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Abstract

Statistical calibration of model parameters conditioned on observations is

performed in a Bayesian framework by evaluating the joint posterior prob-

ability density function (pdf) of the parameters. The posterior pdf is very

often inferred by sampling the parameters with Markov ChainMonte Carlo

(MCMC) algorithms. Recently, an alternative technique to calculate the so-

called Maximal Conditional Posterior Distribution (MCPD) appeared. This

technique infers the individual probability distribution of a given parame-

ter under the condition that the other parameters of the model are optimal.

Whereas the MCMC approach samples probable draws of the parameters,

the MCPD samples the most probable draws when one of the parameters is

set at various prescribed values. In this study, the resultsof a user-friendly

MCMC sampler called DREAM(ZS ) and those of the MCPD sampler are

compared. The di�erences between the two approaches are highlighted before

running a comparison inferring two analytical distributions with collinearity

and multimodality. Then, the performances of both samplersare compared

on an arti�cial multistep out�ow experiment from which the soil hydraulic
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parameters are inferred. The results show that parameter and predictive

uncertainties can be accurately assessed with both the MCMCand MCPD

approaches.

Keywords: Bayesian parameter estimation, parameter uncertainty,

predictive uncertainty, MCPD sampler, DREAM(ZS ) MCMC, soil hydraulic

parameter identi�cation
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1. Introduction

The validation of computer models is an essential task to increase their

credibility. One of the most important exercises in the validation frame-

work is to check whether the computer model adequately represents reality

(Bayarri et al., 2007). This is achieved by comparing model predictions to

observation data. This exercise generally leads to model calibration because

the model parameters are usually poorly known a priori (i.e. before col-

lecting data). Good practice in calibration of computer models consists of

searching for all parameter values that satisfactorily �t the data, thus de-

termining their plausible range of uncertainty. This can beachieved in a

Bayesian framework in which the prior knowledge about the model and the

observed data are merged to de�ne the joint posterior probability distribu-

tion function (pdf) of the parameters. The issue is then to assess the joint

posterior pdf.

The inference of model parameter posterior pdf by means of Markov

chain Monte Carlo (MCMC) sampling techniques (Metropolis et al., 1953;

Hastings, 1970) has received much attention in the last two decades. MCMC

explores the region of plausible values in the parameter space and provides

successive parameter draws directly sampled from the target joint pdf. Some

selection criteria are used to ensure that the successive draws in the chain

improve. This means that, throughout the sampling process,probable draws

with respect to the target distribution are more likely drawn. Many develop-

ments and improvements have been proposed to accelerate MCMC conver-

gence.

Grenander and Miller (1994) developed the Langevin MCMC, which ac-

celerates the convergence of the chains by exploiting the Jacobian of the tar-

get distribution. This MCMC sampler may require that the computer model
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provide the local sensitivities to compute the Jacobian of the target distri-

bution. In practice, modelers generally estimate the gradient by �nite dif-

ferences via a surrogate or coarse-scale model to alleviatethe computational

burden (see for instance,Dostert et al., 2009; Angelikopoulos et al., 2015).

Haario et al. (2006) developed the Delayed Rejection Adaptive Metropolis

(DRAM), an algorithm that increases the rate of acceptance of MCMC draws

by exploiting the delayed rejection trick proposed inTierney and Mira (1999)

and the adaptive Metropolis algorithm ofHaario et al.(2001). ter Braak and Vrugt

(2008) developed the Di�erential Evolution-Markov Chain (DE-MC) algo-

rithm, which merges the di�erential evolution method of ter Braak (2006)

and the Shu�ed Complex Evolution Metropolis (SCEM) method proposed

by Vrugt et al. (2003). DREAM improves the e�ciency of MCMC by run-

ning multiple chains in parallel for a wider and quicker exploration of the

parameter space in addition to a self-adaptive randomized subspace sam-

pling (Vrugt et al. , 2009). Recently, the algorithm of DREAM has been em-

bedded in UCODE_2014, dedicated to inverse modeling (Lu et al., 2014).

Laloy and Vrugt (2012) then developed DREAM(ZS ) , that ensures conver-

gence with fewer chains in parallel than DREAM.

Recently,Mara et al. (2015) proposed a new probabilistic approach to the

inverse problem whose main idea is to maximize the joint posterior pdf of

a parameter set with one selected parameter sampling successive prescribed

values. This provides the so-called Maximal Conditional Posterior Distribu-

tion (MCPD) of the selected parameter. The main advantage ofthe recent

MCPD technique is that parameter distributions can be inferred indepen-

dently. Therefore, the MCPDs can be simultaneously evaluated on multicore

computers (or on multiple computers). This drastically reduces the compu-

tational e�ort in terms of computational time units (CTU).
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The MCPD and MCMC samplers assess the same target distribution,

namely, the parameter joint posterior pdf. Nevertheless, the two samplers do

not provide the same results. In general, the MCPD of a singleparameter

does not correspond to its marginal posterior distribution. In addition, the

MCPD sampler only provides a few sets of probable draws whileMCMC

generates a large number of draws sampled in agreement with the target

distribution. Nevertheless and as advocated in this study,both samplers

are valuable Bayesian methods for statistical inverse problems. Hence, the

main objective of the present work is to compare the ability of MCPD and

DREAM (ZS ) MCMC samplers to quantify model output and model param-

eter uncertainties.

The paper is organized as follows: Section2 summarizes the inversion in a

Bayesian framework and recalls the principles of the recentMCPD technique.

The general algorithms ruling the DREAM(ZS ) MCMC and MCPD samplers

are introduced in Section3. In Section 4, we discuss on the analogy and

the di�erences between MCPD and MCMC draws. Section5, emphasizes

the comparison between MCMC and MCPD samplings: 1) for the inversion

of multimodal and correlated functions, and 2) for the evaluation of soil

hydraulic properties from a synthetic one-dimensional drainage experiment.

Finally, a summary with conclusions is presented in Section6.

2. Inverse Problem

2.1. Bayesian inference

In probabilistic inverse modeling, the parameter setx = ( x1; : : : ; xd) of

a computer model is inferred from a set of observation datay using the

Bayesian inference, which de�nes the conditional joint posterior pdf as fol-
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lows:

p(xjy) / p(y jx)p(x); (1)

where p(x) is the prior density that characterizes the investigator'sbeliefs

about the parameters before collecting the new observations, and p(y jx) is

the likelihood function, which measures how well the model �ts the data.

The parameter set that maximizes Eq. (1), namely:

xMAP = argmax
x

p(xjy); (2)

is called the Maximum A Posteriori (MAP) estimate of the parameters. It is

the most probable parameter set given the data and can be inferred via an

optimization technique. The marginal posterior pdf that characterizes the

uncertainty of a single parameter is de�ned by the followingintegral:

p(x i jy ) =
Z

p(xjy)dx � i; 8i = 1; : : : ; d (3)

where x � i represents all the parameters exceptx i . Usually, the integral in

Eq. (3) is evaluated by a multidimensional quadrature method or bydirect

summations in a large sample ofp(x i jy ) obtained, for instance, via an MCMC

technique.

2.2. Maximal conditional posterior distribution

Mara et al. (2015) de�ne the maximal conditional posterior distribution

of x i as follows:

P(x i ) = max
x � i

(p(x � i jy ; x i )) � p(x i jy ): (4)

An informal de�nition can be given by stating that a point estimate of the

MCPD is the maximal value reached by the joint pdf Eq. (1) for a given (pre-

scribed) value of one parameter (i.e. x i ). This maximal value, in the context
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of model inversion, assumes that the setx � i maximizes Eq. (1), knowing that

x i is prescribed. By applying the axiom of conditional probabilities to Eq. (4),

it can be stated that maxf p(x � i jy ; x i )g � p(x i jy ) = max x � i f p(x � i ; x i jy )g.

Therefore, the MAP estimate (when it exists) belongs to the MCPD of all

parameters.

In view of the MCPD de�nition, especially its interpretation in terms of

the x i draws for the other parameters at their optimal values, the MCPD

can provide information on the uncertainty attached to a single parameter.

Obtaining uncertainties for all parameters is simply achieved by calculating

the individual MCPD of all parameters.

3. Parameter uncertainty assessment

3.1. The DREAM(ZS ) MCMC sampler

The MCMC samplers generate successive draws of parameter sets that

converge toward the posterior densityp(xjy). Several methods are reported

in the literature (e.g. Grenander and Miller, 1994; Haario et al., 2006; Vrugt et al. ,

2009; Laloy and Vrugt, 2012), but they all rely on the Metropolis-Hasting al-

gorithm, which proceeds according to the following schedule:

(i) Choose an initial estimate of the parameter setx0 and a proposal dis-

tribution q(a; b) that randomly derives the parameter seta from an

input b.

(ii) From the current set xk , generate a new candidatex � with the generator

q(x � ; xk).

(iii) Compute � = p(x � jy )p(x �  xk)=p(xk jy )p(xk  x � ), wherep(b  a)

is the transition probability from individual a to individual b associated
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with the generator q. Additionally, draw a random number u 2 [0; 1]

from a uniform distribution.

(iv) If � � u, set xk+1 = x � , otherwise, setxk+1 = xk .

(v) Resume from (ii) until the chain f x0; : : : ; xkg converges or a prescribed

number of iterationskmax is reached.

The calculation ofp(x � jy ) in (iii) requires that the forward model be run

for the set of parametersx � . This is the most expensive computational step.

The crux step at the origin of the computation costs is the step (iv), which

may reject many candidates. The choice of the generatorq( ) is a key feature

for the acceptance rate.

If the Markov chain is constructed correctly, the chainf x0; : : : ; xkg should

converge for its last elements toward the targeted posterior distribution p(xjy)

(Geyer, 1992; Robert and Casella, 2004). Unfortunately, the number of nec-

essary draws cannot be guessed in advance. In practice, one regularly eval-

uates the R̂-statistic of Gelman and Rubin (1992) and decides whether to

stop the sampling procedure. Usually, the �rst draws of the chains are over-

looked because they correspond to a so-called burn-in period within which

the Markov process wanders in the entire parameter space. Most of the

improvements brought to the MCMC samplers in the last decadeaimed at

diminishing this burn-in period.

In this study, we use the DREAM(ZS ) software developed byLaloy and Vrugt

(2012). The algorithm relies on a multiple-chain method that computes dif-

ferent trajectories (sub-chains) in parallel to better explore the parameter

space when seeking the target posterior pdf. A new candidatefor each chain

is drawn from an archive of past states (denotedZ) by using the di�erential

evolution algorithm and a snooker updater developed byter Braak and Vrugt
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(2008). These two algorithms ensure that the new candidates have the de-

sired scale and orientation. Note that the sample of past states Z plays the

role of the generatorq (see above) and is periodically archived and updated.

DREAM (ZS ) also uses a self-adaptive randomized subspace sampling andex-

plicitly discards aberrant trajectories in the parameter space. The initial

candidates can be sampled from any desired distributions. In particular, the

user can impose an initial proposal distributionq like we did in the �rst

two numerical exercises in Ÿ5. The interested readers are referred toVrugt

(2016) for more details about the use and implementation of DREAM and

DREAM (ZS ) .

3.2. The MCPD sampler

As compared to the MCMC sampler, the MCPD sampler is thoroughly

described because it is a very recent approach. The algorithm used to com-

pute the MCPDs is divided into three parts: in part 1 (step (i) below), all

the probable optima ofp(xjy) are investigated. In part 2 (steps (ii-v) be-

low), the MCPD of the current parameter around each probableoptimum is

roughly estimated. In part 3, the discretization of the MCPDis re�ned. It is

worth noting that in parts 2 & 3, because the conditional optimizations are

performed around a local optimum, it is assumed that there isonly a single

optimum. The algorithm proceeds as follows:

(i) Find by optimization all probable optimal candidates (including the

MAP estimate) f xopt ;1; : : : ; xopt ;M g� that is, all local optima of p(xjy)

according to the following criterion: p(xopt ;m jy )=p(xMAP jy ) > 0:01.

with xMAP = maxf p(xopt ;m jy ); m = 1; : : : ; M g. Set i = 1 for the

current parameter x i and de�ne a maximum number of iterations for

the re�nement of the MCPDs, e.g. N it = 10.
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(ii) Set m = 1 for the current optimal candidatexopt ;m ,

(iii) Set the iteration number k = 1 and the initial discretization step � =

0:10.

(iv) Set x �
i = xopt ;m

i (1 � k�) and �nd x � = ( x �
� i ; x�

i ) by solving Eq. (4).

This is achieved by maximizingp(x � i jy ; x�
i ) for x �

i = x+
i and x �

i = x �
i

successively.

(v) If p(x � jy )=p(xMAP jy ) > 0:01, set k = k + 1 and go to iv); else, set

it = 1 and continue

(vi) Denote f xk i ; P(xk i
i ) = p(xk i jy ); ki = 1; : : : ; kg; the �rst draws sorted

as xk i
i < x k i +1

i . Re�ne the current MCPD sampling by �nding xk+1 =

(xk+1
� i ; xk+1

i ) such that xk+1
� i = argmax

x � i

p(x � i jy ; xk+1
i ) , with

8
><

>:

xk+1
i =

xkm +1
i + xkm

i

2
km = argmax

k i

�
jP (xk i +1

i ) � P (xk i
i )j

	 (5)

(vii) Set k = k + 1 and add
�
xk+1 ; P(xk+1

i )
�

to the subsetf xk i ; P(xk i
i ); ki =

1; : : : ; kg. If it < N it , set it = it + 1 and go to vi); otherwise, continue

(viii) Set m = m + 1 (change of local optimum). If m � M go to iii);

otherwise continue

(ix) Set i = i + 1 (next parameter) and if i � d resume from (ii); otherwise,

stop.

Unlike MCMC, the MCPD relies on an optimization technique insteps (i),

(iv) and (vi). The computational e�ort of the algorithm resi des in these

steps. In the numerical exercises below, the optimizationsare performed
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with a gradient-based algorithm. Nevertheless, MCPD calculations are com-

patible with any optimization algorithm and could use, for instance, global

optimization techniques that do not rely on gradients. A gradient-based

method requires that an initial guess of the solutionx0 be provided before-

hand. To �nd all local optima, we systematically performN init = 20 opti-

mization procedures with di�erent initial solutions randomly drawn within

the parameters' prior (i.e. x0 � p(x)).

It is worth noting that the convergence of gradient-based algorithms ac-

celerates if the Jacobian of the target pdf is also provided.The number

of initial optimizations N init is a matter of choice as well as the number of

re�nement points N it . They condition the total computational costs. Our

experience suggests thatN it = 10 is su�cient to obtain accurate results (see

alsoMara et al., 2015).

The rough estimation of the current MCPD is performed in the second

part of the algorithm (from (ii) to (v)). In step (v), at the �r st iteration

(k = 1) for the current variable x i , if p(x � jy ) � p(xMAP jy ), it can mean that

P(x i ) is �at. It is then recommended that the size step be increased(e.g.

set � = 1 :5 � � ). Conversely, ifp(x � jy ) � 0, P(x i ) can be very narrow and

one must decrease the current size step (e.g. set � = � =1:5).

The strategy to re�ne the MCPD assessment given in Eq. (5) is illustrated

in Figure 1. After the second part of the algorithm, one obtains a rough

discretization of the MCPD (in circles). Then, according toEq. (5), the next

prescribed value ofx i (i.e. xk+1
i ) is determined. The latter is chosen where

the gap between two successive MCPD values is maximal. In addition to the

above schedule, one can mention that the algorithm is set up to sample the

values of the parameterx i in the vicinity of each probable local optimum.

In complex problems, it is not ensured that any optimizationtechnique will
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retrieve all local optima. However, some previous tests showed that when a

local optimum has been missed, it is often retrieved in steps(iv) or (vi) when

sampling the MCPDs by optimizing the conditional pdfp(x � i jy ; x i ).

Insert Figure 1 about here

4. Computational issues

4.1. MCPD versus MCMC draws

By de�nition, the MCMC and MCPD samplers provide di�erent results.

Nevertheless, both approaches assess the same target distribution, namely,

the parameter posterior pdfp(xjy). The MCMC sampler provides a large

set of candidates and their associated weights(xMCMC ; p(xMCMC jy )) while

the MCPD sampler only provides a small set of draws(xMCPD ; p(xMCPD jy )) .

The MCMC draws xMCMC represent a stochastic sample of the parameter

values distributed with respect top(xjy). The MCPD samplexMCPD is a set

of probabilistic draws of the parameter values.

Regarding the implementation of the two algorithms, the MCMC DREAM (ZS )

sampler is much easier to plug into a given computer model. DREAM (ZS )

does not need for modi�cations of the computer model but onlyrequires that

the target distribution be de�ned. The e�ciency of the MCPD sampler is

enhanced if the partial derivatives (of the model response w.r.t. the param-

eters) are also provided by the computer model. Otherwise, the use of the

�nite-di�erences approach to estimate the partial derivatives deteriorates the

performance of the MCPD calculations. Typically, the number of model calls

is multiplied by the number of parameters. This is an important feature to

be aware of before using the MCPD approach for inverse problems. In the

following numerical exercises, the partial derivatives are systematically com-
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puted by the forward models. This slightly increases the computational time

of one model run.

The MCPD of a given parameter, sayP(x i ), does not always match its

posterior marginal pdfp(x i jy ). This only happens whenmax (p(x � i jy ; x i )) is

constant for all prescribed values ofx i around the current optimum. In that

case, it can be shown thatP(x i ) / p(x i jy ) (seeMara et al., 2015). It is worth

specifying that this invariance ofmax (p(x � i jy ; x i )) with respect to the value

of x i does not mean thatp(x � i jy ; x i ) is independent ofx i . Let us consider the

example of the following target density:p(x1; x2j� 0; � ) = N (� 0; � ), with N

the bi-Gaussian density,� 0 the vector of means and� a given non-diagonal

covariance matrix. It is obvious thatp(x2j� 0; � ; x1) depends on the value of

x1. However,max (p(x2j� 0; � ; x1)) = 1 =2�
p

det � for any value ofx1. Thus,

for the considered target density, the posterior pdf ofx i , i = 1; 2, matches

its maximal conditional posterior density de�ned as,

� (x i ) =
P(x i )R+ 1

�1 P(x i )dx i

: (6)

From the MCPD draws, the integral in Eq. (6) is computed with the Simp-

son quadrature rule. By de�ning the vector of normalized weights as,w � =

p(x � jy )=
R+ 1

�1 P(x i )dx i , the maximal conditional posterior densities(xMCPD ; wMCPD )

and the MCMC draws (xMCMC ; wMCMC ) can be plotted on the same graph.

4.2. Predictive uncertainty

To obtain the predictive posterior density of an observation data y� given

the dataset at handy, the following integral must be calculated:

p(y� jy ) =
Z

p(y� jy ; x)p(xjy)dx (7)

p(y� jy ; x) measures how likely the model response value isy� given the set of

parametersx and the datasety . This integral merges the likelihood function
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and the parameter joint posterior pdf. Evaluating Eq. (7) allows assigning

uncertainty bounds to the model predictions. Assume that the assessment

of the MCPDs providesn draws, then with the MCPD approach Eq. (7) is

approximated by:

p̂(y� jy ) =
P n

k=1 wk
MCPD p(y� jy ; xk

MCPD )
P n

k=1 wk
MCPD

: (8)

with xk
MCPD the kth MCPD draw.

5. Numerical exercises

5.1. A 10-dimensional twisted Gaussian target distribution

For this �rst numerical exercise, we target the twisted Gaussian distribu-

tion proposed byHaario et al. (1999) given by,

p(xj� 0; � ) / N (� 0; � );

where N (� 0; � ) is the ten-dimensional Gaussian distribution (i.e. x =

(x1; : : : ; x10)) with mean � 0 = (0 ; � 0:1x2
1 + 10; 0; : : : ; 0) and covariance� =

diag(100; 1; : : : ; 1).

This target distribution is very challenging for both MCPD and MCMC

samplers because of the nonlinear (banana-shaped) relationship between(x1; x2).

The target distribution has only one optimum; that is,xMAP = (0 ; 10; 0; : : : ; 0).

Note that when P(x2) is assessed, the maximization of the conditional distri-

bution p(x � 2j� 0; � ; x2) can return three local optima:x1 2 f�
p

100� 10x2 � 0:5; 0;
p

100� 10x2 � 0:5g. Part 2 of the MCPD algorithm described above allows

retrieval of only one of them (depending on the initial guess) because it

is assumed, in this part, that the conditional distributions have only one

optimum. Hence, the MCPD sampler may fail at inferringP(x2) directly.

However, evaluating the MCPD ofx1� that is, maximizing p(x � 1j� 0; � ; x1)�
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gives x2 = 10 � 0:1x2
1. Thus, one obtains the banana-shaped relationship

between the two variables and can inferP(x2) subsequently.

The results are depicted in Figure2. They con�rm that the MCPD

sampler fails to infer the true MCPD of x2 (broken red line) because the

conditional maximization around the MAP estimate providesx1 = 0, which

is a local optimum whenx2 < 10. However, as expected,P(x2) can be

inferred from the conditional maximization ofp(x � 1j� 0; � ; x1) (continuous

red line). This result supports the idea that when an optimumis missed, it

can be retrieved during the other optimization steps.

The pairwise analysis of the MCPD draws reveals the banana-shaped re-

lationship betweenx1 and x2 (row #2 column #1 in Figure 2). Two curves

are depicted for(x1; x2), the �rst corresponding to the optimal sought values

of the parameterx2 for the sampled (prescribed) values ofx1, and the second

one corresponding to optimal values ofx1 for sampledx2. The MCPD of the

other parameters(x3; : : : ; x10) are found approximately Gaussian (MCPDs

beyondx3 are not reported in Figure2). An analysis of their pairwise scatter-

plots does not reveal other correlation structures. In fact, like the scatterplot

of (x1; x3), one observes two orthogonal lines that represent the optimal values

of x i versus prescribed values ofx j and optimal x j versus prescribedx i , re-

spectively. They indicate that prescribingx i and maximizingp(x � i j� 0; � ; x i )

always providesxMAP
� i (and vice versa).

Insert Figure 2 about here

This numerical exercise with the MCPD algorithm required approxi-

mately 900model calls to �nd the MAP estimate. We recall that, for this pur-

pose, the optimization program was repeatedN init = 20 times with di�erent

initial guesses. The conditional optimizations for inferring the MCPDs re-

quired around1; 000extra model calls. Distributing the independent searches
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of the MAP and then the independent calculations of the ten distinct MCPDs

over ten computers (or ten CPU cores) would yield an inexpensive total num-

ber of computational time units (CTU) of approximately 190.

We also assessedp(xj� 0; � ) with DREAM (ZS ) . For a fair comparison

with the MCPD approach, we launchedNc = 10 chains simultaneously. With

DREAM (ZS ) , it is possible to impose an initial proposal distribution. The

choice of the proposal distribution can have a substantial impact on the

length of the burn-in period. Following the work ofVrugt et al. (2009), we

chose:q(a; b) = N (b; 5I 10), with I 10 representing the 10-dimensional identity

matrix. First, a total number of 10; 000CTUs was chosen, which corresponds

to a total of 10� 10; 000model calls. As reported in Figure3, the R̂-statistic

of x1, x2 and x3 show that the overall chains have converged after20; 000

runs.

Figure 2 (diagonal plots) shows that the MCMC draws are located, as

expected, below the MCPD envelope. MCMC samples probable solutions,

when MCPD only seeks solutions that maximize the target distribution con-

ditioned onto one of the parameters (and the data). We note that the MCMC

draws of each parameter are spread over the uncertainty range delimited by

the MCPD draws. Both samples seem to satisfactorily represent the salient

feature of the target distribution. The comparison of the estimated densities

also indicates a good agreement between the two approaches,except for x2

(see Figure2 row #2, column #2). As already mentioned, � (x2) matches

the marginal posterior pdfp(x2j� 0; � ) if max (p(x � 2j� 0; � ; x2)) is constant.

However, it can be proven that

max (p(x � 2j� 0; � ; x2)) / e� 1
2 (� x2

2 � 0:1x2);

which depends on the value ofx2. Consequently, the MCPD ofx2 does

not match its marginal pdf. This explains the di�erence between the two
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densities in Figure2 (row #1, column #2).

Insert Figure 3 about here

5.2. An 11-dimensional multimodal target density

In this exercise, we consider the following multimodal target density:

p(x j� 1; � 2; � 3; C) =
1
6

N (� 1; 5C) +
2
6

N (� 2; 5I d) +
3
6

N (� 3; 5I d) (9)

whereN (� i ; 5I d) is the multi-Gaussian density of mean vector� i and covari-

ance5I d. I d, the d-dimensional identity matrix, indicates that the parameters

(x1; : : : ; xd) are independent in the second and third Gaussian densities in

Eq. (9).

C is a correlation matrix with null o�-diagonal elements except for C1;2 =

C2;1 = � 0:5 and C1;3 = C3;1 = 0:8. These non-null terms impose, for the

�rst Gaussian density in Eq. (9), a negative correlation betweenx1 and x2

and a strong positive correlation betweenx1 and x3. The three modes of

each parameter are grouped in the vectors of means� 1 = ( � 5; : : : ; 5), � 2 =

(1; : : : ; 11) and � 3 = (11; : : : ; 1).

In Mara et al. (2015), the MCPD sampler was faced with a similar tar-

get density with d = 25. It was shown that the MCPD did not match

the marginal pdf because the di�erent Gaussian densities inEq. (9) over-

lapped. Here, we consider a mildly dimensional case by setting d = 11. With

DREAM (ZS ) , eleven chains in parallel were run simultaneously to inferthe

target density in a maximal prescribed number of10; 000CTUs.

Figure 4 reports on the draws from the MCPD and MCMC samplers for

parametersx1, x2 and x3. Both samplers were able to retrieve the three

modes. As noted in the previous exercise, the MCMC draws are spread

beneath the MCPD envelope (diagonal plots of Figure4). Figure 5 shows
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that the three modes were located after about3; 000 runs, a relatively long

burn-in period. With the eleven chains, DREAM(ZS ) identi�ed two modes

of three at the beginning of the search (forx1 these two modes are(� 5; 11)

see Figure5), then it took about 3; 000CTUs to �nd the last mode (x1 = 1).

This burn-in period could have been reduced by increasing the number of

chains or by imposing the three modes as initial candidates.

The correlation structure between(x1; x2) and (x1; x3) for the mode as-

sociated with � 1 is con�rmed by the MCPD draws. The o�-diagonal plot in

row #2 and column #1 of Figure 4 shows that the MCPD draws close to

� 1 are located upon two non-orthogonal lines. We remind that these lines

are the optimal values ofx i for the prescribed values ofx j and optimal x j

for the prescribedx i . The negative slopes for the pair(x1; x2) indicates the

negative correlation between the parameters. Conversely,the pair (x1; x3)

shows positive correlation (row#3 , column #1 in Figure 4). Despite the

fact that MCMC and MCPD provide di�erent results (here, MCPD does not

match the marginal pdf), the MCPD sampler is able to assess the posterior

uncertainty range of the parameters which is an important feature of model

inversion.

Finally, it is worth mentioning that the MCPD sampler took about 140

runs to �nd the three modes and about1; 600 additional model calls to

evaluate all MCPDs in a sequential calculation. With11parallel sessions (for

11 parameters), the CTU would have been approximately156runs, which is

few compared with the3; 000CTU required by the burn-in period of MCMC

(see above). This result is conducive to perform a preliminarily search for all

local optima (as for the MCPD) before running DREAM(ZS ) . This should

alleviate the computational burden of the MCMC sampler by reducing the

burn-in period.
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Insert Figure 4 about here

Insert Figure 5 about here

5.3. Identi�cation of soil hydraulic parameters

5.3.1. Synthetic drainage experiment

Characterizing the hydraulic properties of soils is crucial to predict ground-

water resources in aquifers and forecast the future of contaminants in the soil.

Multistep out�ow drainage experiments are usually conducted to estimate

these parameters (van Dam et al., 1994; Eching et al., 1994; Vrugt and Bouten,

2002; Durner and Iden, 2011). In these experiments, a �ow cell �lled with

a saturated soil is drained by imposing multistep negative pressure heads

at the lower boundary of the column. The experimental deviceis generally

equipped with a tensiometer that measures the pressure headduring the ex-

periment. The out�ow volume of water is monitored automatically with an

electronic balance. Inverse modeling consists in identifying the soil hydraulic

properties from these measurements.

The �ow through the porous medium is governed by the nonlinear one-

dimensional Richard's equation:

@!
@t

=
@
@z

�
K (h)

�
@h
@z

� 1
��

; (10)

wheret (min) is time, z (cm) is the vertical coordinate (positive downward),

and K (cm.min� 1) is the unsaturated hydraulic conductivity. The water

content ! (cm3.cm� 3) and the pressure headh cm are the state variables.

In the present work,K (h) is modeled by the Mualem-van Genuchten (MvG)

retention curve (Mualem, 1976; van Genuchten, 1980),

K (Se) = ks � S�
e

�
1 �

�
1 � S1=m

e

� m
� 2

; (11)
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where ks (cm.min� 1) is the saturated hydraulic conductivity, and Se (� ) is

the e�ective saturation de�ned as follows:

Se =
! � ! r

! s � ! r
=

8
><

>:

1
(1 + j�h jn )m h < 0

1 h � 0
(12)

wherem = 1 � 1=n. The soil hydraulic parameters are the saturated hydraulic

conductivity ks (cm.min� 1), the saturated water content! s (cm3.cm� 3), the

residual water content ! r (cm3.cm� 3) and the MvG �tting coe�cients �

(cm� 1), n (� ) and � (� ).

Eqs. (10-12) are solved with a standard Galerkin �nite element method

in conjunction with the Newton linearization method associated with the pri-

mary variable switching method (Diersch and Perrochet, 1999; Hayek et al.,

2008). An implicit time scheme is used. The calculation of the partial deriva-

tives matrix @h=@x is computed analytically by solving the sensitivity equa-

tions of the discretized direct problem. The program also computes the

partial derivatives of the average water content with respect to the unknown

parameters at each time step (i.e. @�!=@x). The latter allows for the fast

convergence of the optimization procedure used in the MCPDsassessment.

We model a laboratory multistep out�ow drainage experimentof a column

of length L = 6 cm and diameterD = 8:5 cm. Synthetic data are obtained

by running the �ow model for a given input parameter set and noising the

model responses with independent Gaussian random noises. The responses

of interest that are used in the inverse modeling are the pressure headh at 3

cm below the top of the column (the corresponding noisy data is denotedyh)

and the average soil water content�! (data denoted y �! ) obtained from the

cumulative out�ow using the initial water content. The data are depicted in

Figure 6.

In the present application, the two data series(yh; y �! ) have been cor-
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rupted (see above) for each observation with an additive independent and

normally distributed error with variances (� 2
h)ex = 4 (cm2) and (� 2

�! )ex =

9:10� 6 (dimensionless) respectively. Under the assumption of independent

and uniform priors, the parameter joint posterior is written as:

p(x; � h; � �! jyh; y �! ) /
1

(� h � �! )N
exp

�
�

1
2

�
SSh(x)

� 2
h

+
SS�! (x)

� 2
�!

��
; (13)

whereSSh and SS�! are the sum of square errors of the pressure head and av-

erage water content, respectively. The random vectorx = ( ks; ! r ; ! s; �; n; � )

contains the soil hydraulic parameters. For the MCPD approach, maximiz-

ing the joint posterior pdf amounts to minimize the following weighted sum

of squaresW SS(x) =
�

SSh (x )

(� MAP
h )2 + SS�! (x )

(� MAP
�! )2

�
, with

�
� MAP

h

� 2
= SSh (x MAP )

N ,
�
� MAP

�!

� 2
= SS�! (x MAP )

N and N = 481.

The MAP estimate of the hydraulic parameters and error variances is

based on the following algorithm:

1. Set � MAP
h = � �

h = 1, � MAP
�! = � �

�! = 1.

2. Find the current MAP estimate xMAP by minimizing the weighted sum

of squares,xMAP = argmin
x

W SS(x)

3. Update the error variances,
�
� MAP

h

� 2
= SSh (x MAP )

N and
�
� MAP

�!

� 2
=

SS�! (x MAP )
N .

4. If � MAP
h � � �

h and � MAP
�! � � �

�! , then stop. Otherwise set� �
h = � MAP

h

and � �
�! = � MAP

�! and resume from2.

Step 2 is performed with the Levenberg-Marquardt algorithm (Levenberg,

1944; Marquardt, 1963) which requires an initial solution (starting point).

With the MCPD approach, the search of the MAP estimate is performed

N init = 20 times with di�erent initial solutions.

With both the MCMC and MCPD samplers, eight unknowns were sought,

the six hydraulic parametersx = ( ks; ! r ; ! s; �; n; � ) as well as the two error
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variances� 2
h (cm2), � 2

�! (� ). To speed up the MCPD evaluation, we took

advantage that their estimations were independent. The eight MCPDs of in-

terest were determined simultaneously on a multicore computer. The model

was also inverted with DREAM(ZS ) for which eight chains were run simulta-

neously for a total maximum number of64; 000model calls (8; 000per chain).

To accelerate the convergence of the chains, the prior uncertainty range as-

signed to each parameter was set to the posterior plausible range obtained

after the MCPD assessment (see Table1).

Insert Figure 6 about here

5.3.2. Results and discussion

The maximal conditional posterior densities are gathered in Figure 7 as

well as the parameter pairwise correlations. The bell-shaped posterior densi-

ties mean that the optimal parameter set is well identi�ed. We note that the

parameters are highly correlated, which indicates that only a small volume of

the input space contains the plausible parameter sets (see also Table1). The

posterior uncertainty range of the saturated water content! s is particularly

narrow (i.e. well-identi�ed).

The saturated hydraulic conductivity ks is positively correlated with ! s,

� , � and negatively correlated with! r and n. The correlation betweenks

and ! r indicates that when �xing ks and maximizing the conditional pdf,

the estimate of ! r is localized upon a curve (see Figure7, row #2 , column

#1 ). This curve is slightly di�erent when �xing ! r and investigating the

conditional estimate of ks. Conversely, the correlation betweenks and �

is so strong that the two curves coincide (row#1 , column #4 ). We can

conclude that ks and � are virtually fully correlated. The sets of variables

(! r ; n; � ) and (! s; � ) are also fully correlated.
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The MCMC draws are depicted in the diagonal plots (Figure7). We

see that the draws are encompassed within the MCPD curves. The MCMC

algorithm has virtually converged toward the true distribution after sampling

8 � 8; 000draws. An initial attempt with 8 � 4; 000draws was unsuccessful.

However, it can be noticed that the MCMC sampler hardly drawsvalues of

n > 1:3. Because of the correlations mentioned above, this also impacts the

sampling of! r and � . As a consequence, Figure7 reveals slight discrepancies

between the densities of these parameters estimated with the MCPD sampler

and the MCMC sampler. These results are also con�rmed in Table 1, which

reports the posterior uncertainty ranges. Note that the MAPestimates of

the two samplers are similar and very close to the true solution xex that was

used to generate the data.

The MCPD sampling required about7; 500model calls; however, because

of the parallel computation, the CTU was only approximately2; 000, which

corresponded to the estimate of! s's MCPD. The assessment of the remaining

MCPDs required far less computational e�orts.

Finally, the predictive uncertainty has been assessed withthe stochastic

MCMC sample of size16; 000 and the 185 probabilistic MCPD draws. The

95% credible intervals are depicted in Figure6. There is a good agreement

between the two approaches. The uncertainty ranges are verynarrow be-

cause many data were used for the statistical calibration (approximately one

thousand).

Insert Figure 7 about here

6. Conclusions

In this work, a comparison of two sampling techniques for statistical in-

version of computer models was carried out. The �rst technique is the well-
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Parameter ks ! r ! s � n �

Unit [cm/min] [cm 3/cm 3] [cm3/cm 3] [cm� 1] [-] [-]


 post
MCPD [0.02,0.12] [0.05,0.18] [0.42,0.435] [0.008,0.011] [1.20,1.35] [-0.2,0.8]


 post
MCMC [0.03,0.08] [0.08,0.14] [0.42,0.435] [0.008,0.011] [1.22,1.29] [0.08,0.58]

xex 0.0700 0.0900 0.4300 0.0100 1.2300 0.5000

xMAP
MCPD 0.0419 0.1264 0.4267 0.0090 1.2762 0.1917

xMAP
MCMC 0.0470 0.1176 0.4274 0.0092 1.2644 0.2683

Table 1: Parameters of the unsaturated �ow model with their posterior uncertainty ranges

for both MCPD and MCMC solutions. The best parameters of the MCPD and MCMC

solutions are also reported. xex is the set of parameters used to de�ne the synthetic

reference data of the soil drainage experiment.

known Markov Chain Monte Carlo (MCMC) sampler and the secondone

is a recent approach called the Maximal Conditional Posterior Distribution

(MCPD) sampler.

MCMC samples stochastic draws that converge toward the desired target

distribution. DREAM (ZS ) , the MCMC sampler used in the present work,

is a user-friendly �exible software for statistical inverse problems. It can

be easily employed to infer any target distributions and does not require

to modify the computer model under assessment. Several chains can be

launched simultaneously to reduce the computational burden inherent to

MCMC samplers but they do not evolve independently.

MCPD only samples probabilistic draws such that, for a givenparameter

set at a prescribed value, the other parameters maximize theconditional

target distribution. Although the MCPD of a given parameter does not

always match its posterior probability density function (which is inferred with

MCMC), the MCPD sampler is a valuable tool for statistical inverse problems

if the target distribution has a �nite number of modes. For such problems, the

25



e�ectiveness of MCPD sampler enhances if the Jacobian matrix is accurately

and e�ciently computed which may require to modify the computer model.

In this study, the comparison between the two samplers was �rst carried

out for two analytical distributions with collinearity and multimodality. Then

they were employed to assess the posterior pdf of soil hydraulic parameters

from an arti�cial multistep out�ow experiment. For the stud ied problems,

a good agreement is observed between the results of the two approaches.

The MCPD approach was found to be less computationally demanding than

DREAM (ZS ) mainly because the MCPD assessment of parameters can be

performed independently and simultaneously.

Finally, it has to be mentioned that MCMC provides stochastic draws

that change if the calculations are repeated. MCPD providesprobabilistic

draws that remain unchanged if one restarts the calculations for the same

problem without changing the settings of the algorithm. This can be a prob-

lem if, posterior to the calibration, one wants to perform the uncertainty

and sensitivity analysis of a model response that has not been used for the

calibration. The authors are currently developing an algorithm to generate

stochastic samples from MCPD draws.
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Figure 1: Re�nement of the MCPD in the third part of the algori thm. The circle plots

represent the MCPD assessment ofx i after the second part of the calculations. The crosses

indicate the next draws selected in the third part of the algorithm.
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Figure 2: Assessment of the probability densities of the parameters in the twisted-Gaussian

function. The continuous and broken red lines represent theMCPD draws while the

black dots and broken lines represent the MCMC draws. The diagonal plots represent

the estimated posterior densities. The o�-diagonal plots depict the pairwise correlations.

Note the banana-shaped relationship between(x1; x2) (row #2 , column #1 ).
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Figure 3: Evolution of the Gelman-Rubin R̂-statistics for the convergence diagnostic of

the �rst three parameters. The convergence criterion is achieved if the chains reach the

threshold in broken-line (R̂ � 1:2).
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