From Intrinsic Optimization to Iterated Extended Kalman Filtering on Lie Groups

Abstract : In this paper, we propose a new generic filter called Iterated Extended Kalman Filter on Lie Groups. It allows to perform parameter estimation when the state and the measurements evolve on matrix Lie groups. The contribution of this work is threefold: 1) the proposed filter generalizes the Euclidean Iterated Extended Kalman Filter to the case where both the state and the measurements evolve on Lie groups, 2) this novel filter bridges the gap between the minimization of intrinsic non linear least squares criteria and filtering on Lie groups, 3) in order to detect and remove outlier measurements , a statistical test on Lie groups is proposed. In order to demonstrate the efficiency of the proposed generic filter, it is applied to the specific problem of relative motion averaging, both on synthetic and real data, for Lie groups SE(3) (rigid body motions), SL(3) (homographies) and Sim(3) (3D similarities). Typical applications of these problems are camera network calibration , image mosaicing and partial 3D reconstruction merging problem. In each of these three applications, our approach significantly outperforms the state of the art algorithms.
Type de document :
Article dans une revue
Journal of Mathematical Imaging and Vision, Springer Verlag, 2016, 55 (3), 〈10.1007/s10851-015-0622-8〉
Liste complète des métadonnées

Littérature citée [67 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01311169
Contributeur : Guillaume Bourmaud <>
Soumis le : mardi 3 mai 2016 - 20:35:54
Dernière modification le : mercredi 31 janvier 2018 - 13:46:02
Document(s) archivé(s) le : mardi 15 novembre 2016 - 19:40:59

Fichier

finalRevised(2).pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Guillaume Bourmaud, Rémi Mégret, Audrey Giremus, Yannick Berthoumieu. From Intrinsic Optimization to Iterated Extended Kalman Filtering on Lie Groups. Journal of Mathematical Imaging and Vision, Springer Verlag, 2016, 55 (3), 〈10.1007/s10851-015-0622-8〉. 〈hal-01311169〉

Partager

Métriques

Consultations de la notice

346

Téléchargements de fichiers

346