Lie theory for quasi-shuffle bialgebras

Abstract : Many features of classical Lie theory generalize to the broader context of algebras over Hopf operads. However, this idea remains largely to be developed systematically. Quasi-shuffle algebras provide for example an interesting illustration of these phenomena, but have not been investigated from this point of view. The notion of quasi-shuffle algebras can be traced back to the beginings of the theory of Rota–Baxter algebras, but was developed systematically only recently, starting essentially with Hoffman’s work, that was motivated by multizeta values (MZVs) and featured their bialgebra structure. Many partial results on the fine structure of quasi-shuffle bialgebras have been obtained since then but, besides the fact that each of these articles features a particular point of view, they fail to develop systematically a complete theory. This article builds on these various results and develops the analog theory, for quasi-shuffle algebras, of the theory of descent algebras and their relations to free Lie algebras for classical enveloping algebras.
Type de document :
Pré-publication, Document de travail
Liste complète des métadonnées

Littérature citée [30 références]  Voir  Masquer  Télécharger
Contributeur : Patras Frédéric <>
Soumis le : mercredi 4 mai 2016 - 07:45:41
Dernière modification le : vendredi 12 janvier 2018 - 01:51:33
Document(s) archivé(s) le : mardi 24 mai 2016 - 19:46:23


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01311265, version 1
  • ARXIV : 1605.02444


Loïc Foissy, Frédéric Patras. Lie theory for quasi-shuffle bialgebras. 2016. 〈hal-01311265〉



Consultations de la notice


Téléchargements de fichiers