls
such that Wy, — W in C(0, T; H), where ¥}, := ¥[uy], and F(uy) < F(@)+o(||lur—a3).
By lemma up — @ in L?(0,T). By the decomposition theorem and since
DF(a)v >0, it follows that

az|lv 13 + F(a + o) — F(a) < of||vx ). (5.31)

We next distinguish two cases.
(a) Assume that |[v{]|2/[|vk]l2 — 0. We know that

F(i+wvy) = F(a) = DF () + 5Q(vi', zi0) + o([[v[13). (5.32)

Since (by the first order optimality conditions) DF(@)vi > 0 and Q(vi,z k)

O(||v,‘€4||§) = o(||lvg||3) by hypothesis, it follows with that |[v2 |3 = o(||vk|3) =
o(|[vP||3) which gives a contradiction.

(b) Otherw1se hm infy ||[vit|l2/llvkll2 > O (extracting if necessary a subsequence). It

follows from ([5.31)) that

F(a+uvi) = F(a) < o([log [l2). (5.33)
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Since ||v{!]|oc — 0, we obtain a contradiction with theorem 0
REMARK 5.11. A shorter proof for theorem[5.§ is obtained by combining lemma
and the Taylor expansion in corollary[5.3, which implies

F(u) = F(it) + DF()v + 3Q(2,v) + O([[v]3), (5.34)

from which we can state a sufficient condition for optimality in L?(0,T). On the
other hand the present proof opens the way for dealing with non quadratic (w.r.t. the
control) Hamiltonian functions, as in [9].

6. Second order optimality conditions for singular problems. In this
section we assume that ag = 0, so that the control enters linearly in both the state
equation and cost function. For such optimal control problems there is an extensive
theory in the finite dimensional setting, see Kelley [36], Goh [32], Dmitruk [25, 26],
Poggiolini and Stefani [4I], Aronna et al. [I], and Frankowska and Tonon [30]; the
case of additional scalar state constraints was considered in Aronna et al. [2].

In the context of optimal control of PDEs, there exist very few papers on sufficient
optimality conditions for affine-linear control problems, see Bergounioux and Tiba
[14], Troltzsch [42], Bonnans and Tiba [20], Casas [22] (and the related literature
involving L' norms, see e.g. Casas et al. [23]). As mentioned in the introduction,
here we will follow the ideas in [3| [I7] by using in an essential way the Goh transform
[32].

Let E; C H with continuous inclusion, having the restriction property (defini-
tion . We can denote the restriction of By to E7 by B with no risk of confusion.
In the rest of the paper we make the following hypothesis:

{ (i) B € dom(A),

(ii) Bydom(A) C dom(A), Bidom(A*) C dom(A*), (6.1)

with BF := (B;)*. So, we may define the operators below, with domains dom(A) and
dom(A*), respectively:

{ [A, BS] == ABE — BE A, 62)
[(B5)*", A*] := (BS)" A" — A*(B3)*. .
(i)  For k=1,2, [A, 85] has a continuous extension to F1,

denoted by My, (6.3)

(i) feL>(0,T;H); MipeL>0,T;H ), k=1,2,
(iii) W e L%0,T;Ey); [My, B2V € L*°(0,T;H).

REMARK 6.1. Point (i) implies
BY dom(A) € dom(A), (B5)*dom(A*) C dom(A*), for k=1,2. (6.4)

So, [A, Ba] is well-defined as operator with domain dom(A), and point (iii) makes
sense.
We also assume that

(i) B3feC(0,T;H); Yye€C(0,T;H),
(i) MppeCO,T;H), k=1,2.
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Let £ € C(0,T;H) be (semigroup) solution of the following equation
£+ AL = B2 +wbl;  £(0) =0, (6.6)
where
bl = —Bof — MW — AB;. (6.7)

Note that b € C(0,T;H), so that equation has a unique solution. Consider the
space

W = (L*(0,T; E1) N C([0,T]; H)) x L*(0,T) x R. (6.8)
We define the continuous quadratic forms over W, defined by
Q& w, h) = Or(€,h) + Qul&,w) + Dp(w), (6.9)
where Qy(w) := [ w2(t)R(t)dt and

0

Qr (& h) == qr(§(T) + WB(T)) + W*R((T), BoBy + B3Y(T)) + hR(H(T), BoE(T)),

(6.10)

(6 w) =R / )+ 20(Q€, B) + 2w(Q(F — Wa), By€) — 2w(M{5,) ) dt,

(6.11)
with R € L>(0,T) given by
R(t) = q(B) + R(Q(¥ — Wy), B2B) + R(p(1), (1)), (6.12)
r(t) i= Bf(t) — ABoBy + 2Bo ABy — [My, B2 ¥ '

We write PCy(1) for the closure in the L? x R—topology of the set
PC(1) := {(w,h) € WH*(0,T) x R,w € C(a); w(0) =0, w(T) =h}.  (6.13)

The final value of w becomes an independent variable when we consider this closure.
DEFINITION 6.2 (Singular arc). The control 4(-) is said to have a singular arc in
a nonempty interval (t1,t2) C [0,T] if, for all 6 > 0, there exists € > 0 such that

W(t) € [um +€,up —e€|,  for a.a. t € (t1+0,t2 —0). (6.14)

We may also say that (t1,t2) is a singular arc itself. We call (t1,t2) a lower boundary
arc if 4(t) = wy, for a.a. t € (t1,t2), and an upper boundary arc if 4(t) = ups for a.a.
t € (t1,t2). We sometimes simply call them boundary arcs. We say that a boundary
arc (¢, d) is initial if ¢ = 0, and final if d =T.

LEMMA 6.3. Forv € L'(0,T) and w € AC(0,T), fo s)ds, there holds

Q(z[v],v) = Q(&[w], w, w(T)). (6.15)
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For any (w,h) € L?(0,T) x R:
O(&[w],w,h) >0 for all (w,h) € PCy(). (6.16)
In addition, provided the mapping
w— E[w], L*0,T) — L*(0,T;H) (6.17)

is compact we have that R(t) > 0 a.e. on singular arcs.
Proof. Similar to [3, Lemma 3.9 and corollary 3.11]. O
In the following we assume that the following hypotheses hold:
1. finite structure:

{ there are finitely many boundary and singular maximal arcs (6.18)

and the closure of their union is [0, 7],

2. strict complementarity for the control constraint (note that A is a continuous
function of time)

A has nonzero values over the interior of each boundary arc, and
at time O (resp. T) if an initial (resp. final) boundary arc exists,
(6.19)
PROPOSITION 6.4. Let (6.18)—(6.19) hold. Then

(w,h) € L2(0,T) x R; w is constant over boundary arcs,
PCy(0) = w = 0 over an initial boundary arc . (6.20)
and w = h over a terminal boundary arc

Proof. Similar to the one of [I, Lemma 8.1]. O
Letting Tpp denote the set of bang-bang junctions, we assume in addition that

R(t) >0, teTgag. (6.21)
Consider the following positivity condition: there exists o > 0 such that
Q(&[w], w, k) > a||w||? + h?), for all (w,h) € PCy(i). (6.22)

We say that u satisfies a weak quadratic growth condition if there exists § > 0 such
that for any u € Uyq, setting v :=u — @ and w(t) = fOT v(s)ds, we have

F(u) > F(a) + B(||w||? + w(T)?), if ||v||; is small enough. (6.23)

The word ‘weak’ makes reference to the fact that the growth is obtained for the L?
norm of w, and not the one of v.

THEOREM 6.5. Let lj and hold. Then holds iff the
quadratic growth condition (6.23)) is satisfied.

Proof. Similar to the one in [3, Thm 4.5]. O
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7. Application to Schrodinger equation.

7.1. Statement of the problem. The equation is formulated first in an infor-
mal way. Let Q@ C R™ n € N, open and bounded, and T > 0. The state equation,
with U = U(t, x), is

U(t,z) —1 Z 0 { aji( 5‘\I/(t,:z:)] = —iuby¥(t,z) + f in (0,T) x €,

Py oxy, Ox; 1)
U(0,z) =T, in £,
U(t,z) =0 on (0,7T) x 09

with
ToeV, b eWy™(Q), k=1,2, feL*0,T;V)nC(0,T;H) (7.2)

and the complex-valued spaces H := L?(2;C) and V := H}(Q;C). Note that al-
though f is normally equal to zero, it is useful to introduce it since the sensitivity of
the solution w.r.t. the r.h.s., that plays a role in the numerical analysis. Here the
ajr are C' functions over Q that satisfy, for each z € €, the symmetry hypothesis
a;i = ay; for all j, k as well as the following coercivity hypothesis, that for some
v>0:

n
Z ajr ()€€ > v|E|?, forall € € C", x € Q. (7.3)
7,k=1

We apply the abstract setting with H = H. Consider the unbouded operator in H
defined by

"9 0¥ (t,x)
W) (t = — — |a; —_— t 0,7) x Q 7.4
) == 3 5 B B CCRICX FENC
with domain dom(Ag) = H?(Q) NV, where H?(2) denotes the complex valued
Sobolev space H2(£2,C). One easily checks that this operator is self-adjoint, i.e.,
equal to the conjugate transpose. The PDE (|7.1)) enters in the semigroup framework,
with generator

(AgV) :=iA¥, forall UeH. (7.5)

LEMMA 7.1. The operator Az, with domain dom(Az;) = H*(Q) NV, is the
generator of a unitary semigroup and . has a semigroup solution ¥ € C(0,T; H).

Proof. That Az is the generator of a contracting semigroup follows from the Hille
Yosida characterization with M =1, n =1 and w = 0. The operator Az; being the
opposite of its conjugate transpose it follows that the semigroup is norm preserving.
O We define then the following sesquilinear form over V:

g / ﬁﬁdx for all y, z in V, (7.6)
81‘] ox Tk
7,k=1

which is self-adjoint in the sense that

a(y, z) = a(z,y). (7.7)
Furthermore, for y, z in dom(Ag) we have that
<A0y7 Z>H = a(y7 Z) = CL(Z, y) = <y7 AOZ>H (78)

so that is A( also self-adjoint.
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7.2. Link to variational setting and regularity for Schrodinger equation.
We introduce the function space

X = L0, T;V)nHY0,T; V"), (7.9)
endowed with the natural norm

IWl[x = 19l oo 0,77) + ¥l a2 0,577)- (7.10)

There holds the following weak convergence result.

LEMMA 7.2. Let Uy be a bounded sequence in X. Then there exists ¥ € X
such that a subsequence of Wy converges to W strongly in L?(0,T; H), and weakly in
L2(0,T;V), and H'(0,T; V'). Finally, if up weaklyx converges to u in L>(0,T), then

upbo Uy, — ubo W weakly in L*(0,T; H) (7.11)

Proof. By the Aubin-Lions lemma [4], X is compactly embedded into L2(0,T; H).
Thus, extracting a subsequence if necessary, we may assume that ¥j converges in
L?(0,T; H) to some ¥. Since ¥}, is bounded in the Hilbert spaces L?(0,T;V) and
H(0,T; V'), re-extracting a subsequence if necessary, we may assume that it also
weakly converges in these spaces.

Let Cg denote the closed ball of L>(0,T, V) of radius R. This is a closed subset
of L?(0,T,V) that, for large enough R, contains the sequence Wy. Since any closed
convex set is weakly closed, ¥ € Cg. Thus ¥ € X. That holds follows from
the joint convergence of uy in L>°(0,T) (endowed with the weak* topology), and of
Wy, in L2(0,T; H). O

The variational solution of is given as ¥ € X satisfying, for a.a. t € (0,7):

(U(t), 2) g +ia(V(t), 2) + iu(t) (b2, 2) g = (f(t), 2)y for all z € V, (7.12)
and ¥(0) = ¥, € V.
For (f,ba,u, Ug) € L2(0,T;V) x Wh(Q) x L>=(Q) x V we set
Alfbew ol = florwy + I1%ollp + i (7.13)
lullzo0 0,7 1IV02l[ 00 () UF 20,758y + [1Woll7)-

There holds the following existence and regularity result for the unique solution of

[F12) (cf. [39]).

THEOREM 7.3. Let (f,ba,u, Vo) € L2(0,T;V) x Wh(Q) x L>®(Q) x V. Then
there exists co > 0 independent of (f, bz, u, ¥g) such that has a unique solution
U in X, that satisfies the estimates

1l co,rm < co 1A s o,y + 1Yol 7 ) (7.14)
1%l om0y + 1820707y < Corlfs ba,u, Ul (7.15)

Proof. Since Q is bounded, there exists a Hilbert basis of H}(Q) (w;,A;), j € N
of (real) eigenvalues and nonnegative eigenvectors of the operator Ag (with, by the
definition, homogeneous Dirichlet conditions), i.e

—~ 0 ow;(x .
_ Z pr [ajk(x) &Jr(- )] = Nw;i(z), j=1,---,w; € HY(Q), X\ €R,.
k=1 j

(7.16)



18 MARIA SOLEDAD ARONNA, JOSEPH FREDERIC BONNANS, AND AXEL KRONER

Consider the associated Faedo-Galerkin discretization method; that is, let {Vx} be
the finite dimensional subspaces of V' generated by the (complex combinations of the)
wj, for j < k. The corresponding approximate solution Wy (t) = Z?Zl Pl (t)w; of
(7.1)), with wi(t) € C, is defined as the solution of

(Wi (t),w;) g + ia(Wx(t), wy) + iu(t) (ba Wi (t), wy) g = (f(1),w5) i, (7.17)
for j=1,...,k and ¢ € [0, 7], with initial condition
PL(0) = (W, w;), forj=1,.... k. (7.18)

For each k € N, the above equations are a system of linear ordinary differential
equations that has a unique solution vy = (¢}, ..., ¢¥) € C(0,T;CF). It follows that

for any ®(t) = 2?21 @7 (t)w; (where ¢/ (t) € L*(0,T) for j = 1,..., k) we have that

(Ui (1), (1) 7 + ia (Vi (t), B(F)) + iu(t) (b2 Wi(t), () g = (f(1), @) s (7.19)

We derive a priori estimates by using different test functions ®.
1. Testing with ®(t) = Uy (t) gives

(Wi (t), Or(t)) g +ia(Wp(t), Uu(t) +iu(t) (b2Pr(t), Ur(t)) g = (f(1), Uu(t) 5.

(7.20)
Taking the real part in both sides in ([7.20]) we obtain
d
21T < Clf Ol Y@z < Ca(If Ol + 112x@)F).  (7:21)
By Gronwall’s inequality we get the following estimate

19k 0y < ClllF 12 0.0 + 10K (O)]1F)- (7.22)
2. Testing with ®(t) = S5 Aol (t)w; = AgWy(t) gives

(Wr(t), AgUs(t)) gia(Ty(t), AoWy () +iu(t) (ba g (t)— (1), Ao Wk (t)) 7 = 0).
7.23
Applying ([7.8)) (in both directions) we get

i(AoUr(t), AW (t)) 7 + a( Ty (t), Ui (b)) + iu(t)ba Ui (t) — f(£) = 0. (7.24)
Since af(-,-) is self-adjoint we have that

%a(\llk(t),\llk(t)) = a(\yk(t),\i/k(t))+a(\i/k(t),\1/k(t))

= 2 (a(Wa(r), W) (7.25)

So, taking real parts in (7.24) we get using Young’s inequality and the coer-
civity of a(-,-) over V:

14 a(Uy(t), We(t)) = —R(a(Wg(t), iu(t)baWy(t) — (1))

= t
< oWk @)llv (1R @llv + 1£@Ov) (7.26)
< (a(Wi (1), Wi (1) + [f (D7)

So, by Gronwall’s estimate and using ([7.22)):
||‘II]€HL°°(0,T;\7) < COK'[f7 b27u7 \IJO] (727)
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3. Any ® € V can be written as ® = ®' + ®2 with ®' € V; and ®? orthogonal
to V; in both spaces H and V. Recall the notation for the dual and antidual
pairing introduced in Section Then

<\i}k(t)7q)>\7 = <\i]k(t)vq)>ﬂ' = <¢/k(t)’q)1>fi = <\i’k(t)7q)1>‘7' (7'28)

It follows from ([7.19)) that there exists ¢’/ > 0 such that, when ||®||y < 1,

(Bi(t), @)y < ¢ (12O + 0l g o1y 102 ) TRl g + 15D ) -
(7.29)
Combining with the above estimates we obtain

i

By lemma a subsequence of (V) strongly converges in L?(0,T; H) and weakly in
L2(0,T; V)N HY0,T; V'), while uby¥) — uby¥ weakly in L2(0,T; H). Passing to
the limit in we obtain that W is solution of the Schrédinger equation. That W
is unique, belongs to X and satisfies , and follows from the same
techniques as those used in the study of the Faedo-Galerkin approximation. O

LEMMA 7.4. For (f,by,u, Wo) € L%(0,T;V) x WH®(Q) x L>®(Q) x V the semi-
group solution coincides with the variational solution.

Proof.

That the variational and semigroup solution coincide can be shown by a similar
argument as in [3, Lemma 5.4]. O

The corresponding data of the abstract theory are B; € H equal to zero, and
By € L(H) defined by (Bay)(x) := —iby(x)y(z) for y in H and z € Q. The cost
function is, given a1 € R:

< cok[f, ba, u, Y. (7.30)

L2(0,T;V")

T
Juy) = / u(tydt + 1 / (y(t, 2) — yalt, 2))2dwdt
0 (0,T)xQ

(7.31)
+3 /Q(y(T, z) — yar(z))*dz.

We assume that
ya € C(0,T5V);  yar € V. (7.32)

For v € L'(0,T), write the reduced cost as F(u) := J(u,y[u]). The optimal control
problem is, U, being defined in (4.10)):

Min F(u);  u € Uyg. (7.33)

7.3. Compactness for the Schrédinger equation. To prove existence of an
optimal control of (]E[) we have to verify the compactness hypothesis (4.12]).

PRroOPOSITION 7.5. Problem (]ED for equation and cost function has
a nonempty set of solutions.

Proof. This follows from theorem [4.2], whose compactness hypothesis holds thanks
to lemma 72l O
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7.4. Commutators. Given y € dom(Az;), we have by (7.5)) that

_ N (D, O] O Ok
s —jk_1<axk [ajkafﬂj] +8xk {a]kyaij' (7.34)

As expected, this commutator is a first order differential operator that has a contin-
uous extension to the space V. In a similar way we can check that [Mi, Bs] is the
“zero order” operator given by

N~ Oby 9by
[My, Baly = 2i j;l @k 9z, Our Y. (7.35)

REMARK 7.6. In the case of the Laplace operator, i.e. when ajx = 05, we find
that fory eV

My = —2Vby - Vy — yAby;  [My, Baly = 2iy|Vbs|?, (7.36)
and then for p € V we have
M{p=2Vby - Vp+ pAb,. (7.37)
Similarly we have
Moy = 2iVb3 - Vy + iyAbs;
[Ma, Bo]y = —2iy| V32, (7.38)
Mjp = —i(2Vb3 - VD + pAb3).

7.5. Analysis of optimality conditions. For the sake of simplicity we only
discuss the case of the Laplace operator. The costate equation is then

—p+iAp =T — Uy +iubyp in (0,T) x Q; p(T) =U(T)— Vyr. (7.39)

Remembering the expression of b! in , we obtain that the equation for £ := &,
introduced in reduces to

€ iAE = —iibot + w(ibaf + 2Vby - VU + WAby) in (0,T) x €  £(0) = 0. (7.40)
The quadratic forms Q and @ defined in and are as follows. First
T
Qzv) = [ (01 +200RGO.bx(O) e + =D, (D)
and second,
T
Q& w,h) = Qr (& h) + Qu(&w) + Qp(w);  Q(w) := / wA(R(E)dE. (7.42)
0
Here R € C(0,T), and
~ ~ 2 ~
Or(,h) 1= |[6(T) = iy (D) = WERG(T), H(T)) 4 + ARGH(T), bo€(T))
(7.43)
o~ T A A
Quteow)i= [ (1€l + 2R, ¥ + 08 = ¥ bat) g — (M5 €) ) ).
(7.44)

R(t) := 21 2

) — R(U — Wy, 030) g + R((E), b5 f (1) — 20| Vbo|*¥) 7. (7.45)
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THEOREM 7.7. (i) The second order necessary condition (6.16) holds, i.e.,
O(&[w],w,h) >0 for all (w,h) € PCy(). (7.46)

(ii) R(t) > 0 over singular arcs.
(iil) Let — hold. Then the second order optimality condition holds
iff the quadratic growth condition 18 satisfied.

Proof. (i) Conditions (6.1))(i) and (ii) are satisfied with (7.2). Since we have

[—iA, (—iby)F]¥ = —(—i)F 1 (ABEY + 2VBEVY), Kk =1,2, (7.47)

i.e. the commutator is a first order differential operator and has an extension to the
space V, we obtain (6-3)(i) with £y = V. (6.3)(ii) and (iii) follow from the regularity

assumptions in and -

(ii) The compactness hypothesis (6.17) for
w s Ew], L20,T) — L*(0,T; H) (7.48)

follows from (7.2), since hence, [w] € L*(0,T;V) N H*(0,T; V') which is compactly
embedded in L2 (0, T H ) by Aubin’s lemma [4]
(iii) Condition (6.5] follows also from the assumptions in and (7.32). O
REMARK 7.8. It s not difficult to extend such results for more geneml differential
operators of the type, where the a;j, are as before, b € L*°(Q)™ and ¢ € L>®(Q):

(AZ¥)( = —z];1 o [ )aa ] _|_Z axj U(t,x)) +eU(t, ).
’ (7.49)

8. Numerical example. The question of existence of a singular arc is not ad-
dressed here, it remains an open problem. Nevertheless, we analyze this issue numer-
ically for the one-dimensional Schrédinger equation. We present a numerical example
where a singular arc occurs and is stable with respect to the discretization. Let the
spatial domain be given as 2 C R and set T' = 10. We discretize the problem by
standard finite differences. In space we choose 40 steps and in time 200. For the
computational realization we use the optimal control toolbox Bocop [I8] which uses
the nonlinear programming solver IPOPT, see [44]. In Figure we see that singular
arcs appear.
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