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A survey of sparse representation: algorithms and
applications

Zheng ZhangsStudent Member, IEEE{ong Xu, Senior Member, IEEE,
Jian Yang,Member, IEEE Xuelong Li, Fellow, IEEE,and David Zhang,Fellow, IEEE

Abstract—Sparse representation has attracted much attention learning, and computer vision, such as image denoising, de-
from researchers in fields of signal processing, image processing,pluring, inpainting, image restoration, super-resolution, visual
computer vision and pattern recognltlon. Sparse representatlon traCking, image classification and image Segmentation |3_10]

also has a good reputation in both theoretical research and practi- S tation h h h tential bilities i
cal applications. Many different algorithms have been proposed parse representation has shown huge potential Capabilities in

for sparse representation. The main purpose of this article is handling these problems.

to provide a comprehensive study and an updated review on  Sparse representation, from the viewpoint of its origin, is
sparse representation and to supply a guidance for researchers. directly related to compressed sensing (CS) [11-13], which is
The taxonomy of sparse representation methods can be stud|ed0ne of the most popular topics in recent years. Donohb [11]

from various viewpoints. For example, in terms of different first d th iqinal t of d . cs
norm minimizations used in sparsity constraints, the methods IrSt propose € original concept of compressed sensing.

can be roughly categorized into five groups: sparse representation theory suggests that if a signal is sparse or compressive, the
with Ip-norm minimization, sparse representation with /,-norm  original signal can be reconstructed by exploiting a few mea-

(0<p<1) minimization, sparse representation with;-norm mini-  syred values, which are much less than the ones suggested by
mization and sparse representation withi>,1-norm minimization. eviously used theories such as Shannon’s sampling theorem

In this paper, a comprehensive overview of sparse representation . .
is provided. The available sparse representation algorithms can (SST). Candes et al. [13], from the mathematical perspective,

also be empirica”y Categorized into four groups: greedy Stra’[egy demonstrated the rationale Of CS theory, |e the Ol’iginal Signal
approximation, constrained optimization, proximity algorithm-  could be precisely reconstructed by utilizing a small portion
based optimization, and homotopy algorithm-based sparse rep- of Fourier transformation coefficients. Baraniuk![12] provided
resentation. The rationales of different algorithms in each cat- 5 concrete analysis of compressed sensing and presented a
egory are analyzed and a wide range of sparse representation e - . . .
applications are summarized, which could sufficiently reveal the specific |nt§rpretathn on some solgtlons of different _S|gnal
potential nature of the sparse representation theory. Specifically, 'econstruction algorithms. All these literature/[11-17] laid the
an experimentally comparative study of these sparse represen- foundation of CS theory and provided the theoretical basis for
tation algorithms was presented. The Matlab code used in this future research. Thus, a large number of algorithms based on
paper can be available at] http://www.yongxu.org/lunwen.html. CS theory have been proposed to address different problems in
Index Terms—Sparse representation, compressive sensing,various fields. Moreover, CS theory always includes the three
greedy algorithm, constrained optimization, proximal algorithm,  pasic components: sparse representation, encoding measuring,

homotopy algorithm, dictionary learning and reconstructing algorithm. As an indispensable prerequisite
of CS theory, the sparse representation theory [[4, 7=10, 17]
. INTRODUCTION is the most outstanding technique used to conquer difficulties

. . . that appear in many fields. For example, the methodology of
ITH advancements in mathematics, linear represen- bp y P 9y

. ) parse representation is a novel signal sampling method for
tation meth.ods (LRBM) have beer_1 well studied an e sparse or compressible signal and has been successfully
have recently received considerable attentionl[1, 2]. The spagse

: X . plied to signal processing [4—6].
representation method is the most representative methodolog parse representation has attracted much attention in recent
of the LRBM and has also been proven to be an extraordi-

nary powerful solution to a wide range of application field ears and many examples in different fields can be found
yp 9 pp Where sparse representation is definitely beneficial and fa-

especially in signal processing, image processing, m‘rjlcr"\r]oerable [18) 19]. One example is image classification, where
Zheng Zhang and Yong Xu is with the Bio-Computing Research Cel’ihe ba§IC goal IS tq CIaSS'fy the given test image into several
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coefficients and training samples. The test sample will ko the way of exploiting the “atoms”: the holistic represen-
classified as a member of the class, which leads to ttation based method and local representation based method
minimum reconstruction residual. The literature|[20] his®a [21]. More specifically, holistic representation based hoes
demonstrated that the SRC method has great superiorigaploit training samples of all classes to represent thesten-
when addressing the image classification issue on corrupted, whereas local representation based methods only gmplo
or disguised images. In such cases, each natural image catréi@ing samples (or atoms) of each class or several classes
sparsely represented and the sparse representation tesoryto represent the test sample. Most of the sparse repreisentat
be utilized to fulfill the image classification task. methods are holistic representation based methods. Adlypic
For signal processing, one important task is to extract keyd representative local sparse representation methdtie is
components from a large number of clutter signals or grofipstwo-phase test sample sparse representation (TPTSR) dhetho
complex signals in coordination with different requirerteen [9]. In consideration of different methodologies, the sgar
Before the appearance of sparse representation, SST egpfesentation method can be grouped into two aspects: pure
Nyquist sampling law (NSL) were the traditional methodsparse representation and hybrid sparse representatiich w
for signal acquisition and the general procedures includ@dproves the pre-existing sparse representation methdts w
sampling, coding compression, transmission, and decoditiye aid of other methods. The literatulie |[22] suggests that
Under the frameworks of SST and NSL, the greatest difficulgparse representation algorithms roughly fall into thiesses:
of signal processing lies in efficient sampling from massonvex relaxation, greedy algorithms, and combinatiorethm
data with sufficient memory-saving. In such a case, spamés. In the literature [23, 24], from the perspective of spar
representation theory can simultaneously break the beitle problem modeling and problem solving, sparse decompasitio
of conventional sampling rules, i.e. SST and NSL, so thadst halgorithms are generally divided into two sections: greedy
a very wide application prospect. Sparse representateoryh algorithms and convex relaxation algorithms. On the other
proposes to integrate the processes of signal sampling dvahd, if the viewpoint of optimization is taken into consid-
coding compression. Especially, sparse representatiorygh eration, the problems of sparse representation can beedivid
employs a more efficient sampling rate to measure the otiginiato four optimization problems: the smooth convex problem
sample by abandoning the pristine measurements of SST awhsmooth nonconvex problem, smooth nonconvex problem,
NSL, and then adopts an optimal reconstruction algorithm &nd nonsmooth convex problem. Furthermore, Schmidt et al.
reconstruct samples. In the context of compressed serising25] reviewed some optimization techniques for solvihg
is first assumed that all the signals are sparse or approafynanorm regularization problems and roughly divided these ap-
sparse enough |[4, 6/ 7]. Compared to the primary signaioaches into three optimization strategies: sub-gradieth-
space, the size of the set of possible signals can be largetls, unconstrained approximation methods, and constraine
decreased under the constraint of sparsity. Thus, massiimization methods. The supplementary file attached with
algorithms based on the sparse representation theory hthe paper also offers more useful information to make fully
been proposed to effectively tackle signal processingesswnderstandings of the ‘taxonomy’ of current sparse represe
such as signal reconstruction and recovery. To this end, tla¢ion techniques in this paper.
sparse representation technique can save a significantramouln this paper, the available sparse representation metreds
of sampling time and sample storage space and it is favorab&egorized into four groups, i.e. the greedy strategy @ppr
and advantageous. mation, constrained optimization strategy, proximityaalthm
based optimization strategy, and homotopy algorithm based
sparse representation, with respect to the analyticatiealu
and optimization viewpoints.
Sparse representation theory can be categorized fromatiffe (1) In the greedy strategy approximation for solving sparse
viewpoints. Because different methods have their indigidurepresentation problem, the target task is mainly to solve
motivations, ideas, and concerns, there are varietiesatest the sparse representation method winorm minimization.
gies to separate the existing sparse representation nsethBdcause of the fact that this problem is an NP-hard problem
into different categories from the perspective of taxonomf2€], the greedy strategy provides an approximate soluttion
For example, from the viewpoint of “atoms”, available sgarsalleviate this difficulty. The greedy strategy searchestfar
representation methods can be categorized into two gendrast local optimal solution in each iteration with the gofl o
groups: naive sample based sparse representation ang- dietchieving the optimal holistic solution [27]. For the spars
nary learning based sparse representation. However, on tthgresentation method, the greedy strategy approximatign
basis of the availability of labels of “atoms”, sparse reprehooses the most appropriate samples, which are called
sentation and learning methods can be coarsely divided isjoarsity, to approximate the measurement vector.
three groups: supervised learning, semi-supervised itegrn (2) In the constrained optimization strategy, the core idea
and unsupervised learning methods. Because of the sparse ¢ explore a suitable way to transform a non-differentiaige
straint, sparse representation methods can be dividedviiato timization problem into a differentiable optimization jptem
communities: structure constraint based sparse repeggent by replacing thd;-norm minimization term, which is convex
and sparse constraint based sparse representation. Maredut nonsmooth, with a differentiable optimization term,ieth
in the field of image classification, the representation thasis convex and smooth. More specifically, the constrained op-
classification methods consist of two main categories imser timization strategy substitutes tlie-norm minimization term

A. Categorization of sparse representation techniques
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Fig. 1: The structure of this paper. The main body of this papainly consists of four parts: basic concepts and framksvor
in Section II-1ll, representative algorithms in SectionW and extensive applications in Section VIII, massivgoexmental
evaluations in Section IX. Conclusion is summarized in Beck.

with an equal constraint condition on the original uncaaistr fields. Extensive state-of-art sparse representation adeth
problem. If the original unconstraint problem is reformeth are summarized and the ideas, algorithms, and wide applica-
into a differentiable problem with constraint conditioitsyill  tions of sparse representation are comprehensively pgexken
become an uncomplicated problem in the consideration of tBpecifically, there is concentration on introducing an o-t
fact that/;-norm minimization is global non-differentiable. date review of the existing literature and presenting some
(3) Proximal algorithms can be treated as a powerful tomisights into the studies of the latest sparse representati
for solving nonsmooth, constrained, large-scale, oritisted methods. Moreover, the existing sparse representationadst
versions of the optimization problerE[ZS]. In the proximitly  are divided into different categories. Subsequently,espond-
gorithm based optimization strategy for sparse repreienta ing typical algorithms in different categories are presdnt
the main task is to reformulate the original problem into thand their distinctness is explicitly shown. Finally, thedwi
specific model of the corresponding proximal operator sich applications of these sparse representation methoddanetit
the soft thresholding operator, hard thresholding operatad fields are introduced.
resolvent operator, and then exploits the proximity aljons  The remainder of this paper is mainly composed of four
to address the original sparse optimization problem.  haqs: basic concepts and frameworks are shown in Section I
(4) The general framework of the homotopy algorithm ignq section 111, representative algorithms are presemt&be-
to iteratively trace the final desired solution startingnfrthe o, \/.v/|| and extensive applications are illustrated iacgion
initial point to the optimal point by successively adjugtithe /) massive experimental evaluations are summarizectio: S
homotopy p.arametg]. In homotopy algorithm based parg,, |x. More specifically, the fundamentals and prelimipar
representation, the homotopy algorithm is used to solvéithe 1 aihematic concepts are presented in Section II, and tien th

norm minimization problem wittk-sparse property. general frameworks of the existing sparse representatitm w
o o different norm regularizations are summarized in Sectibn |
B. Motivation and objectives In Section 1V, the greedy strategy approximation method is

In this paper, a survey on sparse representation and overviesented for obtaining a sparse representation solwi@hin
available sparse representation algorithms from viewpaifi Section V, the constrained optimization strategy is intraetl
the mathematical and theoretical optimization is providdds for solving the sparse representation issue. Furtherntbee,
paper is designed to provide foundations of the study orsspaproximity algorithm based optimization strategy and Homo-
representation and aims to give a good start to newcomerdapy strategy for addressing the sparse representatidmgmno
computer vision and pattern recognition communities, wigo aare outlined in Section VI and Section VII, respectivelycSe
interested in sparse representation methodology andétede tion VIII presents extensive applications of sparse repres
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Fig. 2: Geometric interpretations of different norms in Zfacel[7]. (a), (b), (c), (d) are the unit ball of thenorm,!;-norm,
lo-norm, I,-norm (0<p<1) in 2-D space, respectively. The two axes of the above ¢oatel systems are; andz,.

tation in widespread and prevalent fields including dictign ~ Suppose thaty = [vy,v2,---,v,] iS an n dimensional
learning methods and real-world applications. Finallycti® vector in Euclidean space, thus
IX offers massive experimental evaluations and conclusion n
are drawn and summarized in Section X. The structure of the lvll, = (Z |v;|P)1/P (11.3)
this paper has been summarized in [Eg. 1. i=1
is denoted as the-norm or thel,-norm (I < p < oo) of
[l. FUNDAMENTALS AND PRELIMINARY CONCEPTS vectorv.

When p=1, it is called thel;-norm. It means the sum of
absolute values of the elements in veatqrand its geometric
In this paper, vectors are denoted by lowercase letters wittierpretation is shown in Fig._2b, which is a square with a
bold face, e.gx. Matrices are denoted by uppercase lettefiorty-five degree rotation.

e.g. X and their elements are denoted with indexes such asVhen p=2, it is called thel,-norm or Euclidean norm. It is
X;. In this paper, all the data are only real-valued. defined ag|v||s = (v} +v3 +--- +v2)"/2, and its geometric

Suppose that the sample is from spa&eand thus all the interpretation in 2-D space is shown in F[g.] 2c which is a
samples are concatenated to form a matrix, denote @s circle.

R¥>"_|f any sample can be approximately represented byIn the literature, the sparsity of a vectoiis always related
a linear combination of dictionaryp and the number of the to the so-called/o-norm, which means the number of the
samples is larger than the dimension of sampleBjiie.n > nonzero elements of vectar. Actually, the [o-norm is the
d, dictionary D is referred to as an over-complete dictionanjimit as p — 0 of the /,-norms [8] and the definition of the
A signal is said to be compressible if it is a sparse signatén tlo-norm is formulated as

original or transformed domain when there is no information n

or energy loss during the process of transformation. [v]lo = lim [[v]|} = lim Z v P (1.4)

“spars€ or “sparsity” of a vector means that some ele- p=0 S
ments of the vector are zero. We use a linear combination\ae can see that the notion of thgnorm is very convenient
a basis matrixd € RV to representasignal € RV*!,i.e. and intuitive for defining the sparse representation proble
x = As wheres € RN*! is the column vector of weighting The property of thd,-norm can also be presented from the
coefficients. If onlyk (k < N) elements ofs are nonzero perspective of geometric interpretation in 2-D space, tvlisc
and the rest elements in are zero, we call the signat is shown in Fig[2h, and it is a crisscross.
k-sparse. Furthermore, the geometric meaning of tHg-norm
(O<p<1)is also presented, which is a form of similar recessed
pentacle shown in Fidg.2d.

On the other hand, it is assumed thdt:) is the function
The standard inner product of two vectogsandy from the of thel,-norm (p>0) on the parameter vectar, and then the
set of realn dimensions, is defined as following function is obtained:

A. Notations

B. Basic background

@p) =y o+ mge bty (L) 1) = el = (3l (15)
i=1

The standard inner product of two matrixés,c R™*" and
Y € R™*"™ from the set of realn x n matrixes, is denoted The relationships between different norms are summarized

as the following equation in Fig.[3. From the illustration in Fid.]3, the conclusiong ar
as follows. Thelg-norm function is a nonconvex, nonsmooth,
discontinuity, global nondifferentiable function. Thgnorm
(O<p<1) is a nonconvex, nonsmooth, global nondifferentiable
function. Thel;-norm function is a convex, nonsmooth, global
where the operatorn(A) denotes the trace of the matrik, nondifferentiable function. Th&-norm function is a convex,
i.e. the sum of its diagonal entries. smooth, global differentiable function.

(X,Y)=tr(XTY) = i zn: X,;Yij (.2)
i=1 j=1
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Fig. 4: The geometry of the solutions of different norm regization in 2-D space [7]. (a), (b) and (c) are the geomefry o
the solutions of théy-norm, /;-norm, l>-norm minimization, respectively.

condition of sparsity. However, it has been demonstratatl th

—— Ly nom the representation solution of tlignorm minimization is not
LT two:z: strictly sparse enough_but “Iimite@ly-spgrse", which meén
FoyAnp L1/3 o possesses the_ capability of dlscrlmlnab_lllty [30].
12 The Frobenius normL,-norm of matrix X € R™*™, and
— tm norm Ia-norm or spectral norm are respectively defined as
— 1norm
n m m
N [t rom IXNF =0 " X202 |1X |2, = mazjzr,..n Y |2yl
4, 5 1 1=1,...,n VAR
i=1 j=1 i=1

||X||2 = 6maw(X) = (/\maw(XTX))l/Q
(11.6)
where/ is the singular value operator and thenorm of X

is its maximum singular value [31].
The l5,1-norm or Ry-norm is defined on matrix term, that

is
X210 => O X7 )12 (1.7)

i=1 j=1

Fig. 3: Geometric interpretations of different norms in 1-D

space|[[7]. As shown above, a norm can be viewed as a measure of
the length of a vector. The distance between two vectats
andy, or matricesX andY, can be measured by the length

of their differences, i.e.
In order to more specifically elucidate the meaning and

. 2 .
solutions of different norm minimizations, the geometry in @ist(x,y) = [z —ylz, dist(X,Y) = [ X =Y]|r (1.8)

2-D space is used to explicitly illustrate the solutions loé t \yhich are denoted as the distance betweeand y in the
lo-norm minimization in Figl4al,-norm minimization in Fig. context of thel,-norm and the distance betweahandY’ in
@B, and!l,-norm minimization in Figldc. LetS = {z" : {he context of the Frobenius norm, respectively.

Az = y} denote the line in 2-D space and a hyperplane ossyme thafy € R™*" and the rank of(, i.e.rank(X) =
will be formulated in higher dimensions. All possible saut ;. The SVD of X is computed as

z* must lie on the line ofS. In order to visualize how
to obtain the solution of different norm-based minimizatio X =UAV" (1.9)
problems, we take thé-norm minimization problem as an,nare 17 c R™" with UTU = I andV € R™" with
example to explicitly interpret. Suppose that we inflatelthe

ball from an original status until it hits the hyperplaSeat right singular vectors ofX, respectively. AdditionallyA is

some point. Thus, the solution of thig-norm minimization a diagonal matrix and its elements are composed of the
problem is the aforementioned touched point. If the SParsfgular values ofX, ie. A — diag(A1, Aoy -+, Ay) With
1 . . - 3 ) 3 T

solution of the linear system is localized on the coordina§(e1 > Xo > --- > A, > 0. Furthermore, the singular value

axis, it will be sparse enough. From the perspective of Figecgmpogtion can be rewritten as

4], it can be seen that the solutions of both thenorm T

and /;-norm minimization are sparse, whereas for the X — Z)\iuivi (11.10)
i=1

VTV = I. The columns ofU and V are called left and

norm minimization, it is very difficult to rigidly satisfy
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where);, u; andwv; are thei-th singular value, thé-th column be zero or very close to zero and few of the entries in the
of U, and thei-th column ofV/, respectively|[31]. representation solution are differentially large.
The sparsest representation solution can be acquired by
I1l. SPARSE REPRESENTATION PROBLEM WITH DIFFERENT SOlving the linear representation syst¢ém 111.2 with the
NORM REGULARIZATIONS norm minimization constraint [52]. Thus probldm 1ll.2 can

. . . . . be, converted to the following optimization problem:
In this section, sparse representation is summarized and

grouped into different categories in terms of the norm reg- & =argmin||allp st y=Xa (1m.3)

ularizations used. The general framework of sparse represe

tation is to exploit the linear combination of some samplé¥éhere| - [[o refers to the number of nonzero elements in the
or “atoms” to represent the probe sample, to calculate tMgctor and is also viewed as the measure of sparsity. Morgove

representation solution, i.e. the representation coefftsi of I JuSt & (k <) atoms from the measurement matix are
these samples or “atoms”, and then to utilize the repretienta Utilized to represent the probe sample, problemlill.3 wél b

solution to reconstruct the desired results. The repraserffduivalent to the following optimization problem:

tion results in sparse representation, however, can belgrea y=Xa st |alo<k (111.4)
dominated by the regularizer (or optimizer) imposed on the

representation solution [82-35]. Thus, in terms of theetéht ProblemLIlL.4 is called the:-sparse approximation problem.
norms used in optimizers, the sparse representation methBgcause real data always contains noise, representatise no
can be roughly grouped into five general categories: spai§ainavoidable in most cases. Thus the original mbdel 2 c
representation with th&-norm minimization|[36| 37], sparse be revised to a modified model with respect to small possible
representation with thé,-norm (O<p<1) minimization [38— noise by denoting

40], sparse representation with thenorm minimization [41— y=Xa+s (1.5)

44], sparse representation with tlg;-norm minimization
[45-+49], sparse representation with thenorm minimization
[9,/50,/51].

wheres € R? refers to representation noise and is bounded
as||s|lz < e. With the presence of noise, the sparse solutions
of problemdTI.3 and 1.4 can be approximately obtained by
resolving the following optimization problems:

A. Sparse representation wifh-norm minimization

& = argmin ||« s.t. y—Xali<e 1.6
Let &1, x5, - ,z, € R? be all then known samples and & llelo | I (1116)
matrix X € R?™ (d<n), which is constructed by knownor
samples, is the measurement matrix or the basis dictiomaty a &= argmin [y — Xal? st [allo <e (11.7)

should also be an over-completed dictionary. Each column of
X is one sample and the probe sampleyiss R? , which Furthermore, according to the Lagrange multiplier theqram
is a column vector. Thus, if all the known samples are us@goper constant\ exists such that problenis 1.6 amd TlI.7
to approximately represent the probe sample, it should bee equivalent to the following unconstrained minimizatio
expressed as: problem with a proper value of.

Y =T +Ta02 + -+ Tpou, (111.1) & = L(a,\) =argmin|ly — Xall5 + Aafo  (111.8)

wherea; (i=1,2;--,n) is the coefficient ofr; and Eq[IIL1 where ) refers to the Lagrange multiplier associated with
can be rewritten into the following equation for conveniental|o.
description:

y=Xa (nz) g, Sparse representation with-norm minimization

where matrixX =[x, z2, - - - ,x,] anda=[a, as, - - - , )T Thel;-norm originates from the Lasso problem|[41), 42] and
However, probleriIILP is an underdetermined linear systeithas been extensively used to address issues in machine lea
of equations and the main problem is how to solve it. Froing, pattern recognition, and statistics |[563-55]. Althbubge
the viewpoint of linear algebra, if there is not any priosparse representation method wighnorm minimization can
knowledge or any constraint imposed on the representatioltain the fundamental sparse solutiormobver the matrixX,
solution o, problem[.2 is an ill-posed problem and willthe problem is still a non-deterministic polynomial-timarti
never have a unique solution. That is, it is impossible fNP-hard) problem and the solution is difficult to approxima
utilize equatiod TIL.2 to uniquely represent the probe skmp [26]. Recent literature [20, 556-58] has demonstrated thesrw
using the measurement matrik. To alleviate this difficulty, the representation solution obtained by using thenorm
it is feasible to impose an appropriate regularizer coimgtia  minimization constraint is also content with the conditioi
regularizer function on representation solutian The sparse sparsity and the solution using-norm minimization with
representation method demands that the obtained represeiificient sparsity can be equivalent to the solution oletgin
tation solution should be sparse. Hereafter, the meaning of [,-norm minimization with full probability. Moreover, the
‘sparse’ or ‘sparsity’ refers to the condition that when thg-norm optimization problem has an analytical solution and
linear combination of measurement matrix is exploited tcan be solved in polynomial time. Thus, extensive sparse
represent the probe sample, many of the coefficients showdgresentation methods with tig-norm minimization have
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been proposed to enrich the sparse representation theoryn the other hand, the ;-norm is also called the rotation
The applications of sparse representation with th@orm invariant/;-norm, which is proposed to overcome the difficulty
minimization are extraordinarily and remarkably wideggte of robustness to outliers [62]. The objective function oé th
Correspondingly, the main popular structures of sparse regparse representation problem with the-norm minimization
resentation with thé;-norm minimization , similar to sparseis to solve the following problem:

representation witli;-norm minimization, are generally used

: in||Y — XA A .17

to solve the following problems: arg it I 21+ A2, ( )
whereY = [y1,y2, - ,yn] refers to the matrix composed
& =argmin |laf; st y=Xa (I1.9) of samples,A = [ai,as,---,ay] is the corresponding

coefficient matrix of X, and p is a small positive constant.
Sparse representation with thg;-norm minimization can
& =argmin|al; st |ly—Xali<e (.10) be implemented by exploiting the proposed algorithms in
o literature [45-47].
or
IV. GREEDY STRATEGY APPROXIMATION

Greedy algorithms date back to the 1950s. The core idea of
the greedy strategyl[7, 23] is to determine the position dbase
1 on the relationship between the atom and probe sample, and
& = L(a, \) = argmin §Hy — Xa3+Aali  (1.12)  then to use the least square to evaluate the amplitude value.
“ . Greedy algorithms can obtain the local optimized solution i
where) and7 are both small positive constants. each step in order to address the problem. However, thegreed
algorithm can always produce the global optimal solution or

C. Sparse representation witg-norm (O<p<1) minimization an approximate overall solution![7,|23]. Addressing sparse

The general sparse representation method is to solve a "n_reeé)resentanon withlo-norm regularization, i.e. problem1ll 3,

: . N iS'an NP hard problem [20, 56]. The greedy strategy provides
representation system with thig-norm minimization prob- a special way to obtain an approximate sparse represemtatio
lem. In addition to thelg-norm minimization andl;-norm P y pp P b

minimization, some researchers are trying to solve thesepaﬁ?éugog;n-{zhaiigr:eegoybgrr:tg% icgﬁllysceaer&sngtndgecglfrg;te
representation problem with thg-norm (0<p<1) minimiza- soluti(F))n for roblgnm y PP

tion, especiallyp = 0.1, 1, %, or 0.9 [69-+61]. That is, P '

the sparse representation problem with th@orm (O<p<1)
minimization is to solve the following problem:

& =argmin |y — Xal3 st Jali <7 (1.11)

A. Matching pursuit algorithm

The matching pursuit (MP) algorithm_[63] is the earliest
& = argmin [|ab st ly— Xal3<e (.13) and representative method of using the greedy strategy to
« approximate problefi I3 dr 1IT]4. The main idea of the MP
is to iteratively choose the best atom from the dictionary
& = L(a,\) = argmin ||y — Xa|? + Az (n1.14) based on a certain similarity measurement to approximately
o obtain the sparse solution. Taking as an example of theespars
In spite of the fact that sparse representation methods witbcomposition with a vector sampjeover the over-complete
the [,-norm (O<p<1) minimization are not the mainstreamdictionary D, the detailed algorithm description is presented
methods to obtain the sparse representation solutioenitan- as follows:
dously influences the improvements of the sparse representaSuppose that the initialized representation residu®js=
tion theory. y, D = [di,ds,--- ,dy] € RN and each sample in
dictionary D is an l2-norm unity vector, i.e||d;|| = 1. To
approximatey, MP first chooses the best matching atom

D. Sparse representation with ;-norm minimization . .
P P _ ) m’l_ o from D and the selected atom should satisfy the following
The representation solution obtained by th&@orm minimiza- condition:

tion is not rigorously sparse. It can only obtain a ‘limited|

sparse’ re_prgser:\tat@or? so!ution, i.e._th_e sqlution hasptb_p- (Ro, dy,)| = sup|(Rq, d;)| (IV.1)
erty that it is discriminative and distinguishable but ist no . , -

really sparse enough [30]. The objective function of thespa WNerelo is a label index from d|ct|on.ar)l.7. Thusy can be
representation method with thg-norm minimization is to decomposed into the following equation:

solve the following problem: y=(y,d;,)di, + Ry (IV.2)

or

Soy = (R, dy,)d;, + R, where(Ry,d,,)d,, represents the
& =argmin||a)? st |ly—Xa|i<e (1.15) orthogonal projection of ontod,,, and R, is the representa-
« tion residual by usingl;, to represeny. Considering the fact
or thatd,, is orthogonal toR;, Eq.[IV.2 can be rewritten as

:L(a,/\):argngn||y—Xa||§+/\|\a||§ (11.16) lyll? = [y, di,)|> + | B2 (IV.3)

Q>
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To obtain the minimum representation residual, the MP &G. Series of matching pursuit algorithms
gorithm iteratively figures out the best matching atom fré® t ; is an excellent choice to employ the greedy strategy to

over-completed dictionary, and then utilizes the repre@@m 5, oximate the solution of sparse representation with the
residual as the next approximation target until the terffoma ; _norm minimization. These algorithms are typical greedy
cond|t|_on of |tera_t|on is satisfied. For t_hlah .|terat|on, the best iiarative algorithms. The earliest algorithms were theahiaig

matching atom_ isd;, and_ the approximation result is fou”dpursuit (MP) and orthogonal matching pursuit (OMP). The
from the following equation: basic idea of the MP algorithm is to select the best matching

R, = (R,,d},)d;, + Rii1 (Iv.4) atom from the overcomplete dictionary to construct sparse
o ' t approximation during each iteration, to compute the signal
where thed,, satisfies the equation: representation residual, and then to choose the best mgtchi
atom till the stopping criterion of iteration is satisfied aiy
R, d;,)| = R, d; V.5 . .
[(Ri, di,)| = supl (R, i) (IV:5) more greedy algorithms based on the MP and OMP algorithm
Clearly, d;, is orthogonal toR1, and then such as the efficient orthogonal matching pursuit algorithm

2 5 5 [65] subsequently have been proposed to improve the pursuit
1Rk = [(Re, di)I” + | Rea | (IV.6) algorithm. Needell et al. proposed an regularized versibn o
For then-th iteration, the representation resid{jd®,, || < orthogonal matching pursuit (ROMP) algorithin [37], which

T wherer is a very small constant and the probe samgple recovered alk sparse signals based on the Restricted Isometry

can be formulated as: Property of random frequency measurements, and then pro-
o1 posed another variant of OMP algorithm called compressive
y = Z<Ri d,)d;, + R, (IV.7) sampling matching pursuit (CoSaMP) algorithm!|[66], which
b) ] j .

et incorporated several existing ideas such as restricteddty
) . . roperty (RIP) and pruning technique into a greedy iteeativ
I trlle representation res||dual_|s sr;:allf Elllnoggh, the Pro_s?ructure of OMP. Some other algorithms also had an impres-
samp eynf?n approximately satisfy the following equationg;y e jnfluence on future research on CS. For example, Donoho
y ~ > (R;j.dy)d;; wheren < N. Thus, the probe

et al. proposed an extension of OMP, called stage-wise githo

sample can be represented by a small numbg_r of elemgnts fr(?ﬁ%l matching pursuit (StOMP) algorithm [67], which depitt
a large dictionary. In the context of the specific repredenia an iterative algorithm with three main stéps, i.e. threhgd

error, the termination condition of sparse representatidhat selecting and projecting. Dai and Milenkovic proposed a

the representatiqn residual_ is_smaller _than the _presup_ipoE%W method for sparse signal reconstruction named subspace

value. More d_eta|led .analy5|s on matching pursuit algorgh pursuit (SP) algorithm [68], which sampled signals saligfy

can be found in the literature [63]. the constraints of the RIP with a constant parameter. Do et
al. presented a sparsity adaptive matching pursuit (SAMP)

B. Orthogonal matching pursuit algorithm algorithm [69], which borrowed the idea of the EM algorithm

The orthogonal matching pursuit (OMP) algorithim![36] 641° alternatively estimate the sparsity and support set.eics.

is an improvement of the MP algorithm. The OMP employBroposed a tree-based matching pursuit (TMP) algorithi [70
the process of orthogonalization to guarantee the orthaigodhich constructed a tree structure and employed a stragfuri
direction of projection in each iteration. It has been vedfi Strategy to cluster similar signal atoms from a highly redamt
that the OMP algorithm can be converged in limited iteragiorflictionary as a new dictionary. Subsequently, La and Do pro-
[36]. The main steps of OMP algorithm have been summariz8@sed a new tree-based orthogonal matching pursuit (TBOMP)

in Algorithm 1. algorithm [71], which treated the sparse tree represemtati
as an additional prior knowledge for linear inverse systems
Algorithm 1. Orthogonal matching pursuit algorithm by using a small number of samples. Recently, Karahanoglu
Task: Approximate the constraint problem: and Erdogan conceived a forward-backward pursuit (FBP)
G = argming |laflo st y = X method [[72] with two greedy stages, in which the forward

Input: Probe sampley, measurement matriX’, sparse coefficients vector stage enlarged the support estimation and the backward stag

o e .
Initialization: ¢ = 1, 7 = , & = 0, Do — &, index setho — ¢ where removed some ur]sat|sf|ed atoms. More d(_ata|led treatments _of
6 denotes empty set; is a small constant. the greedy pursuit for sparse representation can be found in
While |jr¢|| > 7 do the literature|[23].

Step 1: Find the best matching sample, i.e. the biggest ipragtuct
betweenr; 1 andx; (j ¢ A¢—1) by exploiting

At = argmaxjgp, , [(re—1, ;). V. CONSTRAINED OPTIMIZATION STRATEGY
Step 2: Update the index sAt = A;—1 |J A+ and reconstruct data set . L . . .
Dy = [Dy—1,zy, ] Constrained optimization strategy is always utilized téagb

Step 3: Compute the sparse coefficient by using the leastesaigorithm  the solution of sparse representation with thenorm reg-

5 — i — D:&l2 . . .
& =argmin |y — Di&ll3. . ~ ularization. The methods that address the non-differbletia
Step 4: Update the representation residual using- y — D:&.

Step 5it =t + 1. unconstrained problem will be presented by reformulating i
End as a smooth differentiable constrained optimization pobl
Output: D, o

These methods exploit the constrained optimization method
with efficient convergence to obtain the sparse solutionatVh
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is more, the constrained optimization strategy emphasiZemoblen{ V.6 can be addressed with the close-form solution
the equivalent transformation djfx||; in problem[II.12 and (g")7 (g")

. . t 9 g
employs the new reformulated constrained problem to obtain 7 = T A (V.8)

a sparse representation solution. Some typical methods tha

employ the constrained optimization strategy to solve ttfg/rthermore, the basic GPSR algorithm employs the back-
original unconstrained non-smooth problem are introdtned {facking linear search method [31] to ensure that the st&p si
this section. of gradient descent, in each iteration, is a more properevalu

The stop condition of the backtracking linear search should

. N . satisfy
A. Gradient Projection Sparse Reconstruction

t t t t t\T
The core idea of the gradient projection sparse representat G((z" —0'VG(z ))+)t > Gtz ) —tﬁVG(tZ )
method is to find the sparse representation solution along (" = (2" = 0'VG(2"))4)

with the gradient descent direction. The first key procedire where 3 is a small constant. The main steps of GPSR are

gradient projection sparse reconstruction (GPSE) [73lides  symmarized in Algorithm 2. For more detailed information,
a constrained formulation where each valueno€an be split one can refer to the literature [73].

into its positive and negative parts. Vectaxs and o are
introduced to denote the positive and negative coefficiefits Algorithm 2. Gradient Projection Sparse Reconstruction (GPSR)

a, respectively. The sparse representation solutiooan be — Task: To address the L;nconstfaintfroblem:
formulated as: & = argming ;lly — Xallz + Alalh

(V.9)

Input: Probe sampley, the measurement matriX, small constant\
a=a,—a_, a, >0, a_>0 (V.l) Initialization: ¢ = 0, 8 € (0,0.5), v € (0,1), given o so thatz =
+ + [a+7a*}'

While not converged do

where the operato(-); denotes the positive-part operator, Step 1: Compute exploiting EqIYB ands* < mid(cmin, o, cmas),

which is defined a¢z) =max{0, z}. Thus,||a|: = 1} a + wheremidy(-, -, -) denotes the middle value of the three parameters.
1Ta_, wherel, = [1,1,---,1]7 is ad—dimensional vector ~ Step 2: While EqLVD not satisfied
N—— do ot < vot end
. . d Step 3:ztt! = (2t — 0! VG (2! dt =t+ 1.
with d ones. Accordingly, problefiTI12 can be reformulatedgqg & - (2! —0'VG(2)) 4 an +
as a constrained quadratic problem: Output: z't!, «
1
argmin L(a) = argmin = |ly — X[oy — a_]||2+
M1Tay +1Ta ) st oy >0, a- >0 B. Interior-point method based sparse representationtay
or The Interior-point method [31] is not an iterative algonith
. 1 ) but a smooth mathematic model and it always incorporates
argmin L(e) = argmin 5 [ly — [X4, X ][y — a3 the Newton method to efficiently solve unconstrained smooth
A1Tay +17a) st ap >0, a- >0 problems of modest size [28]. When the Newton method is

(V.3) used to address the optimization issue, a complex Newton
. equation should be solved iteratively which is very time-
Furthermore, problef M3 can be rewritten as: consuming. A method named the truncated Newton method
can effectively and efficiently obtain the solution of the
Newton equation. A prominent algorithm called the trundate
Newton based interior-point method (TNIPM) exists, which
can be utilized to solve the large-scdleregularized least
squares (i.el;_I,) problem [74].
o The original problem of;_I, is to solve problehi II.12 and
The GPSR algorithm employs the gradient descent agsk core procedures 6f_I, are shown below:
standard line-search methad [31] to address problein V.é. Th) Transform the original unconstrained non-smooth bl
value ofz can be iteratively obtained by utilizing to a constrained smooth optimization problem.
(V.5) (2) Apply the interior-point method to reformulate the con-
strained smooth optimization problem as a new unconsulaine
where the gradient oWG(z') = ¢ + Az' ando is the step smooth optimization problem.
size of the iteration. For step sizg GPSR updates the step(3) Employ the truncated Newton method to solve this uncon-

1
argmin G(z) =c’z + izTAz st. z>0 (V4
wherez = [a;a_], ¢ = Moy + [—XTy; XTy],

XTX -—XTx
loa = [L,_’l] A ( -XTx XTx )

argmin 2t = 2! — oVG(2Y)

size by using strained smooth problem.
. . t ¢ The main idea of thel;_I; will be briefly described.
g =g Gz —og) (V-6) For simplicity of presentation, the following one-dimeorsal
where the functiony’ is pre-defined as problem is used as an example.

|a| = arg H<11n< o (V.10)
¢ (VG(2"))i, if z>0 or (VG(2Y)); <0 V7 _ Tt
0, otherwise. (V.7)  whereo is a proper positive constant.
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Thus, problenf . IILIR can be rewritten as c) The duality gap is constructed, which is the gap between
. .1 5 the primary problem and the dual problem:
& = argmin by — Xall} + Ao,

= argmin|ly - Xa3 + AL min_g,<a,<0, 0 9=y —Xal + AMaly = F(u) (V.19)

argmin%”y_Xa”%+/\min—0'i<04i<0'i Zfil g; . . . .
. 1 2\ N Third, the method of backtracking linear search is used to
argmiN g, <a;<o; iHy - XaH2 +A Zi:l g,

(V.11) determine an optimal step size of the Newton linear search.
The stopping condition of the backtracking linear search is

Thus problend TII.IP is also equivalent to solve the follogvin

problem: G(la+n'Aa,o+n'No) > Gla, o)+ VG (e, o) [ A, Ao]
) N (V.20)
& = arg min —||y—Xa||§+/\Zai st.—o; <a; <o; wherep € (0,0.5) andn’ € (0,1) is the step size of the
o, ERY 2 i=1 Newton linear search.
(V.12) Finally, the termination condition of the Newton linear sga
or is set to
N .
& =arg min EHy _ on||§ + /\Zai ¢ =min{0.1, Bg/||hll2} (V.21)
o CRY 2 i=1 (V-13) where the functionh = VG(a, o), § is a small constant,
st. oi+a;>0,0,—a; >0 and g is the duality gap. The main steps of algoritim/

The interior-point strategy can be used to transform pmbleare summarized in Algorithm 3. For further description and

I3 into an unconstrained smooth problem analyses, please refer to the literature [74].

v N Algorithm 3. Truncated Newton based interior-point method (TNIPM) for
a=arg mn Gla,0)==|ly—Xa|?+ > o;—B(a,o) blls
ga,ae]RN ( ’ ) 2 ”y ”2 Z ! ( ’ ) Task: To address the unconstraint problem:

L A _
' (V.14) & = argming 1|y — Xatll3 + M

whereB(a, o) = vazl log(o;+ a;)+ vazl log(o;— ;) is Input: Probe sampley, the measurement matriX, small constant\
a barrier function, which forces the algorithm to be perfedm Initialization: ¢=1,v= %, p € (0,0.5), 0 =1y

s . . . : Step 1: Employ preconditioned conjugate gradient algaritb obtain
within the feasible region in the context of unConStr""‘lm:"dthe approximation off in Eq.[V.I8, and then obtain the descent direction

condition. of linear searcHAat, Aot].
Subsequentlyll_ls utilizes the truncated Newton method Step 2: Exploit the algorithm of backtracking linear seatoHind the

. . _gptimal step size of Newton linear seargh which satisfies the E@._V.20.
to solve probleni V4. The main procedures of addressing Step 3: Update the iteration point utlizirge!+1, o +1) — (o, o)+

problem V.14 are presented as follows: (Aot + Adt).
First, the Newton system is constructed Step 4: Construct feasible point using Bq. V.18 and duality tn Eq.
V19, and compute the termination tolerancén Eq.[V.21.
Ao oN Step 5: If the conditiory/F'(u) > ¢ is satisfied, stop; Otherwise, return
H A =-VG(a,0) €R (V.15)  to step 1, update in Eq.[V14 andt = ¢ + 1.
g Output: o
where H = —V2G(a,0) € R*V*2N js the Hessian ma-

trix, which is computed using the preconditioned conjugate The truncated Newton based interior-point method (TNIPM)
gradient algorithm, and then the direction of linear seardS] is a very effective method to solve thg-norm regu-

[Aa, Ao is obtained. larization problems. Koh et al. [76] also utilized the TNIPM
Second, the Lagrange dual of probldm 11.12 is used {6 solve large scale logistic regression problems, which em
construct the dual feasible point and duality gap: ployed a preconditioned conjugate gradient method to céeenpu

a) The Lagrangian function and Lagrange dual of problefie search step size with warm-start techniques. Mehrotra

MTIZ are constructed. The Lagrangian function is reformdroposed to exploit the interior-point method to address th
lated as primal-dual problem|[77] and introduced the second-order

. derivation of Taylor polynomial to approximate a primaladlu
Lla,z,u) =2z  z+ M| +w(Xa—y —2z)  (V.16) trajectory. More analyses of interior-point method for rsea

. . L representation can be found in the literature [78].
where its corresponding Lagrange dual function is

Tu—uy st C. Alternating direction method (ADM) based sparse repre-

&
V.17 :
|(XT’LL)-| <\ (Z —1.9. ... N) ( ) sentation strategy

[
o
o
=
"
“11

(w) = —qu

This section shows how the ADM [43] is used to solve primal
and dual problems if_1I[.12. First, an auxiliary variable is
u=2s(y—Xa), s = min{\/|2y;—2(XT X )| }Vi (V.18) introduced to convert problem 112 into a constrained
problem with the form of problerh V.22. Subsequently, the
wherew is a dual feasible point and is the step size of the alternative direction method is used to efficiently addithes
linear search. sub-problems of problein_ V.22. By introducing the auxiliary

b) A dual feasible point is constructed



JOURNAL

11

term s € R<, problem[I[.12 is equivalent to a constrainedvheresoft(o,n) = sign(o) max{|o| — n, 0}.

problem

Finally, the Lagrange multiplier vectox is updated by using
Eq.[V.24(c).

1
argminQ—Hng—i—HaHl st. s=y—Xa (M22)
a,s 2T

The algorithm presented above utilizes the second order
The optimization problem of the augmented Lagrangian fun-<|:-‘:]lylor expansion to _appro_ximately solve the s_ub-proV.
tion of problem{\22 is considered and thys the algorithm |s_denoted as an |ne>_<act ADM or
approximate ADM. The main procedures of the inexact ADM
based sparse representation method are summarized in Algo-
rithm 4. More specifically, the inexact ADM described above
is to reformulate the unconstrained problem as a consttaine
problem, and then utilizes the alternative strategy tootiffely
where X € R¢ is a Lagrange multiplier vector and is a address the corresponding sub-optimization problem. More
penalty parameter. The general framework of ADM is used ter, ADM can also efficiently solve the dual problems of
solve probleni’ V.23 as follows: the primal problemBTIN-NT.IR. For more information galse
refer to the literature [43, 79].

1
arg mirﬁ L(a,s,A\) = ZHSHQ + el = AT (s+

) (V.23)
Xoo—y)+ 5ls+ Xa —yll3

sttt = argmin L(s, al, A!) (a)

altl = arg min L(s”l, a, )\t) (b) (V.24) tAaItgi;g;itgtr:]atzlég?Iternating direction method (ADM) based sparse represen-
t+1 t t+1 t+1

AL = A - (s i+ Xalt! - Y) (c) Task: To address the unconstraint problem:

& = arg ming %Hy — Xa|2+ 7ol

First, the first optimization problefn V.P4(a) is considered

Input: Probe sampley, the measurement matriX, small constant\
Initialization: ¢t =0, s =0, a® =0, A° =0, 7 = 1.01, u is a small
constant.
Step 1: Construct the constraint optimization problem obfem[IIL.12 by
introducing the auxiliary parameter and its augmented &gjan function,
i.e. problem[[V.2R) and(V.23).
While not converged do
. T . Step 2: Update the value of thé+! by using Eq.[(V.2b).
laflh — (A (X' —y) Step 2: Update the value of the!t! by using Eq.[(V.2D).

(V.25) Step 3: Update the value of te+1 by using Eq.[(V.24(c)).
o ) ) Step 4:ptt! = rpt andt =t + 1.
Then, it is known that the solution of probleim_WM25 with End while
respect tos is given by Output: o'+

1
argmin L(s, a’, A") :ZHSHQ + ety = AHT (s + Xat
W
—y)+ 5lls+ Xa' —yll3

1 %
= 5llsla = (W) Ts + Slls + Xa' —yl5+

o T (A -y — Xat V.26
s T m( nly — Xa')) (V.26)
Second, the optimization probldm VI24(b) is considered VI. PROXIMITY ALGORITHM BASED OPTIMIZATION

. 1
argmin L(s', o, X') = o= 8742 + ey = (A)7 (s

+ Xa—y)+ 5l + Xa— g3

STRATEGY

In this section, the methods that exploit the proximity algo
rithm to solve constrained convex optimization problems ar
discussed. The core idea of the proximity algorithm is tbagti

the proximal operator to iteratively solve the sub-problem
which is much more computationally efficient than the oréin

problem. The proximity algorithm is frequently employed to
solve nonsmooth, constrained convex optimization problem

which is equivalent to

argmin{ o]y — ()7 (s + X —y) + B4

Xa—yl3} [28]. Furthermore, the general problem of sparse represen-
B By N2 tation with [;-norm regularization is a nonsmooth convex
= llexllx + 2 Is7 + Xoe—y = A/l optimization problem, which can be effectively addressgd b
= |laflr + f(e) using the proximal algorithm.
(V.27) Suppose a simple constrained optimization problem is

wheref(a) = &||s""'+ X a—y—A'/u|)3. If the second order
Taylor expansion is used to approximatén), the problem
V.27 can be approximately reformulated as

argmin{|lall + (@ — o)X (s + Xa' —y = A'/p)

min{h(x)|z € x} (VI.1)

wherex C R”. The general framework of addressing the con-
strained convex optimization probldm MI.1 using the proxim
algorithm can be reformulated as

1
—l—;”a—at”g} :Et:argmin{h(w)+z|\m—mt|\2|mEx} (VI1.2)

2
V.28
. ] ] ( ) wherer and z* are given. For definiteness and without loss
wherer is a proximal parameter. The solution of probem V.28t generality, it is assumed that there is the following ine

can be obtained by the soft thresholding operator constrained convex optimization problem

ot = soft{al =T XT (s 4 Xal—y=2'/u), -} (V.29)

arg min{ F(x) + G(z)|z € x} (VI.3)
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The solution of problemi"VII3 obtained by employing the First, Taylor expansion is used to approximatén) =
proximity algorithm is: %IIXOL — y|% at a point ofa’. The second order Taylor
1 expansion is

' =argmin{F(z) + (VG(z'), z — x') + ZHEL‘ -z}

fle) = fla') + (o — a')TVf(a") + 5(a - a)”

Hy(a)(a—af) + -

= argmin{F(z) + - = — 6/} (V1.9)

(V1.4)

- where Hy(a') is the Hessian matrix of (a) at o’. For the
where® = z' — rVG(x'). More specifically, for the sparsefynction f(a), Vf(a) = X7 (Xa — y) andHy(a) = XTX
representation problem with-norm regularization, the main -3, pe obtained.
problem can be reformulated as:

in P(a) = {\ Aa = 1
min Ple) = {Mall | 4=y} V5 fl@) = FIXa' —y[3+(a—a")TXT(Xa! —y)+
or minP(a) = {A||a|1 + [[Aa —y|5 | « € R"} )
T T t
which are considered as the constrained sparse represantat E(a o) X' X(a—a)
of problemTI.12. (V1.10)
If the Hessian matrixd s () is replaced or approximated in
A. Soft thresholding or shrinkage operator the third term above by using a scalaf, and then

First, a simple form of problern Tl1.12 is introduced, which

1
. . a)~ || Xat —yl2+ (a—a))TXT(Xat —
has a closed-form solution, and it is formulated as: @) 2 I yllz+( ) ( v)

1

—i——a—atTa—at = a,at
o = min h(a) :/\||a|\1+%|\a—5||2 37 M = (\3|.11)
N N (V1.6)
:Z/\|aj| +Z_(aﬂ' — 55)? Thus problem[VIL.B using the proximal algorithm can be
=1 =1 2 successively addressed by
wherea* is the optimal solution of problem V1.6, and then o' = argmin Qs (a, &) + N || (VI.12)

there are the following conclusions: _ _
(1) if a; > 0, thenh(a) = Aa+ 1||a—s|| and its derivative Problem[VI.I2 is reformulated to a simple form of problem
is h'(cj) = A+ — s;. VL6l by

Let W' (a;) =0 = aj = s; — A, where it indicates; > A, w1 , ) T o .

(2)if o < 0, thenh(r) = —Aa+3 [|a—s||* and its derivative  Q¢(ev, @) = S| Xa’ —y[a+(a —a’) X7 (Xa' —y)+

is h'(aj):—)\—l-a;f—sj. 1 02

Let h/(cj) = 0 = af = s; + A, where it indicates; < —A; ZHO‘ —alz

() if =A <'s; <A, and thena} = 0.

1 t 2 1 t T t 2
So the solution of problem VII6 is summarized as =5lXa' —ylz + -lla—a’ + 7X" (Xa' —y)|>

.
- ZIXT(Xa! -y}

S )\, Zf S5 > A 1 . T ¢ 9 t
af =< si+A if s;<-A vI1.7) = golle—(a —rXT (Xa' —y))l; + B(a)
0, otherwise (VI.13)
The equivalent expression of the solution 8" = where the termB(at) = %HXat—yH%—% IXT(Xat—y)|?

shrink(s,\), where thej-th component ofshrink(s,\) iS in problem{VI.I2 is a constant with respect to variableand

shrink(s,\); = sign(s;) max{[s;| — A,0}. The operator it can be omitted. As a result, problédm V1112 is equivalent to
shrink(e) can be regarded as a proximal operator. the following problem:

t+1 1 (12
B. Iterative shrinkage thresholding algorithm (ISTA) o = argmin o—fla = O(e)[z + Alefi - (VI-14)
The objective function of ISTA[80] has the form of whered(al) = o' — 7XT(Xal — y).
The solution of the simple problemn_V].6 is applied to
1 solve problen] VI.I# where the parameteis replaced by
argmin F(a) = §|\Xa —yl5+ Aali = f(e) + Ag(@)  the equationd(«?), and the solution of problefi VI14 is
(VI1.8) a!tt = shrink(8(at), A\r). Thus, the solution of ISTA is
and is usually difficult to solve. Problem"V].8 can be conreached. The techniques used here are called linearization
verted to the form of an easy probldm V1.6 and the explicireconditioning and more detailed information can be found
procedures are presented as follows. in the literature[80, &1].
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C. Fast Iterative shrinkage thresholding algorithm (FISTA more reliable approximation dff s (c) in problem VL9 using

The fast iterative shrinkage thresholding algorithm (ApE the Barzilai-Borwein (BB) spectral method [85]. The worm-
an improvement of ISTA. FISTA [82] not only preserves th&tarting technique and BB spectral approach are introdased
efficiency of the original ISTA but also promotes the effeeti follows.
ness of ISTA so that FISTA can obtain global convergence(1) Utilizing the worm-starting technique to optimize
Considering that the Hessian matfik (c) is approximated ~ The values of) in the sparse representation methods dis-
by using a scalai—] for ISTA in Eq.[VL.9, FISTA utilizes the cussed above are always set to be a specific small constant.
minimum Lipschitz constant of the gradieVitf («) to approx- However, Hale et al.L[86] concluded that the technique that
imate the Hessian matrix gf(c), i.e. L(f) = 2Amae (X7 X). exploits a decreasing value of from a warm-starting point
Thus, the problef VII8 can be converted to the problem belogan more efficiently solve the sub-problém VI.14 than ISTA
that is a fixed point iteration scheme. SpaRSA uses an agaptiv

1
fla) ~ §|\Xat —yl3+ (a—a") ' X" (Xa' —y) continuation technique to update the value\o§o that it can
I lead to the fastest convergence. The procedure regenénates
+§(a - o) (a—a') = P(a,a)) value of \ using
(VI.15) .
A= XTyll oo, A VI.18
where the solution can be reformulated as max{y| X7y ' ( )
L .
alt! = argmin = | — 0(a)||2 + Alle|x (VI1.16) wherej_ |_s a small constant. _
2 (2) Utilizing the BB spectral method to approximatg («)
wheref(a') = o' — 1 XT(Xa! — y). ISTA employs.1 to approximate the matri&l s (), which

Moreover, to accelerate the convergence of the algorithis,the Hessian matrix of’ () in problem[VI.9 and FISTA
FISTA also improves the sequence of iteration points, atsteexploits the Lipschitz constant & f(«) to replaceH (o).
of employing the previous point it utilizes a specific lineaHowever, SpaRSA utilizes the BB spectral method to choose
combinations of the previous two poinfex!, a1}, i.e. the value ofr to mimic the Hessian matrix. The value ofis

ut—1 required to satisfy the condition:

W(at —a'h (V1.17)

al=a'+

—— (! —a!) = Vf(a'h) - Vf(a! VI.19

wherey! is a positive sequence, which satisfigs> (t+1)/2, Ti+l ( ) A ) fle) ( )
and the main steps of FISTA are summarized in Algorithm
The backtracking linear research strategy can also beedili
to explore a more feasible value df and more detailed 1

analyses on FISTA can be found in the literature [82, 83]. —t+1

évhich satisfies the minimization problem

—argmin | 1(a'"! ~ ') ~ (Vf(a™) - V(a)3
(a1 — o) (Vf(al) - Vf(a")

Algorithm 5. Fast Iterative shrinkage thresholding algorithm (FISTA) = 1 t)T 1 _ t)
Task: To address the problem = argmin F(a) = 3||Xo — y|3 + (o o) (a @ VI1.20
Njedl (V1.20)

Input: Probe sampley, the measurement matriX, small constant\ .
Initialization: ¢ = 0, ® = 1, L = 2Amaz(XZX), ie. Lipschitz For problem[VL.14, SpaRSA requires that the value of

constant ofv f. X is a decreasing sequence using the Egq. VI.18 and the
Wg”e ”f_tgonl‘/f?fgﬁd dho‘ ) _ 7 tomorob| value of 7 should meet the condition of Eq._VLR0. The
tep 1: Exploit the shrinkage operator in equalion V1.7 tveproblem sparse reconstruction by separable approximation (SpaRSA

Step 2: Update the value af using i1 — 1% EwTears is summarized in Algorithm 6 and more information can be
: n = -t

2 i H )
Step 3: Update iteration sequenag¢ using equatioh VII7. found in the literature: [84].
End
Output: o Algorithm 6. Sparse reconstruction by separable approximation (SpaRSA

Task: To address the problem
& =argmin F(a) = 3| Xa -y + Allex|x

D. Sparse reconstruction by separable approximation'np“t: Probe sample;, the measurement matriX, small constanf\
Initialization: ¢ =0,i =0,y =y, 251 ~ Hf(a) = X7 X, tolerance

(SpaRSA) £ = 1075_

Sparse reconstruction by separable approximation (SpARSA Step L:A: = max{y||X"y"[|cc, A}. _—
[84] is another typical proximity algorithm based on sparse >'P jL +ElXp_'°S"hi?:L'2'((Zgie_off;(azﬁo(rx“}Z‘;"f5;0)?"1‘4"'
representation, which can be viewed as an gccgleratecbnersi Step 3: Update the value o using the Eqﬁb,.
of ISTA._ SpaRSA provides a genergl algorithmic framework Step 4: If Hawl;aw < ¢, go to step 5: Otherwise, retum to step 2
for solving the sparse representation problem and here a  gng;—; 1.
simple specific SpaRSA with adaptive continuation on ISTA Step 5:y't! =y — Xalt!.
is introduced. The main contributions of SpaRSA are trying_SteP 6: IfA: = A, stop; Otherwise, return to step 1 ane-= ¢ + 1.
.. . . Output: o’
to optimize the parametek in problem[VL.8 by using the

worm-starting technique, i.e. continuation, and choosing
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E. [ /2-norm regularization based sparse representation ~ where

Sparse representation with thenorm (0<p<1) regularization Fosl@i) = gm_(l i COS(2_7T B ggA(:c-))

leads to a nonconvex, nonsmooth, and non-Lipschitz opéimiz SEAN 37" 3 3 e (V1.28)
tion problem and its general forms are described as problems (@) = arg COS(A(@)%)

[TI3landIll.14. Thel,-norm (0<p<1) regularization problem A 8" 3

is always difficult to be efficiently addressed and it has alsghich have been demonstrated in the literature [60].
attracted wide interests from large numbers of researalgio  Thus the half proximal thresholding function for theo-
However, the research group led by Zongben Xu summarizesrm regularization is defined as below:

the conclusion that the most impressive and representative . v )
algorithm of thel,-norm (0<p<1) regularization is sparse rep- j, () — Para(@i), if |ﬂ»’i|_> (A1) (V1.29)
resentation with the, ,,-norm regularization [&§7]. Moreover, 2 0, otherwise

they have proposed some effective methods to solvé,the e N )
norm regularization problenh [60,88]. where the thr_eshold_T(/\T) 5 has been conceived and

In this section, a half proximal algorithm is introducedl€monstrated in the literature [60].
to solve thel, ,-norm regularization probleri [50], which Therefore, if EqLVL.2D is applied to EqQ. VIP7, the half
matches the iterative shrinkage thresholding algorithnttie Proximal thresholding function, instead of the resolvepee
I1-norm regularization discussed above and the iterativel h&Hor, for thel ,-norm regularization problei V.25 can be
thresholding algorithm for thé-norm regularization. SparseexPplicitly reformulated as:
representation with thé, ,,-norm regularization is explicitly a=H, i6a) (V1.30)
to solve the problem as follows: 2

R . ) 1/2 where the half proximal thresholding operatéf [60] is

a = argmin{F(a) = [Xa —yllz + Alall)5}  (VI.21)  geductively constituted by EG_VIRO.

Up to now, the half proximal thresholding algorithm has
been completely structured by Eq. VI130. However, the aystio
\ of the regularization parameterin Eq.[VI.24 can seriously
VF(e) = XT(Xa —y) + §V(||a|\1§§) =0 (VI.22) dominate the quality of the representation solution in pewb

V.27, and the values ok andr can be specifically fixed by

where the first-order optimality condition df(«) on o can
be formulated as

which admits the following equation:

1—e¢ V96 3
A T=-—= and A= —|[0(x 2 VI.31
XT(y - Xa)=2V(jall2)  (129) B T
1/2 where ¢ is a very small constant, which is very close to

whereV(|1|c;|\1/2) denotes the gradient of the regularizationg g thej denotes the limit of sparsity (i.&-sparsity), and
term |\a||1§2. Subsequently, an equivalent transformation dé|, refers to thek-th largest component ofe]. The half
Eq.[VL.2Z3 is made by multiplying a positive constantand proximal thresholding algorithm fol ;o-norm regularization

adding a parametex to both sides. That is, based sparse representation is summarized in Algorithnd7 an
more detailed inferences and analyses can be found in the
A literature [60/ 88].
a+7XT(y - Xa) :a+¢§w|\a||}j§) (V1.24) - ]

Algorithm 7. The half proximal thresholding algorithm fdk ;5-norm

To this end, the resolvent operator [[60] is introduced t0eqyiarization

compute the resolvent solution of the right part of Eq._WlJ.24 Task: To address the problem

and the resolvent operator is defined as & = argmin F(o) = | X — y|12 + )\||a|\i§§
N -1 Input: Probe sample;, the measurement matriX
R, 1(e) = (] + V(|| e ||1g)) (VI.25)  Initialization: =0, =0.01, 7= 5.
2 2 While not converged do

Step 1: Computd(at) = ot + 7X7T(y — Xa?).
Step 2: Compute\; = /9—2_6|[9(at)}k+1|% in Eq.[VL31.
Step 3: Apply the half proximal thresholding operator toait

which is very similar to the inverse function of the right par

of Eq.[VL.24. The resolvent operator is always/ satisfied no
1/2

matter whether the resolvent solution ®f(|| e H1/2) exists the representation solution, 1 = H, 1 (8(ac!)).
or not [60]. Applying the resolvent operator to solve prable  step 4:¢ — ¢ + 1. e
End
N 12 Output: o
_ - —1 t _
o= L+ 5Vl et Xy = X)) (o

=Ryip(a+7X"(y - Xa)) o o
) o ] F. Augmented Lagrange Multiplier based optimization strat
can be obtained which is well-definef{a) = a+7X"(y— o

Xa) is denoted and the resolvent operator can be explici

expressed as: %e Lagrange multiplier is a widely used tool to eliminate

the equality constrained problem and convert it to additess t
R)\_’%(EL‘) = (fA_é(:nl),fA_%(wg), e ,fAV%(a:N))T (VI.27) unconstrained problem with an appropriate penalty functio
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Specifically, the sparse representation problem]lll.9 can b Second, consider the Lagrange dual problem of problem
viewed as an equality constrained problem and the equivalih9]and its dual function is

problem[II.12 is an unconstrained problem, which augments == . T T T

the objective function of problefi L9 with a weighted cond (M) = f{llalli+A7(y—Xa)} = ATy —sup{A" Xa—{lerf|1}

straint function. In this section, the augmented Lagramgia _ . o (V.|-_39)
method (ALM) is introduced to solve the sparse represemativhere X € R? is a Lagrangian multiplier. If the definition of
problemTIT.9. conjugate function is applied to Elg. V1137, it can be verified

First, the augmented Lagrangian function of problemill.that the conjugate function df:_(0) is [|[||1. Thus EqLVL.39
is conceived by introducing an additional equality corised  can be equivalently reformulated as
function, which is enforced on the Lagrange function in _\T T
problemII[.12. That is, 9N = ATy = It (XTX) (V1-40)
The Lagrange dual problem, which is associated with the
A\ primal problenf 1.9, is an optimization problem:
Lia, \) = |\a||1+§||y—Xa|\§ st. y—Xa =0 (VI.32)

max Ay st (XTA) e BL (V1.41)
Then, a new optimization problem VI.B2 with the form of the _ A
Lagrangain function is reformulated as Accordingly,
min-ATy  st. z—-XTA=0, z€ B, (VI.42)

argmin Ly (e, z) = ||a|1 + %Hy —Xa|i+ 2" (y - Xa) Az
(V1.33)  Then, the optimization problem VA2 can be reconstructed a
wherez € R is called the Lagrange multiplier vector or dual . T T T
variable andL, (v, z) is denoted as the augmented Lagrangian ' fflzlﬁL()" zp)= Ay —p (2 - XA
function of problemII.9. The optimization problem VII33
is a joint optimization problem of the sparse represematio
coefficienta and the Lagrange multiplier vectar. Problem
is solved by optimizingx andz alternatively as follows:

- (V1.43)
+§Hz—XT)\H§ st. ze BL

wherep € R? is a Lagrangian multiplier and is a penalty
parameter.

a'*! = argminL (a, 2%) Finally, the dual optimization problefn VI.43 is solved and
’ A a similar alternating minimization idea of PALM can also be
= argmin(|laf + Sy - Xali+ ()" Xa) applied to probleni V.43, that is,
(VI1.34)
2 =arg min Ly (X', 2, ')
ze
2T =2t Ay — Xa!T! VI1.35 =
( DY i (e - XX 4 Dz - X7

where probleni VI.34 can be solved by exploiting the FISTA #€B 5
algorithm. Probleri VI.34 is iteratively solved and the paea = arg min {Z||z — (XTI + ZpuT)|3y
ter z is updated using Ef. VI.35 until the termination condition zeBL 2 T
is satisfied. Furthermorg, if the method of employing ALM = Pp (XA + lHT)
to solve probleni_VI.33 is denoted as the primal augmented o T

Lagrangian method (PALM) [89], the dual function of problem (V1.44)
M.9can also be addressed by the ALM algorithm, which i#here P (u) is a projection, or called a proximal operator,
denoted as the dual augmented Lagrangian method (DALMNto B, and it is also called group-wise soft-thresholding.
[89]. Subsequently, the dual optimization problém 1.9 ifor example, letr = Pg1 (u), then thei-th component of
discussed and the ALM algorithm is utilized to solve it. solutionx satisfiesz; = sign(w;) min{|u;|,1}

First, consider the following equation: A Z arg Ir&in LA, 240, )
= 0 V1.36
HOéHl HQITlli);1< 7a> ( ) :argmAin{—)\Ty—i—(,ut)TXT)\—l-%Hth—XT)\Hg}
which can be rewritten as =Q(\)

(VI1.45)
Take the derivative 0€)(\) with respect to\ and obtain

t+1 _ T\—1 t+1 _ t
whereB) = {x € R" | ||lz|, < A} andIq(x) is a indicator AT = (XX T (X 4y - X)) (V1.46)

t+1 b t+1 T yt+1

function, which is defined a;(x) = { 20 ’i ;g . p =t = (2 XTAT) (V1.47)
Hence, ’ The DALM for sparse representation with-norm regu-

larization mainly exploits the augmented Lagrange method

el = max{(0,c) : 6 € BL} (VI.38) to address the dual optimization problem of problem1ll.9

||le|ls = max{(0, ) — Ip: }
B 3
or |la|i =sup{(0, a) — IBic} (VI.37)
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and a proximal operator, the projection operator, is @diz the original optimization problems by tracing a continuous
to efficiently solve the subproblem. The algorithm of DALMparameterized path of solutions along with varying paranset
is summarized in Algorithm 8. For more detailed descriptiotdaving a highly intimate relationship with the conventibna

please refer to the literature [89].

Algorithm 8. Dual augmented Lagrangian method fernorm regulariza-

tion
Task: To address the dual problem oft = arg ming |1 s.t. y =
Xa

Input: Probe sampley, the measurement matriX, a small constanh®.
Initialization: ¢t =0, e = 0.01, 7 = ”1)(;”52 ul =o.
While not converged do
Step 1: Apply the projection operator to compute
Z2ttl = Pp1_ (XTXE 4+ 1,7,

sparse representation method such as least angle regressio
(LAR) [42], OMP [64] and polytope faces pursuit (PFP)
[95], the homotopy algorithm has been successfully emmloye
to solve thel;-norm minimization problems. In contrast to
LAR and OMP, the homotopy method is more favorable
for sequentially updating the sparse solution by adding or
removing elements from the active set. Some representative
methods that exploit the homotopy-based strategy to sbke t
sparse representation problem with thenorm regularization

are explicitly presented in the following parts of this $ewct

Step 2: Update the value of 1 = (1 X XT) =1 (7 X 2t +y— X ut).
Step 3: Update the value @ftt! = pt — 7(2tt1 — XT X)),
Step 4t =t+1.

End While
Output: o = pfl: N]

A. LASSO homotopy

Because of the significance of parametersjimorm min-
imization, the well-known LASSO homotopy algorithm is
proposed to solve the LASSO problem [in_111.9 by tracing
the whole homotopy solution path in a range of decreasin
G. Other proximity algorithm based optimization methods | . \es of parametgg It is demgnstrated thatgprobllz g
The theoretical basis of the proximity algorithm is to firswith an appropriate parameter value is equivalent to proble
construct a proximal operator, and then utilize the proxim@[.9][29]. Moreover, it is apparent that as we changérom
operator to solve the convex optimization problem. Massievery large value to zero, the solution of problem111.12 is
proximity algorithms have followed up with improved techconverging to the solution of problem 11.9 [29]. The set of
niques to improve the effectiveness and efficiency of prayim varying value\ conceives the solution path and any point on
algorithm based optimization methods. For example, Elad ik solution path is the optimality condition of problEm1H.
al. proposed an iterative method named parallel coordinaf®re specifically, the LASSO homotopy algorithm starts at
descent algorithm (PCDA) [90] by introducing the elementan large initial value of parametex and terminates at a
wise optimization algorithm to solve the regularized linegoint of A, which approximates zero, along the homotopy
least squares with non-quadratic regularization problem. solution path so that the optimal solution converges to the
Inspired by belief propagation in graphical models, Donolgblution of probleni IIl.B. The fundamental of the homotopy
et al. developed a modified version of the iterative thredingl algorithm is that the homotopy solution path is a piecewise
method, called approximate message passing (AMP) methpar path with a discrete number of operations while the
[91], to satisfy the requirement that the sparsity undef@am® value of the homotopy parameter changes, and the direction
tradeoff of the new algorithm is equivalent to the corresponof each segment and the step size are absolutely determined
ing convex optimization approach. Based on the developy the sign sequence and the support of the solution on the
ment of the first-order method called Nesterov's smoothingrresponding segment, respectivelyl [96].
framework in convex optimization, Becker et al. proposed a Based on the basic ideas in a convex optimization problem,
generalized Nesterov’s algorithm (NESTA) [92] by emplayinit is a necessary condition that the zero vector should be a
the continuation-like scheme to accelerate the efficiemty asolution of the subgradient of the objective function oflgem
flexibility. Subsequently, Becker et al. [93] further cansted Thus, we can obtain the subgradiential of the olbject
a general framework, i.e. templates for convex cone solvé(mction with respect tax for any given value of\, that is,
(TFOCS), for solving massive certain types of compressed
sensing reconstruction problems by employing the optimal 8_L = —XT(y— Xa) + A
first-order method to solve the smoothed dual problem of oo
the equivalent conic formulation of the original optimizat where the first term = X7 (y — X ) is called the vector of

problem. Further detailed analyses and inference infaomat residual correlations, and||«||; is the subgradient obtained
related to proximity algorithms can be found in the literatu py
6 c RN 0, = sgn(a;), a;#0

[28,183]. _
Oledh = 0;€[-1,1], a;=0
Let A andwu denote the support et and the sign sequence

of a on its supporf\, respectivelyXy denotes that the indices

Th f h deri ¢ | q hof all the samples inX, are all included in the support set
e concept of homotopy derives from topology and thg ¢, analyze the KKT optimality condition for problem

homotapy technique is mainly applied to address a nonlinT 12| we can obtain the following two equivalent condit®
system of equations problem. The homotopy method WEPprobIem[m ie

originally proposed to solve the least square problem with
the [;-penalty [94]. The main idea of homotopy is to solve X, (y — Xa) = Au;

(VII.1)

VIl. HOMOTOPY ALGORITHM BASED SPARSE
REPRESENTATION

IXX(y— Xa)llo <A (VIL2)
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where A° denotes the complementary set of the &efThus, condition||p||. = 0 is satisfied so that the solution of problem
the optimality conditions if_VILR can be divided int&y [.9]is reached. The principal steps of the LASSO homotopy
constraints and the homotopy algorithm maintains both ef tllgorithm have been summarized in Algorithm 9. For further
conditions along the optimal homotopy solution path for angescription and analyses, please refer to the literatl&e9€).

A > 0. As we decrease the value afto A — 7, for a small

value of r, the following conditions should be satisfied Algorithm 9. Lasso homotopy algorithm
Task: To addrss the Lasso problem:

Xf(y —Xa)+ TX}CX& =A—7T)u (a) 6& = argming ||y — Xa||3 st |lafi <e
(VIL.3)
[p+7qlloc <A—T (b) Input: Probe sampley, measurement matrix.
. Initialization: [ = 1, initial solution «¢; and its support sed;.
wherep = X*(y — Xa), ¢ = X7 X and ¢ is the update  Repeat: ! PP !
direction. Step 1: Compute update directiop by using Eq. [VIL5).

Generally, the homotopy algorithm is implemented itera- Step 2: Compute;” and7,~ by using Eq.[(VIL®) and EqLIVII?).

tively and it follows the homotopy solution path by updating P * f*on_qp:;fnf{iiogti,”;al minimum step sge by using
[ Lot I

the support set by decreasing parametdrom a Iargg valge Step 4: Update the solutiony; , ; by usinge 1 = oy + 77°;.
to the desired value. The support set of the solution will be Step 5: Update the support set:

updated and changed only at a critical point )gf where frt == then , _
either an existing nonzero element shrinks to zero or a new geaemove thei™ from the support set, i.ed; 1 = A/\i™.
nonzero e_Iement will be added into the support set. The Add the it into the support set, i.e\;s; = A; it
two most important parameters are the step sizend the End if

update directions. At the I-th stage (if (X1 X)~" exists), Step 6:1 =1+ 1.

until | XT(y — Xa)||eo =0

the homotopy algorithm first calculates the update diregtio Output: a1

which can be obtained by solving
XFXp0=u (VI1.4)

B. BPDN homotopy

o Problem [1I.I1, which is called basis pursuit denoising
o = { (XA Xa) ', on A_ (VIL.5) (BPDN) in signal processing, is the unconstrained Lagamgi
0, otherwise function of the LASSO probleri 1IT9, which is an uncon-
Subsequently, the homotopy algorithm computes the stgfsained problem. The BPDN homotopy algorithm is very
size 7 to the next critical point by tracing the homotop}ﬁim“ar to the LASSO homotopy algorithm. If we consider the
solution path. i.e. the homotopy algorithm moves along tH&KT optimality condition for problen{IILIP, the following
update direction until one of constraints [n_VII.3 is no€ondition should be satisfied for the solution
satisfied. At this critical point, a new nonzero element. must 1XT(y — Xa)||loo < A (VI1.8)
enter the support\, or one of the nonzero elements &
will be shrink to zero, i.e. this element must be removedls for any given value ofA and the support sef\, the
from the support sed. Two typical cases may lead to a newollowing two conditions also need to be satisfied
critical point, where either condition 6f VII.3 is violate@he
minimum step size which leads to a critical point can be gasil
obtained by computing;” = min(r;",7;), and ;" and 7~

Thus, the solution of problein VIl4 can be written as

Xily—Xa)=u; [ Xe(y—Xa)|o <A (VILY)

are computed by The BPDN homotopy algorithm directly computes the ho-
, A\ —p;i M+ pi motopy solution by
= miniene : VIL.6
T min;e A (1—m?XA61 1+wz‘*XA6l)+ ( ) . B .
o —ai a= { E)XA Xa) T (Xxy — Au), I A (VI1.10)
T, = MANieA < 5 > (VILT) ) otherwise
v

which is somewhat similar to the soft-thresholding operato
wherep; = x!'(y — x;al) and min(-); denotes that the The value of the homotopy parameteris initialized with a
minimum is operated over only positive arguments.is the large value, which satisfiesy > || X y||~. As the value of
minimum step size that turns an inactive element at the indhhe homotopy parametex decreases, the BPDN homotopy
i in to an active element, i.e. the indéX should be added algorithm traces the solution in the direction €7 X ) u
into the support set;;” is the minimum step size that shrinkdtill the critical point is obtained. Each critical point isached
the value of a nonzero active element to zero at the index when either an inactive element is transferred into an activ
and the index~ should be removed from the support set. Thelement, i.e. its corresponding index should be added into
solution is updated by, = oy + 7;*6, and its support and the support set, or an nonzero active element valuexin
sign sequence are renewed correspondingly. shrinks to zero, i.e. its corresponding index should be resdo
The homotopy algorithm iteratively computes the step sifeom the support set. Thus, at each critical point, only one
and the update direction, and updates the homotopy solutElement is updated, i.e. one element being either removed
and its corresponding support and sign sequence till them or added into the active set, and each operation is very
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computationally efficient. The algorithm is terminated whehomotopy parameter by tracing the homotopy solution path.
the value of the homotopy parameter is lower than its desir&imilar to the LASSO homotopy algorithm, problém VIl 14
value. The BPDN homotopy algorithm has been summarizedalso piecewise linear along the homotopy path, and for any
in Algorithm 10. For further detail description and analyse value of o, the following conditions should be satisfied

please refer to the literature [42]. T (Xa—y) = —((1 — o)wi + ob)ui  for i€ A (a)

T _ _ X L . c
Algorithm 10. BPDN homotopy algorithm |xi (Xa y)| < (1 U)wl + ow; forie AVII(I?I.)S
Task: To address the Lasso problem: . ) ( : )
& = argming |ly — Xa||2 + Al|al: wherez; is thei-th column of the measurement, w; and
Input: Probe samplay, measurement matrix’. w; are the given we|gh.t and new optalned weight, respectively.
Initialization: { = 0, initial solution oy and its support sedg, a large  Moreover, for the optimal step size, when the homotopy
value Ao, step sizer, tolerances. parameter changes fromto o + 7 in the update directio®,

Repeat:
Step 1: Compute update directidi, ; by using
Sip1 = (XTXA) .
Step 2: Update the solutioty; ; by using Eq.[[VILID).
Step 3: Update the support set and the sign sequence set.

the following optimality conditions also should be satidfie

X{(Xa—-y)+7X[ X6 =

Step 6: X1 =N\ —7, [ =1+1. (A=W +oW)u+7(W —W)u (a) (VI1.16)
Until )\S& |p_7,q| §T+TS (b)
Output: o1

whereu is the sign sequence af on its supportA, p;, =

T Xa—-vy), ¢ =2'X68, r, = (1 — o)w; + ow; ands; =

) o L ) w; — w;. Thus, at thel-th stage (if (X7 X;)~! exists), the

C. lterative Reweighting;-norm minimization via homotopyupdate direction of the homotopy algorithm can be computed
Based on the homotopy algorithm, Asif and Romberd [9¢jy

presented a enhanced sparse representation objectitefync - . R

a weighted;-norm minimization, and then provided two fast §, — { (XA XA) (W = W)u, on A, (VII.17)

and accurate solutions, i.e. the iterative reweightingrtigm, 0, otherwise

which updated the weights with a new ones, and the adaptiverhe step size which can lead to a critical point can be com-
reweighting algorithm, which adaptively selected the wésg puted byt = mm(q—lﬂn—), and Tl+ and7;~ are computed

in each iteration. Here the iterative reweighting algarith py

via homotopy is introduced. The objective function of the TR T, —pi —Ti — Pi (VI1.18)
weightedi;-norm minimization is formulated as = AN G — s @t s N '
1 2 —al
argming | Xa — |3 + [Wal (Vi1.11) = minien () (VIL.19)
/4
where W = diag[wy,ws, - ,wy]| is the weight of the L . . -
l;-norm and also is a diagonal matrix. For more explicit wherer;" is the_ minimum step size sﬁojhat thg mde‘x
description, problefiVILI1 can be rewritten as should be added into the support set apdis the minimum
' step size that shrinks the value of a nonzero active element t
1 N zero at the index~. The solution and homotopy parameter
aTgmin§||XOé —yll5+ Zwi|ai| (VIL.12) are updated by, 1 = oy + 778, and o141 = o) + 7/,
i=1 respectively. The homotopy algorithm updates its suppeirt s

A common method|[42, 73] to update the weidght is and sign sequence accordingly until the new critical point
achieved by exploiting the solution of problém VINI12, i, of the homotopy parameter;,; = 1. The main steps of
at the previous iteration, and for thi¢h element of the weight this algorithm are summarized in Algorithm 11 and more
w; is updated by information can be found in literature [96].

A (VI1.13)

S Tl T o

D. Other homotopy algorithms for sparse representation
where parameters ando are both small constants. In order torpe general principle of the homotopy method is to reach the
efficiently update the solution of problem (7-9), the honpyto gptimal solution along with the homotopy solution path by
algorithm introduces a new weight of thig-norm and a gyglving the homotopy parameter from a known initial value

new homotopy based reweighting minimization problem i, the final expected value. There are extensive hotomopy
reformulated as algorithms, which are related to the sparse representaidibn

1 ) N X R the l;-norm regularization. Malioutov et al. first exploited the
argmin 3 || Xa—yllz+ > (1= o) + i) ei| (VI1.14)  homotopy method to choose a suitable parametetfoorm
=1 regularization with a noisy term in an underdeterminedesyst

wherew; denotes the new obtained weight by the homoto@and employed the homotopy continuation-based method to
algorithm, parameter is denoted as the homotopy parametesolve BPDN for sparse signal processing [97]. Garrigues and
varying from 0 to 1. Apparently, problefn_VIL14 can beGhaoui[98] proposed a modified homotopy algorithm to solve
evolved to probleni VII.T2 with the increasing value of théhe Lasso problem with online observations by optimizing th
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Algorithm 11. Iterative reweighting homotopy algorithm for weighted  over-complete dictionary that can lead to sparse repratsent
norm minimization . . ] s
Task: To addrss the weightet| -norm minimization: is usuglly ach|gved l_Jy exploiting pre-sp_ecmed set of tfan_s
& = argmin 1| Xa — y[2 + Wal: forn_1at|on functions, i.e. .trans.form .dqmaln methqd [5], er i
: , devised based on learning, i.e. dictionary learning method

Input: Probe sample;, measurement matrix. X o X
Initialization: { = 1, initial solution a; and its support set;, o1 = 0. [104]. Both of the tranSform domain and d|_ct|onary |eam|n§_]
Repeat: o _ based methods transform image samples into other domains

Step 1: Compute update directidhy by using Eq. [VILTY). and the similarity of transformation coefficients are exlod

Step 2: Compute, q, » and s by using Eq.[(VILI6). 3 . .
Step 2: Compute; and;- by using Eq. [VILIB) and Eq[{VILI9). [105]. The difference between them is that the transform

Step 3: Compute the step siz¢ by using domain methods usually utilize a group of fixed transfor-
7 =min{r", 7"} _ mation functions to represent the image samples, whereas
Step 4: Update the solution;; by usingey+1 = oy + 7°9;. the dictionary learning methods apply sparse representati
Step 5: Update the support set: L. . . .
If 2+ —— 7 then on a over-complete dictionary with redundant information.
Shrink the value to zero at the indéx and remove—, Moreover, exploiting the pre-specified transform matrix in
ie Ay = AN\iT. transform domain methods is attractive because of its fadt a
eISe . .. ape .
Add the i+ into the support set, Le\p, 1 = Ay Ui+ simplicity. Spegﬂcally, the transform QOma|n methodsalku _
End if represent the image patches by using the orthonormal basis
Step 6:0741 =0y +7 andl =1 + 1. such as over-complete wavelets transfarm [106], supeeigav
Until 0341 =1 transform [10/7], bandelets [108], curvelets transform¢<fj10

Output: i1 contourlets transform [110] and steerable wavelet fill&fsl].

However, the dictionary learning methods exploiting spars

representation have the potential capabilities of outpering

homotopy_ parameter from the curreqt solution to the sorluthhe pre-determined dictionaries based on transformation-f
after obtaining the next new data point. Efron et al [42]'prcfions. Thus, in this subsection we only focus on the modern

posed a basic pursuit denoising (BPDN) homotopy algorith'@\’/er-complete dictionary learning methods.

\(’)th';2Ciseh;;ngegn:gzﬂgirzget:r ;?mﬁa:ngl Bv;llljul\el ;/]v(;tr:()fgnes An effective dictionary can lead to excellent reconstrutti
P PS. PYresults and satisfactory applications, and the choice afadi

Asif [99] presented a homotopy algorithm for the Dantzm%?ry is also significant to the success of sparse repregantat

selegtor (D.S) under the consideration of primal and du? chnique. Different tasks have different dictionary feag
solution. Asif and Romberd [100] proposed a framework Orﬁles. For example, image classification requires that the

dynamic updating solutions for solvirig-norm minimization d'{ctionary contains discriminative information such thhée

programs based on homotopy algorithm and demonstrated | Suti . .
. ) . o solution of sparse representation possesses the capaifilit
effectiveness in addressing the decoding issue. More trec

Gistinctiveness. The purpose of dictionary learning is imot
literature related to homotopy algorithms can be found & th : PUTP Y g

streaming recovery framework [101] and a summany/J[102] vated from sparse representation and aims to learn a fhithfu
9 y = - "and effective dictionary to largely approximate or simeltte

specific data. In this section, some parameters are defined as
VIII. T HE APPLICATIONS OF THE SPARSE matrix Y = [y1,y2, - ,yn], Matrix X = [z, za,--- , )7,
REPRESENTATION METHOD and dictionaryD = [dy, ds, - - , da].
Sparse representation technique has been successfully infrom the notations of the literature [22, 112], the framewor
plemented to numerous applications, especially in thediel@f dictionary learning can be generally formulated as an
of computer vision, image processing, pattern recognitig@ptimization problem
and machine learning. More specifically, sparse representa

N
. . i} . 1 1
has also been successfully applied to extensive real Worldarg min { Zi:1(§”yi — Dz;|2 /\P(wi))} (VIII.1)

applications, such as image denoising, deblurring, irtjegn DeQ,z;

super-resolution, restoration, quality assessmentsifilzstion,

segmentation, signal processing, object tracking, textlas- Where @ = {D = [di,ds,--- ., dy] @ dldi = 1,i =
sification, image retrieval, bioinformatics, biometricgleother 1,2, -+, M} (M here may not be equal t&/), N denotes

artificial intelligence systems. Moreover, dictionaryrigag is the number of the known data set (eg. training samples in
one of the most typical representative examples of spapse rénage classification)y; is the i-th sample vector from a
resentation for realizing the sparse representation ofjmasi Known set,D is the learned dictionary and; is the sparsity

In this paper, we only concentrate on the three applicatiénsVector. P(z;) and A are the penalty or regularization term
sparse representation, i.e. sparse representation iordicg and a tuning parameter, respectively. The regularizatom t

learning, image processing, image classification and Vis®f problem[VIILT controls the degree of sparsity. That is,
tracking. different kinds of the regularization terms can immensely

dominate the dictionary learning results.

One spontaneous idea of defining the penalty tét(m;)
is to introduce thelp-norm regularization, which leads to
The history of modeling dictionary could be traced back tthe sparsest solution of problem _VIIl.1. As a result, the
1960s, such as the fast Fourier transform (FFT) [103]. Atheory of sparse representation can be applied to dictonar

A. Sparse representation in dictionary learning
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learning. The most representative dictionary learningebassuch as hierarchical sparse dictionary learning|[123] and

on thelyp-norm penalty is the K-SVD algorithm [8], which or block sparse dictionary learning [124]. Recently, some

is widely used in image denoising. Because the solution tfsearchers [22] categorized the latest methods of dantjon

lp-norm regularization is usually a NP-hard problem, utiligi learning into four groups, online dictionary learning [].25

a convex relaxation strategy to replaigenorm regularization joint dictionary learning/[126], discriminative dictionalearn-

is an advisable choice for dictionary learning. As a converg [127], and supervised dictionary learning [128].

relaxation method ofy-norm regularization, thé -norm reg-  Although there are extensive strategies to divide the avall

ularization based dictionary learning has been proposedahle sparse representation based dictionary learningatgth

large numbers of dictionary learning schemes. In the staigo different categories, the strategy used here is tayositee

of convex relaxation methods, there are three optimal forrtise current prevailing dictionary learning approaches imto

for updating a dictionary: the one by one atom updatingain classes: supervised dictionary learning and unsigsetv

method, group atoms updating method, and all atoms updatitigtionary learning, and then specific representativerglyos

method|[112]. Furthermore, because of over-penalizatiénri are explicitly introduced.

norm regularization, non-convex relaxation strategiss hve 1) Unsupervised dictionary learningi-rom the viewpoint

been employed to address dictionary learning problems. Frtheoretical basis, the main difference of unsupervised a

example, Fan and Li proposed a smoothly clipped absolutisnpervised dictionary learning relies on whether the class

deviation (SCAD) penalty [113], which employed an iterativiabel is exploited in the process of learning for obtaining

approximate Newton-Raphson method for penalizing leasie dictionary. Unsupervised dictionary learning methioalge

sequences and exploited the penalized likelihood appesacheen widely implemented to solve image processing problems

for variable selection in linear regression models. Zharsych as image compression, and feature coding of image

introduced and studied the non-convex minimax concave (M@presentatior_[129, 130].

family [114] of non-convex piecewise quadratic penalties (1) KSVD for unsupervised dictionary learning

make unbiased variable selection for the estimation ofaegr One of the most representative unsupervised dictionary

sion coefficients, which was demonstrated its effectivendearning algorithms is the KSVD method [122], which is a

by employing an oracle inequality. Friedman proposed toodification or an extension of method of directions (MOD)

use the logarithmic penalty for a model selection [115] araigorithm. The objective function of KSVD is

used it to solve the minimization problems with non-convex . 9 .

regularization terms. From the vievSpoint of updating gt arglf:?,l)lgl{uy - DX} st fzillo <k, i=1,2,---, N

most of the dictionary learning methods always iteratively (VH1.2)

update the sparse approximation or representation solutishereY” € RV is the matrix composed of all the known

and the dictionary alternatively, and more dictionary fi;g €xamples,D € R is the learned dictionaryX € RV*¥

theoretical results and analyses can be found in the litaratis the matrix of coefficientsk is the limit of sparsity ande;

[116,[117]. denotes the-th row vector of the matrixX. Problenm VII.2
Recently, varieties of dictionary learning methods havenbeis @ joint optimization problem with respect 0 and X, and

proposed and researchers have attempted to exploit ditferdle natural method is to alternatively optimize theand X

strategies for implementing dictionary learning tasksedasn  iteratively.

sparse representation. There are several means to categed— , — _

these dictionary learning algorithms into various groufs:. ?;%Okr:'ti‘gnl]izﬁgghgig{;\;?ﬁ'g::grgggj'ﬁgf’f%’;('ﬁgms”_‘t? il <

example, dictionary learning methods can be divided intg, ;—12... N ’

three groups in the_ context of differ_ent norms utilized ie th Input. The matrix composed of given SamplES= [y, 5z, , o],

penalty term, that is/o-norm regularization based methods, nitialization: Set the initial dictionaryD to the ls—norm unit matrix,

convex relaxation methods and non-convex relaxation nastho ¢ = 1.

[]_'1_8]' Moreover’ dictionary lea_min_g algorithms can al_saa b ngtzpnit: ‘I::%r:v;%ﬁdgﬁlzn examplg, employing the classical sparse

divided into three other categories in the presence of rdiffe representation wittio-norm regularization to solve problem V1.3

structures. The first category is dictionary learning urither for further estimatingX ¢,setl = 1.

probabilistic framework such as maximum likelihood method While  is not equal tok do

. . . Step 2: Compute the overall representation residual
[119], the method of optimal directions (MOD) [120], and the B =Y-%,, dal.

maximum a posteriori probability method [121]. The second Step 3: Extract the column items @, which corresponds
category is clustering based dictionary learning appreach to the nonzero elements af] and obtain]gf .

. . o . P P _
such as KSVD|[122], which can be viewed as a generalization Step 4: SVD decomposes; into E;” = UAV™.

Step 5: Updated; to the first column ofU and update

of K.-means. The th|rc_zl category is d|ct!onary Iearnlr!g Wl_th corresponding coefiicients i?” by A(L, 1) times the
certain structures, which are grouped into two signifieativ first column of V.

aspects, i.e. directly modeling the relationship betweache Step 6:1 =1+ 1.

atom and structuring the corrections between each atom with Step 7_'Z.Erfivih'1'e

purposive sparsity penalty functions. There are two typicagng while

models for these kinds of dictionary learning algorithms,Output: dictionary D

sparse and shift-invariant representation of dictionaayring

and structure sparse regularization based dictionaryilegyr More specifically, when fixing dictionar§, problen{ VIII.2
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is converted to wherey, is a small constant as a regularization parameter for
adjusting the weighting decay speedl,is the operator of the
element-wise multiplicationg; is the code fory;, 1 € RV*1

i — 2 .t. o < = ) . ) .
argn})énHY DX st lzillo < &, i=1,2, N is defined as a vector with all elements as 1 and vebtis

o ] ] o (V”"3,) the locality adaptor, which is, more specifically, set as
which is called sparse coding ardis the limit of sparsity.
Then, its subproblem is considered as follows: dist(y;, D
P b= exp <M> (VII1.7)
argmin ||y; — Dz;||3 st |zillo <k, i=1,2,---,N o
T
where dist(y;, D) = [dist(y;,d1),- - ,dist(y;,dy)] and

where we can iteratively resort to the classical sparseerepr, .
sentation withl -norm regularization such as MP and O'vlpolifferent distance metrics, such as Euclidean distance and

for estimatingz;. . o .
L . Chebyshev distance. Specifically, tiwth value of vectorb
When fixing X, problem[VIIl.3 becomes a simple regres- ysnev di dﬁt(y'i,'di> y val v

sion model for obtaining), that is is defined a; = exp { - _ .
The K-Means clustering algorithm is applied to generate the

D= al"gﬂgnHY - DX|% (VIIL.4)  codebookD, and then the solution of LLC can be deduced

R _ as:
whereD = YXT = YXT(XXT)~! and the method is called & = (Cy + p diag®(b))\1 (VII1.8)

MOD. Considering that the computational complexity of the
inverse problem in solving problem V1.4 i®(n?), it is

(yi,d;) denotes the distance between and d; with

favorable, for further improvement, to update dictionanby T =&;/ 17z, (VII1.9)
fixing the other variables. The strategy of the KSVD algarth . -
rewrites the problerfiVIIT} into where the operator\b denotesa™'b, and C; = (D' —

1yI)(DT — 1yT)T is the covariance matrix with respect
to y;. This is called the LLC algorithm. Furthermore, the
incremental codebook optimization algorithm has also been
proposed to obtain a more effective and optimal codebook,

N
D —argugn | ~ DXIf: = argngn |¥ - 3 dya] I}
J=

=arg Hgn (Y — Z djfcgr) —dz] | % and the objective function is reformulated as
il N
Vi) 0>y — Dl + b i
) ) ] arg min y; — Dxg||5 + ;|3
where z; is the j-th row vector of the matrixX. First 2D 7 ' ' (VI11.10)
) . N T
the overall representation residual = Y — > ., d;z; st 1Ta; =1, Vi; ||d; |2 < 1,5

is computed, and thed; and x; are updated. In order to .

maintain the sparsity ofc7 in this step, only the nonzero Actually, the problerd VIILID is a process of feature extrac
elements ofz] should be preserved and only the nonzerén and the property of ‘locality’ is achieved by constingt
items of E; should be reserved, i.&/, from d;z]. Then, @ local coordinate system by exploiting the local bases for
SVD decompose#} into Ef = UAV”, and then updates €ach descriptor, and the local bases in the algorithm are
dictionary d;. The specific KSVD algorithm for dictionary Simply obtained by using the<' nearest neighbors of;.
learning is summarized to Algorithm 12 and more informatiohhe incremental codebook optimization algorithm in proble

can be found in the literature [122]. is a joint optimization problem with respect t®
(2) Locality constrained linear coding for unsupervisectide  and z;, and it can be solved by iteratively optimizing one
nary learning when fixing the other alternatively. The main steps of the

The locality constrained linear coding (LLC) algorithmincremental codebook optimization algorithm are sumneakiz
[130] is an efficient local coordinate linear coding method Algorithm 13 and more information can be found in the
which projects each descriptor into a local constraintesyst literature [130].
to obtain an effective codebook or dictionary. It has bedg) Other unsupervised dictionary learning methods
demonstrated that the property of locality is more essentia A large number of different unsupervised dictionary learn-
than sparsity, because the locality must lead to sparsity g methods have been proposed. The KSVD algorithm and
not vice-versa, that is, a necessary condition of sparsity iLC algorithm are only two typical unsupervised dictio-

locality, but not the reverse [130]. nary learning algorithms based on sparse representatidn. A
Assume thatY = [y, y2,---,yn] € RN is a matrix ditionally, Jenatton et al.l [123] proposed a tree-striexur
composed of local descriptors extracted from examples a@igtionary learning problem, which exploited tree-stured
the objective dictionanyD = [dy,ds, --- ,dy] € R¥N, The sparse regularization to model the relationship betweeh ea
objective function of LLC is formulated as atom and defined a proximal operator to solve the primal-
dual problem. Zhou et all [131] developed a nonparametric
N Bayesian dictionary learning algorithm, which utilizecktar-
arg minz llys — Dx;||3 + p|lb © 4|3 chical Bayesian to model parameters and employed the trun-
e DI (VIIL.6)  cated beta-Bernoulli process to learn the dictionary. Remi

st. 1Te;=1,i=1,2,--- ,N and Shapirol[132] employed minimum description length to
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Algorithm 13. The incremental codebook optimization algorithm (1) Discriminative KSVD for dictionary Iearning
Task: Learning a dictionanD: arg ming, p Y10, [lys—Da; |[3+1bO Discriminative KSVD (DKSVD) [127] was designed to
z;||3 st 1Tz =1, V4;||d;||3 < 1,V : e - - .
: : solve image classification problems. Considering the prior

Input: The matrix composed of given samples= [y1,v2, . unl-  tjes of supervised learning theory in classification, DKSVD
Initialization: < = 1, ¢ = 0.01, D initialized by K-Means clustering . .. . . N .
algorithm. incorporates the dictionary learning with discriminatinéor-
While i is not equal toN do mation and classifier parameters into the objective functio

Step 1: Initializeb with 1 x N zero vector. and employs the KSVD algorithm to obtain the global optimal

Step 2: Update locality constraint parametewith

b; = exp (—M) for vj.
Step 3: Normalizeb using the equatio = %.
Step 4: Exploit the LLC coding algorithm to obtaiey,.

solution for all parameters. The objective function of the
DKSVD algorithm is formulated as

Step 5: Keep the set db?, whose corresponding entries of the cade <D7 C, X> = arg min ||Y — DXH% + N”H — CX||%
are greater tham, and drop out other elements, i.e. D.,C,x
index < {j | abs{x;(j)} > e} Vj and D* < D(:, index). +77H0||% st |aillo < k

Step 6: Updater; exploiting arg max ||y; — D'x;[|3 s.t. 1Tx; = 1.
Step 7: Update dictionaryp using a classical gradient descent method

with respect to probleri VIITI6. . . . . .
Step 81 =i+ 1. whereY is the given input sampled) is the learned dictio-

End While nary, X is the coefficient termH is the matrix composed of

Output: dictionary D label information corresponding 6, C is the parameter term
for classifier, and; and i are the weights. With a view to the
framework of KSVD, problenm VII[.IIL can be rewritten as

model an effective framework of sparse representation and

dictionary learning, and this framework could convenigntl ) Yy D )
incorporate prior information into the process of sparge re (D,C, X) = arg e | < JiH > - ( JiC ) X7
resentation and dictionary learning. Some other unsugeavi o 9

dictionary learning algorithms also have been validatedird +nlCle st ”miH‘\)/lﬁ liz
et al. proposed an online dictionary learning [133] aldont (Vi.12)
based on stochastic approximations, which treated thédict In consideration of the KSVD algorithm, each column of
nary learning problem as the optimization of a smooth convéxe dictionary will be normalized td,-norm unit vector and
problem over a convex set and employed an iterative onlirge D
algorithm at each step to solve the subproblems. Yang and,/C
Zhang proposed a sparse variation dictionary learning (9vDterm ||C||Z will be dropped out and problem V.12 will be
algorithm [134] for face recognition with a single trainingeformulated as

sample, in which a joint learning framework of adaptive
projection and a sparse variation dictionary with sparseda . 5
were simultaneously constructed from the gallery imagecset (2,X) = arg g IW=2X|[F st lzifo <k (VII.13)
the generic image set. Shi et al. proposed a minimax concave

penalty based sparse dictionary learning (MCPSDL) [[11@]herelv = Y , 7 = D
algorithm, which employed a non-convex relaxation onIinF H VEC

(VII1.11)

will also be normalized, and then the penalty

and apparently the

ormulation is the same as the framework of KSVD

scheme, i.e. a minimax concave penalty, instead of usipg— " _ : .
regular convex relaxation approaches as approximatidg-of 122] in Eq.[VIL2 and it can be efficiently solved by the

norm penalty in sparse representation problem, and d@igrl%SVD algorlt_h_m. . . .

a coordinate descend algorithm to optimize it. Bao et al More spemﬂcglly, the DKSVD aIgonthr_n contains two main
proposed a dictionary learning by proximal algorithm (DLPMph?‘S_eS: the ”a”_““g phas? and classification ph_a_se. For the
[118], which provided an efficient alternating proximal @lg training phaseY. IS fche.matrlx compo_segl O.f th? tralplrjg sam-
rithm for solving thely-norm minimization based dictionaryples and the objective is to learn a discriminative dictiyna

learning problem and demonstrated its global converge d the classifier paramet€t DKSVD updatesZ column by
property. column and for each column vectey, DKSVD employs the

. - . . - KSVD algorithm to obtainz; and its corresponding weight.
2) Supervised dictionary learnindJnsupervised dictionary Then, the DKSVD algorithm normalizes the dictionddyand
learning just considers that the examples can be spars ssi’fier parametef' by

represented by the learned dictionary and leaves out tle lal
information of the examples. Thus, unsupervised dictipnar

learning can perform very well in data reconstruction, such D' = [di,db, - ,dy] = [[37 1947 > 2]

as image denoising an_d. image compressing, but is not_ben— C' = |d,ch,- ] = [Hgle’ ”32”, , ”;x”]
eficial to perform classification. On the contrary, supesdis x, = x; x ||di

dictionary learning embeds the class label into the prooéss (VI.14)

sparse representation and dictionary learning so thatehis For the classification phas#] is the matrix composed of
to the learned dictionary with discriminative informatiéor the test samples. Based on the obtained learning reslilts
effective classification. and C’, the sparse coefficient matrik; can be obtained for
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each test samplg; by exploiting the OMP algorithm, which

#; = argmin ||y; — D'xi||2 st ||lxllo <k (VIIL15) Y D
whereT = | /uL |, Z=| /nA
On the basis of the corresponding sparse coefficigntthe VIH NG _ .
final classification, for each test sampjg can be performed The learning process of the LC-KSVD algorithm, as is

by judging the label result by multiplying; by classifierc’, DKSVD, can be separated into two sections, the training
that is, term and the classification term. In the training section¢ei

label = C' x & (VIII.16) problenTVII[.I8 completely satisfies the framework of KSVD,
the KSVD algorithm is applied to updat¢ atom by atom and
where thelabel is the final predicted label vector. The classomputeX. ThusZ and X can be obtained. Then, the LC-
label of y; is the determined class index &fbel. KSVD algorithm normalizes dictionary, transform matrix
The main highlight of DKSVD is that it employs theA, and the classifier parametér by
framework of KSVD to simultaneously learn a discriminative

dictionary and classifier parameter, and then utilizes fiee  p' = [d|,d}, - ,d},] = [”31”’ ngH e ’Hgi“]

cient OMP algorithm to obtain a sparse representationisolut A = [,y aly] =] a1 ax ... lam

and finally integrate the sparse solution and learned €iissi o= e ’C, ’. N ’c/ f‘ﬁ | Uffl K U:(212H ’. - ’ U;i;\l”

for ultimate effective classification. brEe M dill” idel> Hd(M ‘III 19)
(2) Label consistent KSVD for discriminative dictionarale- In the classification sectiorl, is the matrix composed of
ng the test samples. On the basis of the obtained dictiofry

Because of th_e cla55|f|cz_:\pon_term, a Compete_nt_ dictionay, sparse coefficient; can be obtained for each test sample
can lead to gffectwely CIaSS|f|cafu_on results. The orijgpmrse y; by exploiting the OMP algorithm, which is to solve
representation for face recognitian [20] regards the rata da

as the dictionary, and then reports its promising clas¢iina ;= argmin|ly; — D'z}||3 s.t. ||zjo <k (VII1.20)
resqlts. "_1 this section, a label consistent KSVD (LC-KSVD) ¢ fing) classification is based on a simple linear predictiv
[135,1136] is introduced to learn an effective discriminati function

dictionary for image classification. As an extension of D-

KSVD, LC-KSVD exploits the supervised information to learn I =argmax{f =C’' x &;} (VIII.21)

the dictionary and integrates the process of constructieg t ] ] ! o

dictionary and optimal linear classifier into a mixed recorwheref is the final predicting label vector and the test sample
structive and discriminative objective function, and tigintly ~ ¥: iS classified as a member of tit¢h class.

obtains the learned dictionary and an effective classifise ~ 1he main contribution of LC-KSVD is to jointly incorporate
objective function of LC-KSVD is formulated as the discriminative sparse coding term and classifier pateme

term into the objective function for learning a discriminat

dictionary and classifier parameter. The LC-KSVD demon-
(D, A,C,X) =arg min ||V = DXz +u||L - AX|%  strates that the obtained solution, compared to other rdetho

A, ’+77||H— CX|% st |aillo < k fr?n prevent Iearning-a sub(.)pt.imal_or'local optimal solution
(VIII.17) e process of !ea_\rnlr_lg a Q|c_t|ona|y [.L35_].

(3) Fisher discrimination dictionary learning for sparegne-
where the first term denotes the reconstruction error, thentation
second term denotes the discriminative sparse-code andr, Fisher discrimination dictionary learning (FDDL) [137]
the final term denotes the classification eridris the matrix incorporates the supervised information (class labelrinfe
composed of all the input datd) is the learned dictionary, tion) and the Fisher discrimination message into the olvject
X is the sparse code term, andn are the weights of the function for learning a structured discriminative dictow,
corresponding contribution items, is a linear transformation which is used for pattern classification. The general model
matrix, H is the matrix composed of label information correef FDDL is formulated as
sponding toY, C is the parameter term for classifier aid
is a joint label matrix for labels ot” and D. For example,

providing thatY = [y;...y4] and D = [d;...d4] where J(D, X) = argglg(l{f(y’ D, X) & pll Xl +ng(X)}

y1,Y2,d; andds are from the first class, angs, y4,ds and . ) ) (V|_”-22)
d, are from the second class, and then the joint label matMdere Y is the matrix composed of input datd} is the
110 0 learned dictionaryX is the sparse solution, andandn are
. 1 1 0 0 o two constants for tradeoff contributions. The first compune
L can be defined aé = oo 1 1 |- Similar to the is the discriminative fidelity term, the second component is
00 1 1 the sparse regularization term, and the third componetigis t

DKSVD algorithm, the objective functi 7 can also beliscriminative coefficient term, such as Fisher discrirtiora
reformulated as criterion in Eqg. [VIII.23).
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Considering the importance of the supervised informatioimformation and incorporates it into the learning process t
i.e. label information, in classification, FDDL respective enforce the discrimination of the learned dictionary. Relge
updates the dictionary and computes the sparse reprasantanassive supervised dictionary learning algorithms hawnbe
solution class by class. Assume thét denotes the matrix of proposed. For example, Yang et al. [139] presented a metafac
i-th class of input data, vectaX’ denotes the sparse repredictionary learning method, which is motivated by ‘metaggn
sentation coefficient of the learned dictionadyoverY? and in gene expression data analysis. Rodriguez and Sapird [140
X;ﬁ denotes the matrix composed of the sparse representafiooduced a discriminative non-parametric dictionary néay
solutions, which correspond to theth class coefficients from (DNDL) framework based on the OMP algorithm for image
X' D' is denoted as the learned dictionary corresponding ¢tassification. Kong et al. [141] introduced a learned diadiry
the i-th class. Thus, the objective function of FDDL is with commonalty and particularity, called DL-COPAR, which

integrated an incoherence penalty term into the objective

c _ _ function for obtaining the class-specific sub-dictiong®ao

J(D, X) = arggﬁ}g(z SO D, X*) + pl| X+ et al. [142] learned a hybrid dictionary, i.e. categoryesfie
U=l dictionary and shared dictionary, which incorporated a&ss+o

n(tr(Sw(X) — Sp(X)) + A X|1%)) dictionary incoherence penalty and self-dictionary irexamce

(VIIL.23)  penalty into the objective function for learning a discrim-
where f(Y?, D, X?) = |[Y' — DX?|% + |[Y* — D'X{|% + inative dictio_nary._ J_afari and I_Dlumbley [143]_ presented a
S ”DjX;H% and Sy (X) andSp(X) are the within-class greedy ao_laptlve dlctl_onary I_egrnmg meth_od,_ which upddted
scatter ofX and between-class scatter &t respectivelyc is €arned dictionary with a minimum sparsity index. Some othe
the number of the classes. To solve problem VIII.23, a nhtu,%uperwsed c_i|-ct|o.nary learning methgds are "?IISO competent
idea of optimization is to alternatively optimiz® and X image classification, such as supervised dictionary lagrim

class by class, and then the process of optimization is prielt44]- Zhou et al.[[145] developed a joint dictionary leagi
introduced. algorithm for object categorization, which jointly leatha
When fixing D, problem[VIIL23 can be solved by com-commonly shared dictionary and multiply category-specific

puting X* class by class, and its sub-problem is formulatedctionaries for correlated object classes and incorpdirtite
as Fisher discriminant fidelity term into the process of dintoy

) ) ) , , learning. Ramirez et al. proposed a method of dictionary
J(X") = argmin (f(Y', D, X7) + pl X7l +ng(XY)) learning with structured incoherence (DLSI|) [140], which
(VIl1.24)  unified the dictionary learning and sparse decomposititman
whereg(X?) = || X' — M;||% — > i_, ||M; — M||5.+ || X?||3. sparse dictionary learning framework for image classificat
and M, and M denote the mean matrices corresponding @nd data clustering. Ma et al. presented a discriminatiwe lo
the j-th class ofX* and X?, respectively. Problefn VIIT.23 can rank dictionary learning for sparse representation (DLBR)
be solved by the iterative projection method in the literatu [146], in which the sparsity and the low-rank properties aver

[138]. integrated into one dictionary learning scheme where sub-
When fixing «t, problemVII[.2Z3 can be rewritten as dictionary with discriminative power was required to be ow
rank. Lu et al. developed a simultaneous feature and datjon
J(D) = argmin(||Y’ — DiX? —ZDijHme learning [147] method_ fo_r face r_ecognition, which jgintly
D o learned the feature projection matrix for subspace legraind
; i coig. (VIIL25)  the discriminative structured dictionary. Yang et al. dumced
V" = D'X{|p + Z 1D X 1F) a latent dictionary learning (LDL) [148] method for sparep+
el resentation based image classification, which simultasigou

where X* here denotes the sparse representatiod” adver learned a discriminative dictionary and a latent represent

Dt. In this section, each column of the learned dictionary imodel based on the correlations between label information

normalized to a unit vector witky,-norm. The optimization of and dictionary atoms. Jiang et al. presented a submodular

problem[VII[.2Z5 computes the dictionary class by class ardtictionary learning (SDL).[149] method, which integratée t

it can be solved by exploiting the algorithm in the liter&urentropy rate of a random walk on a graph and a discriminative

[139]. term into a unified objective function and devised a greedy-
The main contribution of the FDDL algorithm lies inbased approach to optimize it. Si et al. developed a support

combining the Fisher discrimination criterion into the pees vector guided dictionary learning (SVGDL) [150] method,

of dictionary learning. The discriminative power comesniro which constructed a discriminative term by using adapyivel

the method of constructing the discriminative dictionasjng weighted summation of the squared distances for all pagrwis

the functionf in problem[VIII.22 and simultaneously formu-of the sparse representation solutions.

lates the discriminative sparse representation coeffeiby

exploiting the functiory in problemVIIL.22.

(4) Other supervised dictionary learning for sparse repres

tation Recently, sparse representation methods have been extgnsi
Unlike unsupervised dictionary learning, supervisedidict applied to numerous real-world applications [151,/152]e Th

nary learning emphasizes the significance of the class labkethniques of sparse representation have been gradually ex

B. Sparse representation in image processing
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tended and introduced to image processing, such as suplee desired representation solutien is sufficiently sparse,
resolution image processing, image denoising and imageblen{VII[.Z7 can be converted into the following probtem
restoration.

. 2
First, the general framework of image processing us- argmin el st. |~ Drel <e (ViIi.2s)
ing sparse representation especially for image recongruc or
should be introduced: argmin ||z — Dpa||2 + M|al); (VII1.29)
Step 1: Partition the degraded image into overlapped patche ) ) o
or blocks. wheree is a small constant andl is the Lagrange multiplier.

Step 2: Construct a dictionary, denoted /as and assume The solution of probleril VII.28 can be achieved by two main
that the following sparse representation formulation shoe Phases, i.e. local model based sparse representation (RY1BS

satisfied for each patch or bloakof the image: and enhanced global reconstruction constraint. The firasg@h
& =argmin|al, st |z—HDa|2<e of SRSR, i.e. LMBSR, is operated on each image patch, and
where H is a degradation matrix an< ; <1 for each low-resolution image pateh the following equation
Step 3: Reconstruct each patch or block by exploiting IS Satisfied
Da.
: 2
Step 4: Put the reconstructed patch to the image at the argmin || Fy — FDjal[3 + Allelx (VI11.30)

corresponding location and average each overlapped matcfifiere ' is a feature extraction operator. One-pass algorithm
to make the reconstructed image more consistent and natugghiiar to that of [154] is introduced to enhance the com-
Step 5: Repeat step 1 to 4 several times ill a terminatiQftibility between adjacent patches. Furthermore, a nemtlifi
condition is satisfied. optimization problem is proposed to guarantee that thersupe
The following part of this subsection is to explicitly intro resolution reconstruction coincides with the previously o
duce some image processing techniques using sparse regfged adjacent high-resolution patches, and the probkem i

sentation. o ~ reformulated as
The main task of super-resolution image processing is to

extract the high super-resolution image from its low reofu  argmin |1 s.t. ||[Fy—FDial3 < e1; [[v—LDpe3 < &2
counterpart and this challenging problem has attractechmuc (VI11.31)
attention. The most representative work was proposed \iherev is the previously obtained high-resolution image on
exploit the sparse representation theory to generate a-sup@e overlap region, and. refers to the region of overlap
resolution (SRSR) image from a single low-resolution imageetween the current patch and previously obtained high-

in literature [153]. resolution image. Thus problem VIII.B1 can be rewritten as
SRSR is mainly performed on two compact learned dic- argmin ||§ — De||2 + M|l (VII1.32)
tionaries D; and D;,, which are denoted as dictionaries of 2 '
Iow-res_olu?ion image patches and itg. cprresponding hig@vherey _ | Fy ] and D — FDy . Problem[VI[32
resolution image patches, respectivély.is directly employed v | LDy, ]
y solved by previously introduced solution @& th

to recover high-resolution images from dictionaby,. Let X ~¢&n be simp ed by / Introdu
andY denote the high-resolution and its corresponding loy#Parse representation witfrnorm minimization. Assume that
resolution images, respectively.andy are a high-resolution the optimal solution of problein VIIL.32, i.ex, is achieved,
image patch and its corresponding low-resolution imagetpat the high-resolution patch can be easily reconstructed: by
respectively. Thusg = Py and P is the projection matrix. Dpa.

Moreover, if the low resolution imag is produced by down- _ The second phase of SRSR enforces the global reconstruc-
sampling and blurring from the high resolution image the tion constraint to eliminate possible unconformity or ®ois

following reconstruction constraint should be satisfied from the first phase and make the obtained image more
consistent and compatible. Suppose that the high-resaluti
Y =5BX (VII.26)  image obtained by the first phase is denoted as mafix

we project Xy onto the solution space of the reconstruction

whereS and B are a downsampling operator and a blurringonstraint'v_ﬂr% and the problem is formulated as follows

filter, respectively. However, the solution of problém V7§
is ill-posed because infinite solutions can be achieved for a X* = argmin || X — X¢||2 s.t. Y =SBX  (VII.33)

given low-resolution input imag#® . To this end, SRSR_[153] L
provides a prior knowledge assumption, which is formulatdgfOR/enVIIL33 can be solved by the back-projection method
as in [155] and the obtained imag&™* is regarded as the final

z = Dha st. |afo <k (VII1.27) optimal high—resolu_tion. image. The en.tire sup.er-resothjia

sparse representation is summarized in algorithm 14 and mor

where k is a small constant. This assumption gives a pridgnformation can be found in the literature [153].

knowledge condition that any image patehcan be approxi-  Furthermore, extensive other methods based on sparse rep-

mately represented by a linear combination of a few trainingsentation have been proposed to solve the super-resoluti

samples from dictionaryD;,. As presented in Subsectionimage processing problem. For example, Yang et al. pre-

[M-B] problem [VII.Z7 is an NP-hard problem and sparssented a modified version called joint dictionary learnitag v

representation withl;-norm regularization is introduced. If sparse representation (JDLSR) [156], which jointly ledrne
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Algorithm 14. Super-resolution via sparse representation [4, [7], sparse representation for image denoising firstaeigr
Input; Training image patches dictionarid; and Dj,, a low-resolution ~ the sparse image components, which are regarded as useful
imageY'. information, and then abandons the representation rdsidua

For each overlappe8 x 3 patchesy of Y using one-pass algorithm, from

left to right and top to bottom which is tregted as the image noise term, and finally recon-
Step 1: Compute optimal sparse representation coefficieftin structs the image exploiting the pre-obtained sparse cempo
st szog'em -uumz th)-h_ hresoluti chibwe D nents, i.e. noise-free image. Extensive research artides
ep 2: Compute the high-resolution patchdy= D) a*. . P .
Step 3: Put the patch into a high-resolution imagé&y in corresponding mag_e denoising based on spar;e 'rePresent_atlon_have been
location. published. For example, Donoha [8, 29, 165] first discovered
End _ o _ the connection between the compressed sensing and image
' 4. Compute the final super-resolution image in problem  yangising. Subsequently, the most representative workiofu
Output: X* sparse representation to make image denoising was proposed

in literature [165], in which a global sparse representatio
model over learned dictionaries (SRMLD) was used for image
o ) o denoising. The following prior assumption should be saikfi
two dictionaries that enforced the similarity of sparsereep eyery image block of image, denoted as, can be sparsely

sentation for low-resolution and high-resolution imagemg represented over a dictionar, i.e. the solution of the
et al. [157] first explicitly analyzed the rationales of th‘?ollowing problem is sufficiently sparse:

sparse representation theory in performing the supeiuiiso

task, and proposed to exploit the,-Boosting strategy to Wgrfgnl\allo st. Da=z (VI11.34)
learn coupled dictionaries, which were employed to corstruy 4 an equivalent problem can be reformulated for a proper
sparse coding space. Zhang et al. [158] presented an imagg o of\, i.e.

super-resolution reconstruction scheme by employing ttad-d

dictionary learning and sparse representation methoafage argmin || Dec — 2|3 + Allello (V111.35)

super-resolution reconstruction and Gao etlal. [159] psegio we take the above prior knowledge into full consideration

a sparse n_elghbor embedding method, Wh.ICh mcorporgted ng objective function of SRMLD based on Bayesian treatment
sparse neighbor search and HoG clustering method into

4 . . |seformulated as
process of image super-resolution reconstruction. Felemn

. . . M M
Granda and Candes [160] designed a transform-invariant . 9 2
group sparse regularizer by implementing a data-drivers nort” 9 pe « Ol —yllz + Z; |Dex; = Piallz + Z; Aillexillo
parametric regularizers with learned domain transform on h i (VI11.36)

group sparse representation for high image super-resolutiwhere « is the finally denoised imagey the measured
Lu et al. [161] proposed a geometry constrained sparRage with white and additive Gaussian white noigg,is
representation method for single image super-resolutpn & projection operator that extracts thh block from image
jointly obtaining an optimal sparse solution and learning & )/ is the number of the overlapping blocks,is the learned
discriminative and reconstructive dictionary. Dong ef262] dictionary,«; is the coefficients vectod, is the weight of the
proposed to harness an adaptive sparse optimization W#igt term and); is the Lagrange multiplier. The first term
nonlocal regularization based on adaptive principal comepd in is the log-likelihood global constraint such tha
analysis enhanced by nonlocal similar patch grouping afite obtained noise-free imageis sufficiently similar to the
nonlocal self-similarity quadratic constraint to solve image original imagey. The second and third terms are the prior
high super-resolution problem. Dong et al. [163] proposed knowledge of the Bayesian treatment, which is presented in
integrate an adaptive sparse domain selection and an @elaptroblem[VII[.35. The optimization of problef VIIL35 is a
regularization based on piecewise autoregressive monltels ijoint optimization problem with respect 0, «; andz. It can
the sparse representations framework for single imagersupse solved by alternatively optimizing one variable whenriii
resolution reconstruction. Mallat and Yu _[164] proposed e others. The process of optimization is briefly introdlice
sparse mixing estimator for image super-resolution, whigkelow.

introduced an adaptive estimator models by combining agrou When dictionaryD and the solution of sparse representation

of linear inverse estimators based on different prior kealge «; are fixed, probleri VII.36 can be rewritten as
for sparse representation.

Noise in an image is unavoidable in the process of image M
acquisition. The need for sparse representation may atisaw argmin 6|z — yl3+ > Do — 2|3 (VI1.37)
noise exists in image data. In such a case, the image with i=1

noise may lead to missing information or distortion such thavhere z = P,xz. Apparently, probleni_VII[.3[7 is a simple
this results in a decrease of the precision and accuracyaoihvex optimization problem and has a closed-form solytion
image processing. Eliminating such noise is greatly beiagficwhich is given by

to many applications. The main goal of image denoising is M 1,y -1

to distinguish the a_ctual signal and noise S|gna_l so that we . _ <Z PP, +51> <Z P’ Day; + 5y>

can remove the noise and reconstruct the genuine image. In p p

the presence of image sparsity and redundancy representati (VI11.38)
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Whenz is given, problem[(VII[.36) can be written as patches in both spatial and temporal domain to formulate a
M M low-rank matrix problem with the nuclear norm. Cheng et al.

arg min Z |Dav; — P2 + Z/\i”ai”O (VI11.39) [174] proposeq an impressive image Qen0|s!ng method based
o on an extension of the KSVD algorithm via group sparse

representation.

The primary purpose of image restoration is to recover the
iginal image from the degraded or blurred image. The gpars
representation theory has been extensively applied to émag

=1
where the problem can be divided inidd sub-problems and

the i-th sub-problem can be reformulated as the followingr
dictionary learning problem:

arg min ||Day — 2|5 s.t. |agllo <7 (VII1.40) restoration. For example, Bioucas-Dias and Figueirdo/[175
D introduced a two-step iterative shrinkage/thresholding §T)
where z = P,z and 7 is small constant. One can seelgorithm for image restoration, which is more efficient and

that the sub-problerm VIII.39 is the same as problem MIll.2an be viewed as an extension of the IST method. Mairal et
and it can be solved by the KSVD algorithm previouslyal. [176] presented a multiscale sparse image represamtati
presented in Subsectidn_VINI-A2. The algorithm of imagéramework based on the KSVD dictionary learning algorithm
denoising exploiting sparse and redundant representatien and shift-invariant sparsity prior knowledge for restaratof
learned dictionary is summarized in Algorithm 15, and moreolor images and video image sequence. Recently, Mairal
information can be found in literature [166]. et al. [177] proposed a learned simultaneous sparse coding
(LSSC) model, which integrated sparse dictionary learning
Algorithm 15. Image denoising via sparse and redundant representatioand nonlocal self-similarities of natural images into afiedli

over learned dictionary . . [ )
Task: To denoise a measured imagdrom white and additional Gaussian framework for image restoration. Zoran and Weiss [178] pro

white noise: posed an expected patch log likelihood (EPLL) optimization
argminp o, 2 0|z — yl3 + M, [|Da; — Pzl + M, Millesllo model, which restored the image from patch to the whole
Input: Measured image sampig the number of training iteratioff’. image based on the learned prior knowledge of any patch
Initialization: ¢ = 1, sete = y, D initialized by an overcomplete DCT acquired by Maximum A-Posteriori estimation instead ohgsi

S\'/ﬁi'l‘;”fZTdO simple patch averaging. Bao et al. [179] proposed a fast

Step 1: For each image patdha, employ the KSVD algorithm to erthogonal diCtion?-ry learning a|90rithm,.in. which a spgars
update the values of sparse representation solutipand corresponding image representation based orthogonal dictionary wasdear

dicgfe”pag'_tD;Hl in image restoration. Zhang et al. [180] proposed a group-

End While based sparse representation, which combined charaicterist
Step 3: Compute the value af by using EqIIVIIL.38). from local sparsity and nonlocal self-similarity of natura

Output: denoised image: images to the domain of the group. Dong etlal. [181] 182] pro-

posed a centralized sparse representation (CSR) modelhwhi

Moreover, extensive modified sparse representation base@nbined the local and nonlocal sparsity and redundancy
image denoising algorithms have been proposed. For examplperties for variational problem optimization by intcmihg
Dabov et al.|[167] proposed an enhanced sparse representadi concept of sparse coding noise term.
with a block-matching 3-D (BM3D) transform-domain filter Here we mainly introduce a recently proposed simple but
based on self-similarities and an enhanced sparse repregsifective image restoration algorithm CSR model [181]. &or
tation by clustering similar 2-D image patches into 3-D dat@egraded imagey, the problem of image restoration can be
spaces and an iterative collaborative filtering procedoréi-  formulated as
age denoising. Mariral et al. [168] proposed the use of ekten
ing_ the KSVD-based grayscale algo_rithm and a generalized y = He +v (VII1.41)
weighted average algorithm for color image denoising.terot
and Elad |[169] extended the techniques of sparse and redwitere H is a degradation operatos; is the original high-
dant representations for image sequence denoising byiexplquality image and is the Gaussian white noise. Suppose that
ing spatio-temporal atoms, dictionary propagation overeti the following two sparse optimization problems are satisfie
and dictionary learning. Dong et al. [170] designed a chiste
based sparse representation algorithm, which was foretilat @ = argmin [lafl; s.t. [|@—Dall; <e  (VIII.42)
by a double-header sparse optimization problem built upon
dictionary learning and structural clustering. Recendigng a, =argmin [[al); st. ||@ - HDal3 <e (VII.43)
et al. [171] proposed a variational encoding framework with
a weighted sparse nonlocal constraint, which was consiauc
by integrating image sparsity prior and nonlocal self-fanitly
prior into a unified regularization term to overcome the rdix
noise removal problem. Gu et al. [172] studied a weighted Vo =0ty — (VIII.44)
nuclear norm minimization (WNNM) method witth'-norm
fidelity under different weighting rules optimized by narchl Given a dictionaryD, minimizing SCN can make the image
self-similarity for image denoising. Ji et al. [173] propds better reconstructed and improve the quality of the image
a patch-based video denoising algorithm by stacking simileestoration because* = ¢ — ¢ = Day, — Do, = Du,.

herey and x respectively denote the degraded image and
original high-quality image, and is a small constant. A new
econcept called sparse coding noise (SCN) is defined
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Thus, the objective function is reformulated as Algorithm 16. Centralized sparse representation for image restoration
. 9 Initialization: Seta = y, initialize regularization parameter and ., the
Qy = arg Irgn ly — HDall3 + Medls + pllec — ||y number of training iteratiorT", t = 0, 8° = 0.

(V|||.45) Step 1: Partition the degraded image irtb overlapped patches.

While t < T do
Whe,re )‘_ "?md K are: both constants. However, the value OfStep 2: For each image patch, update the correspondingraicyi for each
a,, is difficult to directly evaluate. Because many nonlocalcluster via k-means and PCA.
similar patches are associated with the given image patch Step 3: Update the regularization parameterand . by using
clustering these patches via block matching is advisabie an A= @ andp = %
the sparse code of Searching similar patctD patchz' in Step 4: Compute the nonlocal means estimation of the urtbiestémation

of ag, i.e. 011, by using Eq.[VIILZ®) for each image patch.
cluster(2;, denoted bya;;, can be computed. Moreover, the Step 5: For a giverfi™!, compute the sparse representation solution,

unbiased ?Stimation af,., denoted b}E[am], empirically can ¢, al™t, in problem [VIIL48) by using the extended iterative skege
be approximate tax,, under some prior knowledge [181], and algorithm in literature[[185].

then SCN algorithm employs the nonlocal means estimatioﬁ;edpv‘?/ﬁ”:“r 1

method [183] to evaluate the unbiased estimatioxof that Output: Restored image: = Do’ +!
is, using the weighted average of all; to approach®|c.], -
ie.

Experimental results have suggested that the sparse egpaes

0; = Z Wit il (VIIl.46)  ion based classification method can somewhat overcome the

challenging issues from illumination changes, random Ipixe
wherew; = exp (—||@; — zal|3/h) /N, ®; = Doy, ©y; = corruption, large block occlusion or disguise.
Day;, N is a normalization parameter aridis a constant.  As face recognition is a representative component of patter
Thus, the objective functiodn VIII.45 can be rewritten as recognition and computer vision applications, the apfitce
of sparse representation in face recognition can suffigient
reveal the potential nature of sparse representation. Tost m
representative sparse representation for face recognitéas

(VI11.47)  been presented in literature [18] and the general scheme of
where M is the number of the separated patches. In tlsparse representation based classification method is summa
j-th iteration, the solution of problemn VII[.47 is iteratiye rized in Algorithm 17. Suppose that there anetraining
performed by samples X = [z1, 22, -+ ,x,] from ¢ classes. LefX; denote
M the samples from théth class and the testing sampleyis

o)t = argmin ||ly — HDa||3 + X|e||x + “Z a; — 67,

1€

M
oy = argmin|ly — HDo|l + ey + 1Y [low — 651
(a7 .

=1

Algorithm 17. The scheme of sparse representation based classification
(VII1.48) _ method

It is obvious that probleri VIIL.47 can be optimized by the Step 1: Normalize all the samples to have upiorm.

augmented Lagrange multiplier methaod [184] or the itemativ Step 2: Exploit the linear combination of all the trainingngaes to

. . . . . represent the test sample and the followingnorm minimization problem
shrinkage algorithm in| [185]. According to the maximum isr;atisﬁed P g P

average posterior principle and the distribution of therspa o* =argmin|lal st |y — Xa|3 <e.
coefficients, the regularization paramekeand constant can Step 3: Compute the representation residual for each class
2v2p% 213 ri = [ly — Xiaf |13

be adaptively determined b = L a.nd H = =57 wherea} here denotes the representation coefficients vector assdci
wherep, o; andn; are the standard deviations of the additivewith the i-th class.

Gaussian noiseg; and the SCN signal, respectively. More- Step 4: Output the identity of the test sampldy judging

over, in the process of image patches clustering for ea@ngiv label(y) = arg mini(r).

image patch, a local PCA dictionary is learned and employed ) o

to code each patch within its corresponding cluster. Thexmai Numerous sparse representgtlon based classification meth-
procedures of the CSR algorithm are summarized in Algorith}!S have been proposed to improve the robustness, effec-

16 and readers may refer to literature [181] for more detaildveness and efficiency of face recognition. For example, Xu
et al. [9] proposed a two-phase sparse representation based

o o _ classification method, which exploited thig-norm regular-
C. Sparse representation in image classification and visugLtion rather than thé,-norm regularization to perform a
tracking coarse to fine sparse representation based classificatitch w
In addition to these effective applications in image preeeswas very efficient in comparison with the conventional
ing, several other fields for sparse representation hava b@®rm regularization based sparse representation. Dendj et a
proposed and extensively studied in image classificatiah aji86] proposed an extended sparse representation method
visual tracking. Since Wright et al._[20] proposed to emplofESRM) for improving the robustness of SRC by eliminating
sparse representation to perform robust face recognitiong the variations in face recognition, such as disguise, ecclu
and more researchers have been applying the sparse represien, expression and illumination. Deng et &l. [187] also
tation theory to the fields of computer vision and patterrogec proposed a framework of superposed sparse representation
nition, especially in image classification and object tiagk based classification, which emphasized the prototype arid va
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ation components from uncontrolled images. He et|al.|[18B}presentation methods have been proposed to address the
proposed utilizing the maximum correntropy criterion namevisual tracking problem. In order to design an accelerated
CESR embedding non-negative constraint and half-quadraigorithm for [, tracker, Li et al. [[203] proposed two real-
optimization to present a robust face recognition algarith time compressive sensing visual tracking algorithms based
Yang et al. [189] developed a new robust sparse coding sparse representation, which adopted dimension reducti
(RSC) algorithm, which first obtained a sparsity-constdin and the OMP algorithm to improve the efficiency of recovery
regression model based on maximum likelihood estimatiah aprocedure in tracking, and also developed a modified version
exploited an iteratively reweighted regularized robusting of fusing background templates into the tracking procedure
algorithm to solve the pre-proposed model. Some other epafsr robust object tracking. Zhang et al. [204] directly teth
representation based image classification methods alse halsject tracking as a pattern recognition problem by regardi
been developed. For example, Yang etlal. [190] introduced alh the targets as training samples, and then employed the
extension of the spatial pyramid matching (SPM) algorithsparse representation classification method to do eféectiv
called ScSPM, which incorporated SIFT sparse representatobject tracking. Zhang et all [205] employed the concept
into the spatial pyramid matching algorithm. Subsequentlgf sparse representation based on a particle filter framewor
Gao et al. |[191] developed a kernel sparse representattonconstruct a multi-task sparse learning method denoted as
with the SPM algorithm called KSRSPM, and then proposedulti-task tracking for robust visual tracking. Additidha
another version of an improvement of the SPM called LSbecause of the discriminative sparse representation batwe
SPM [192], which integrated the Laplacian matrix with locathe target and the background, Jia et al. [206] conceived a
features into the objective function of the sparse reptasen structural local sparse appearance model for robust object
method. Kulkarni and Lil[193] proposed a discriminativéracking by integrating the partial and spatial informatfoom
affine sparse codes method (DASC) on a learned affirthe target based on an alignment-pooling algorithm. Liul.et a
invariant feature dictionary from input images and ex@dit [207] proposed constructing a two-stage sparse optinoizati
the AdaBoost-based classifier to perform image classificati based online visual tracking method, which jointly miniez
Zhang et al. [[194] proposed integrating the non-negatitiee objective reconstruction error and maximized the discr
sparse coding, low-rank and sparse matrix decompositimrative capability by choosing distinguishable featutds. et
(LR-Sc"SPM) method, which exploited non-negative sparsal. [208] introduced a local sparse appearance model (SPT)
coding and SPM for achieving local features representatioiith a static sparse dictionary learned frosrselection and
and employed low-rank and sparse matrix decomposition fdynamic updated basis distribution to eliminate poterdit-
sparse representation, for image classification. Recetithng ing problems in the process of visual tracking. Bao et al9]20

et al. [195] presented a low-rank sparse representatioBR)R developed a fast real timle-tracker called the APG tracker,
learning method, which preserved the sparsity and spatwahich exploited the accelerated proximal gradient algonito
consistency in each procedure of feature representatidn amprove thel;-tracker solver inl[201]. Zhong et al. [210] ad-
jointly exploited local features from the same spatial pjmeed  dressed the object tracking problem by developing a sparsit
regions for image classification. Zhang et al. [196] devetbp based collaborative model, which combined a sparsity<base
a structured low-rank sparse representation (SLRSR) rdetratassifier learned from holistic templates and a sparsiised

for image classification, which constructed a discrimivti template model generated from local representations.gban
dictionary in training terms and exploited low-rank matrixal. [211] proposed to formulate a sparse feature measuitemen
reconstruction for obtaining discriminative represeinta. matrix based on an appearance model by exploiting non-
Tao et al. |[[197] proposed a novel dimension reduction methadaptive random projections, and employed a coarse-to-fine
based on the framework of rank preserving sparse learnistrategy to accelerate the computational efficiency ofkirar

and then exploited the projected samples to make effectiask. Lu et al.|[212] proposed to employ both non-local self-
Kinect-based scene classification. Zhang et al.|[198] pego similarity and sparse representation to develop a non-$eth

a discriminative tensor sparse coding (RTSC) method feimilarity regularized sparse representation method dhase
robust image classification. Recently, low-rank based sgpageometrical structure information of the target templad¢ad
representation became a popular topic such as non-negasiee Wang et all [213] proposed a sparse representatiod base
low-rank and sparse graph [199]. Some sparse representatioline two-stage tracking algorithm, which learned a lnea
methods in face recognition can be found in a review [88]assifier based on local sparse representation on faeorabl
and other more image classification methods can be foundinmage patches. More detailed visual tracking algorithms ca
a more recent review [200]. be found in the recent reviews [214, 215].

Mei et al. employed the idea of sparse representation to
visual tracking |[201] and vehicle classification [202], wni
introduced nonnegative sparse constraints and dynamie tem
plate updating strategy. It, in the context of the partidierfi In this section, we take the object categorization problem
framework, exploited the sparse technique to guarantee tha an example to evaluate the performance of different spars
each target candidate could be sparsely represented Uigngrépresentation based classification methods. We analyde an
linear combinations of fewest targets and particle teneglat compare the performance of sparse representation with the
It also demonstrated that sparse representation can ba-prapost typical algorithms: OMP_[36]i;_I [76], PALM [89],
gated to address object tracking problems. Extensive spai$STA [82], DALM [B9], homotopy [99] and TPTSR_[9].

IX. EXPERIMENTAL EVALUATION
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Fig. 5: Classification accuracies of using different spaeggesentation based classification methods versus gavgilues of
the regularization parameteron the (a) ORL (b) LFW (c) Coil20 and (d) Fifteen scene dataset

Plenties of data sets have been collected for object capéctured have two or more distinct photos in the database.
gorization, especially for image classification. Sevenaage In our experiments, we chose 1251 images from 86 peoples
data sets are used in our experimental evaluations. and each subject has 10-20 images [218]. Each image was

ORL The ORL database includes 400 face images takBifnually cropped and was resized to<®2 pixels.

from 40 subjects each providing 10 face images [216]. For Extended YaleB face datas&he extended YaleB database
some subjects, the images were taken at different timeh, witontains 2432 front face images of 38 individuals and each
varying lighting, facial expressions, and facial detafif.the subject having around 64 near frontal images under difteren
images were taken against a dark homogeneous backgroilinchinations [219]. The main challenge of this database is
with the subjects in an upright, frontal position (with t@ace to overcome varying illumination conditions and expressio
for some side movement). Each image was resized to@b66 The facial portion of each original image was cropped to a
image matrix by using the down-sampling algorithm. 192x 168 image. All images in this data set for our experi-

LFW face datasetThe Labeled Faces in the Wild (LFw)MeNts simply resized these face images to32 pixels.
face database is designed for the study of unconstrainedCOIL20 dataset:Columbia Object Image Library (COIL-
identity verification and face recognition [217]. It comtai 20) database consists of 1,440 size normalized gray-stale i
more than 13,000 images of faces collected from the welges of 20 objects [220]. Different object images are cagtur
under the unconstrained conditions. Each face has bededabat every angle in a 360 rotation. Images of the objects were
with the name of the people pictured. 1680 of the peoplaken from varying angles at pose intervals of five degreds an
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each object has 72 images. the experiments are repeated 10 times with the optimal pa-
Fifteen scene dataseffhis dataset contains 4485 imagesameter obtained using the cross validation approach. The
under 15 natural scene categories presented in liters2@dg [ gray-level features of all images in these data sets are used
and each category includes 210 to 410 images. The 15 scetoeperform classification. For the sake of computational ef-
categories are office, kitchen, living room, bedroom, storiciency, principle component analysis algorithm is used as
industrial, tall building, inside cite, street, highwapast, open a preprocessing step to preserve 98% energy of all the data
country, mountain, forest and suburb. A wide range of outdosets. The classification results and computational timees hav
and indoor scenes are included in this dataset. The averbgen summarized in Tablé I. From the experimental results
image size is around 2500 pixels and the spatial pyramidon different databases, we can conclude that there stik doe
matching features are used in our experiments. not exist one extraordinary algorithm that can achieve the
best classification accuracy on all databases. Howevere som
algorithms are noteworthy to be paid much more attention.
For example, thd;_I; algorithm in most cases can achieve
Parameter selection, especially selection of the requaion better classification results than the other algorithmshen t
parameter) in different minimization problems, plays anORL database, and when the number of training samples of
important role in sparse representation. In order to make faach class is five, thg_I, algorithm can obtain the highest
comparisons with different sparse representation algmst classification result 095.90%. The TPTSR algorithm is very
performing the optimal parameter selection for differgreirse computationally efficient in comparison with other sparse
representation algorithms on different datasets is abigsarepresentation with;-norm minimization algorithms and the
and indispensable. In this subsection, we perform extensiassification accuracies obtained by the TPTSR algoritten a
experiments for selecting the best value of the reguladmat very similar and sometimes even better than the other sparse
parameter\ with a wide range of options. Specifically, werepresentation based classification algorithms.
implement thel,_I[;, FISTA, DALM, homotopy and TPTSR  The computational time is another indicator for measuring
algorithms on different databases to analyze the impoetafic the performance of one specific algorithm. As shown in
the regularization parameter. F{g. 5 summarizes the €ilassiable[l, the average computational time of each algorithm is
cation accuracies of exploiting different sparse repriegEm shown at the bottom of the table for one specific number of
based classification methods with varying values of regularaining samples. Note that the computational time of OMP
ization parameten on the two face datasets, i.e. ORL anénd TPTSR algorithms are drastically lower than that of othe
LFW face datasets, and two object datasets, i.e. COIL20 asphrse representation wilh-norm minimization algorithms.
Fifteen scene datasets. On the ORL and LFW face datas@lsis is mainly because the sparse representation With
we respectively selected the first five and eight face imagesrmrm minimization algorithms always iteratively solve the
each subject as training samples and the rest of image ssmplerm minimization problem. However, the OMP and TPTSR
for testing. As for the experiments on the COIL20 and fifteemlgorithms both exploit the fast and efficient least squares
scene datasets, we respectively treated the first ten intdgesechnique, which guarantees that the computational time is
each subject in both datasets as training samples and uUsedighificantly less than othdi-norm based sparse representa-
the remaining images as test samples. Moreover, fromFig.tlon algorithms.
one can see that the value of regularization parametesin
significantly dominate the classification results, and thieies
of A for achieving the best classification results on differe
datasets are distinctly different. An interesting scemds Lots of sparse representation methods have been available
that the performance of the TPTSR algorithm is almost not past decades and this paper introduces various sparse
influenced by the variation of regularization parametein representation methods from some viewpoints, includiregy th
the experiments on fifteen scene dataset, as shown in Fitptivations, mathematical representations and the main al
[B(d). However, the best classification accuracy can be awayorithms. Based on the experimental results summarized in
obtained within the range of 0.0001 to 1. Thus, the value ef ttectionIX, we have the following observations.
regularization parameter is set within the range from 01000 First, a challenging task of choosing a suitable reguléiina
to 1. parameter for sparse representation should make furthemn-ex
sive studies. We can see that the value of the regularization
parameter can remarkably influence the performance of the
sparse representation algorithms and adjusting the pagesne
In order to test the performance of different kinds of sparse sparse representation algorithms requires expensba.la
representation methods, an empirical study of experinhenkdoreover, adaptive parameter selection based sparsesezpre
results is conducted in this subsection and seven typieabsp tation methods is preferable and very few methods have been
representation based classification methods are selectedpfoposed to solve this critical issue.
performance evaluation followed with extensive experitabn Second, although sparse representation algorithms have
results. For all datasets, following most previous pulgih achieved distinctly promising performance on some realdvo
work, we randomly choose several samples of every clagatabases, many efforts should be made in promoting the
as training samples and used the rest as test samples arcliracy of sparse representation based classificatidrthan

A. Parameter selection

rﬁ' Discussion

B. Experimental results
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Data set #7°r) OMP l1_ls PALM FISTA DALM Homotopy TPTSR
ORL(21) 64.94t2.374 68.582.021 68.36G:1.957 70.642.429 70.222.805 66.531.264 71.56+3.032
ORL(2) 80.59:2.256 84.84+-2.857 80.66-2.391 84.723.242 84.3&2.210 83.88-2.115 83.382.019
ORL(3) 89.00£1.291 89.7%#1.313 86.821.959 90.0&-3.141 90.36:1.829 89.321.832 90.711.725
ORL(4) 91.79:1.713 94.83:1.024 88.63-2.430 94.131.310 94.7%1.289 94.381.115 94.581.584
ORL(5) 93.75£2.125 95.90+1.150 92.05+1.039 95.6&-1.761 95.5@1.269 95.68:1.430 95.7%1.439
ORL(6) 95.691.120 97.25-1.222 92.06:1.319 96.6%1.319 96.56-1.724 97.3141.143 95.81+1.642
Average Time(5) 0.0038s 0.1363s 7.4448s 0.9046s 0.8013s 010@s 0.0017s
LFW(3) 22.22t1.369 28.24:£0.667 15.16£1.202 26.550.767 25.4&0.705 26.120.831 27.3Z21.095
LFW(5) 27.83t1.011 35.58+1.489 12.8%+1.286 34.130.459 33.96¢:1.181 33.951.680 35.431.409
LFW(7) 32.76:2.318 40.1#2.061 11.630.937 39.861.226 38.46-1.890 38.04-1.251 40.92+1.201
LFW(9) 35.14+1.136 44.93+1.123  7.84+1.278 43.861.492 43.56:1.393 42.2%2.721 44.721.793
Average Time(7) 0.0140s 0.6825s 33.2695s 3.0832s 3.9906s 0.2372s 0.0424s

Extended YaleB(3) 44.282.246  63.162.341 63.732.073 62.842.623 63.76:2.430 64.22£2.525 56.232.153
Extended YaleB(6) 72.482.330 81.9£40.850 81.93-0.930 82.25-0.734 81.74:1.082 81.641.159 78.531.731
Extended YaleB(9) 83.420.945 88.96:0.544 88.5&1.096 89.310.829 89.26+0.781 89.120.779 86.4%1.165
Extended YaleB(12) 88.280.961 92.49+0.622 91.040.725 92.031.248 91.850.710 92.030.767 91.3&0.741
Extended YaleB(15) 91.970.963 94.220.719 93.19-0.642 94.50£0.824 93.0740.538 93.670.860 93.380.785

Average Time(12) 0.0116s 3.2652s 17.4516s 1.5739s 1.9384s 0.5495s 0.0198s
COIL20(3) 75.961.656 77.622.347 70.262.646 75.8:2.056 76.642.606 78.46t2.603 78.16:2.197
COIL20(5) 83.0@£1.892 82.631.701 79.551.153 84.0942.003 84.3&1.319 84.58+1.487 83.69%:1.804
COIL20(7) 87.26:1.289 88.221.304 82.8&1.445 88.8%1.598 89.08:1.000 89.36+1.147 87.75-1.451
COIL20(9) 89.56:1.763 90.941.595 84.941.563 90.16:1.366 91.82£1.555 91.44+1.198 89.4%2.167
COIL20(11) 91.7@0.739 92.981.404 87.16:1.184 93.4%1.543 93.46+1.327 93.55£1.205 92.74#1.618
COIL20(13) 92.491.146 94.2%0.986 88.361.283 94.5@-0.850 93.921.102 94.93+0.788 92.72+1.481
Average Time(13) 0.0038s 0.0797s 7.5191s 0.7812s 0.7762s 0.0159s 0.0053s
Fifteen scene(3) 85.401.388 86.83+1.082 86.15+1.504 86.4&1.542 85.8%1.624 86.1%1.073 86.621.405
Fifteen scene(6) 89.141.033 90.340.685 89.940.601 90.820.921 90.120.998 89.65-0.888 90.83+-0.737
Fifteen scene(9) 83.420.945 88.96:0.544 88.5:1.096 89.31#+0.829 89.26:0.781 89.120.779 90.64+0.940

Fifteen scene(12) 91.6/0.970 92.06:0.536 92.76t£0.905 92.22+0.720 92.4%0.860 92.3%0.706 92.330.563
Fifteen scene(15) 93.30.609 93.3#0.506 93.6x0.510 93.630.787 93.530.829 93.84+0.586 93.80+0.461
Fifteen scene(18) 93.640.334 94.3%0.551 94.6740.678 94.280.396 94.16:0.344 94.16:0.642 94.78+0.494
Average Time(18) 0.0037s 0.0759s 0.9124s 0.8119s 0.8500s 0.1811s 0.0122s

TABLE I: Classification accuracies (mean classificatioroerates+ standard deviation %) of different sparse representation
algorithms with different numbers of training samples. Tiodd numbers are the lowest error rates and the least tinteo€os
different algorithms.

robustness of sparse representation should be furtheneatta average computational time of OMP and TPTSR is the two
In terms of the recognition accuracy, the algorithmd0f;, lowest algorithms. Moreover, compared with theegularized
homotopy and TPTSR achieve the best overall performansparse representation based classification methods, t(heR'P
Considering the experimental results of exploiting theesevhas very competitive classification accuracy but signifigan
algorithms on the five databases, fhel, algorithm has eight low complexity. Efficient and effective sparse represeatat
highest classification accuracies, followed by homotopgt amethods are urgently needed by real-time applicationss,Thu
TPTSR, in comparison with other algorithms. One can seeveloping more efficient and effective methods is essentia
that the sparse representation based classification nethimd future study on sparse representation.

still can not obtain satisfactory results on some challengeFinally, the extensive experimental results have demon-
databases. For example, all these representative algarithn strated that there is no absolute winner that can achieve
achieve relatively inferior experimental results on theW.F the best performance for all datasets in terms of classifica-
dataset shown in Subsectibn IX-B, because the LFW datasieh accuracy and computational efficiency. However,/,,

is designed for studying the problem of unconstrained fag#®TSR and homotopy algorithms as a whole outperform the
recognition [[21/7] and most of the face images are capturether algorithms. As a compromising approach, the OMP
under complex environments. One can see that the PAL&Myorithm can achieve distinct efficiency without sacrifpi
algorithm has the worst classification accuracy on the LFWuch recognition rate in comparison with other algorithmg a
dataset and the classification accuracy even decreasely mastlso has been extensively applied to some complex legrnin
with the increase of the number of the training samples. Thugigorithms as a function.

devising more robust sparse representation algorithm is an

urgent issue.

. . . i X. CONCLUSION
Third, enough attention should be paid on the computational

inefficiency of sparse representation withnorm minimiza- Sparse representation has been extensively studied intrece
tion. One can see that high computational complexity is dne years. This paper summarizes and presents various aeailabl
the most major drawbacks of the current sparse represemtagparse representation methods and discusses their nwtisjat
methods and also hampers its applications in real-timegs®wc mathematical representations and extensive applicatibose

ing scenarios. In terms of speed, PALM, FISTA and DALMspecifically, we have analyzed their relations in theory and
take much longer time to converge than the other methods. Térapirically introduced the applications including dictary
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learning based on sparse representation and real-world appossible applications, such as event detection, scena+eco
cations such as image processing, image classification, atiction, video tracking, object recognition, object pas-
visual tracking. timation, medical image processing, genetic expressiah an
Sparse representation has become a fundamental tool, whialtural language processing. For example, the study ospar
has been embedded into various learning systems and alsoreasesentation in visual tracking is an important direttémd
received dramatic improvements and unprecedented achiavere depth studies are essential to future further impreves
ments. Furthermore, dictionary learning is an extremely-poof visual tracking research.
ular topic and is closely connected with sparse representain addition, most sparse representation and dictionamiea
tion. Currently, efficient sparse representation, robpstrse ing algorithms focus on employing thig-norm or /;-norm
representation, and dictionary learning based on spapse regularization to obtain a sparse solution. However, tlzeee
resentation seem to be the main streams of research stii only a few studies ot ;-norm regularization based sparse
sparse representation methods. The low-rank represemtatepresentation and dictionary learning algorithms. Muegp
technique has also recently aroused intensive reseamriests other extended studies of sparse representation may Ibfeilfrui
and sparse representation has been integrated into Idw-rém summary, the recent prevalence of sparse representation
representation for constructing more reliable repregiemta has extensively influenced different fields. It is our hope
models. However, the mathematical justification of lowkranthat the review and analysis presented in this paper can
representation seems not to be elegant as sparse reptiesentdelp and motivate more researchers to propose perfectespars
Because employing the ideas of sparse representation ag@esentation methods.
prior can lead to state-of-the-art results, incorporaspgrse
representation with low-rank representation is worth Hert ACKNOWLEDGMENT
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