Lid-driven cavity highly turbulent flow subjected to high magnetic field
Luca Marioni, François Bay, Elie Hachem

To cite this version:
Luca Marioni, François Bay, Elie Hachem. Lid-driven cavity highly turbulent flow subjected to high magnetic field: Determination of critical time-step for explicit MHD schemes. 10th PAMIR International Conference Fundamental and Applied MHD, Jun 2016, Cagliari, Italy. 2016. hal-01311023
Lid-driven cavity highly turbulent flow subjected to high magnetic field
Determination of critical time-step for explicit MHD schemes

Control of fluid flow in CC:
- Electromagnetic braking and stirring in continuous casting, process of steel
- Coupled simulation in commercial software:
 - THERCAST® (Fluid mechanical solver)
 - MATELEC (EM solver)

Computational model:
- Electromagnetic Field:
 \[\Delta \mathbf{B} = \partial_t (u \mathbf{B} - u_0 \mathbf{B}) = 0 \]
- Lorentz Forces:
 \[f_l = \mathbf{E} \times \mathbf{B} \]
- Navier-Stokes:
 \[\rho (\partial_t u + u \cdot \nabla) u - \nabla \cdot (\mu \mathbf{u}) = f_l \]
- Anisotropic mesh adaptation.

Numerical instabilities:
- The Lorentz force is tracked explicitly.
- The excessive size of the time-step leads to completely brake the flow normally to \(\mathbf{B} \) and to accelerate it in the opposite direction, i.e. \(\mathbf{u}, \partial_t \mathbf{u} < 0 \).
- The CFL condition is not capable anymore to guarantee numerical convergence.

Determination of the critical time-step:
- Solution:
 - Computation of the limit time-step as the time-step which leads to a complete dissipation of the kinetic energy within one time increment when the magnetic field is normal to the velocity.
 \[\Delta t^* < \frac{1}{\sigma \mathbf{B}} \]

Conclusions & Perspectives:
- The flow is highly affected by the magnetic field and its direction.
- In some configurations, the CFL condition is not enough to guarantee the numerical convergence.
- A new time-step threshold which guarantees convergence in explicit schemes is proposed.
- An implicit modelling of the Lorentz force has to be included in the multiscale stabilized finite-elements solver.
- The braking effect will be taken into account in the complete simulation of electromagnetic stirring.

Acknowledgements:
The authors would like to gratefully thank Transvalor for funding this research and for the continuous support which allowed the full exploitation of its software’s capabilities.

References: