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Abstract

Statistical calibration of model parameters conditioned @ observations is
performed in a Bayesian framework by evaluating the joint psierior prob-
ability density function (pdf) of the parameters. The posteor pdf is very
often inferred by sampling the parameters with Markov ChairMonte Carlo
(MCMC) algorithms. Recently, an alternative technique to alculate the so-
called Maximal Conditional Posterior Distribution (MCPD) appeared. This
technique infers the individual probability distribution of a given parame-
ter under the condition that the other parameters of the modeare optimal.
Whereas the MCMC approach samples probable draws of the paraters,
the MCPD samples the most probable draws when one of the paratars is
set at various prescribed values. In this study, the resultsf a user-friendly
MCMC sampler called DREAMs) and those of the MCPD sampler are
compared. The di erences between the two approaches are hiighted before
running a comparison inferring two analytical distributions with collinearity
and multimodality. Then, the performances of both samplerare compared

on an arti cial multistep out ow experiment from which the soil hydraulic
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parameters are inferred. The results show that parameter dnpredictive
uncertainties can be accurately assessed with both the MCM&hd MCPD
approaches.

Keywords: Bayesian parameter estimation, parameter uncertainty,
predictive uncertainty, MCPD sampler, DREAMzsy MCMC, soil hydraulic

parameter identi cation
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1. Introduction

The validation of computer models is an essential task to ingase their
credibility. One of the most important exercises in the vatlation frame-
work is to check whether the computer model adequately reents reality
(Bayarri et al., 2007. This is achieved by comparing model predictions to
observation data. This exercise generally leads to modellibaation because
the model parameters are usually poorly known a priorii.e. before col-
lecting data). Good practice in calibration of computer modls consists of
searching for all parameter values that satisfactorily t e data, thus de-
termining their plausible range of uncertainty. This can beachieved in a
Bayesian framework in which the prior knowledge about the nazl and the
observed data are merged to de ne the joint posterior probality distribu-
tion function (pdf) of the parameters. The issue is then to &ess the joint
posterior pdf.

The inference of model parameter posterior pdf by means of kkav
chain Monte Carlo (MCMC) sampling techniques Ketropolis et al.,, 1953
Hastings 1970 has received much attention in the last two decades. MCMC
explores the region of plausible values in the parameter sgaand provides
successive parameter draws directly sampled from the tatgeint pdf. Some
selection criteria are used to ensure that the successiveadss in the chain
improve. This means that, throughout the sampling procesgrobable draws
with respect to the target distribution are more likely drawn. Many develop-
ments and improvements have been proposed to accelerate MCMonver-
gence.

Grenander and Miller (1999 developed the Langevin MCMC, which ac-
celerates the convergence of the chains by exploiting thecédoian of the tar-

get distribution. This MCMC sampler may require that the conputer model



provide the local sensitivities to compute the Jacobian ofhe target distri-
bution. In practice, modelers generally estimate the graeint by nite dif-
ferences via a surrogate or coarse-scale model to allevitite computational
burden (see for instanceDostert et al., 2009 Angelikopoulos et al, 2015.
Haario et al. (200§ developed the Delayed Rejection Adaptive Metropolis
(DRAM), an algorithm that increases the rate of acceptancefMCMC draws
by exploiting the delayed rejection trick proposed ifTierney and Mira (1999
and the adaptive Metropolis algorithm ofHaario et al.(200]). ter Braak and Vrugt
(2009 developed the Di erential Evolution-Markov Chain (DE-MC) algo-
rithm, which merges the di erential evolution method ofter Braak (2006
and the Shu ed Complex Evolution Metropolis (SCEM) method proposed
by Vrugt et al. (2003. DREAM improves the e ciency of MCMC by run-
ning multiple chains in parallel for a wider and quicker exgration of the
parameter space in addition to a self-adaptive randomizedilsspace sam-
pling (Vrugt et al., 2009. Recently, the algorithm of DREAM has been em-
bedded in UCODE_2014, dedicated to inverse modeling_( et al., 2014.
Laloy and Vrugt (2012 then developed DREAMys), that ensures conver-
gence with fewer chains in parallel than DREAM.

Recently, Mara et al. (2015 proposed a new probabilistic approach to the
inverse problem whose main idea is to maximize the joint pasior pdf of
a parameter set with one selected parameter sampling sucies prescribed
values. This provides the so-called Maximal Conditional Rerior Distribu-
tion (MCPD) of the selected parameter. The main advantage dhe recent
MCPD technique is that parameter distributions can be infered indepen-
dently. Therefore, the MCPDs can be simultaneously evaluatl on multicore
computers (or on multiple computers). This drastically redces the compu-

tational e ort in terms of computational time units (CTU).



The MCPD and MCMC samplers assess the same target distribat,
namely, the parameter joint posterior pdf. Neverthelesshe two samplers do
not provide the same results. In general, the MCPD of a singlegarameter
does not correspond to its marginal posterior distribution In addition, the
MCPD sampler only provides a few sets of probable draws whidCMC
generates a large number of draws sampled in agreement withettarget
distribution. Nevertheless and as advocated in this studypoth samplers
are valuable Bayesian methods for statistical inverse prt@ms. Hence, the
main objective of the present work is to compare the ability oMCPD and
DREAM zsy MCMC samplers to quantify model output and model param-
eter uncertainties.

The paper is organized as follows: Sectidsummarizes the inversion in a
Bayesian framework and recalls the principles of the recelmtCPD technique.
The general algorithms ruling the DREAMzsy MCMC and MCPD samplers
are introduced in Section3. In Section 4, we discuss on the analogy and
the di erences between MCPD and MCMC draws. Sectiob, emphasizes
the comparison between MCMC and MCPD samplings: 1) for the version
of multimodal and correlated functions, and 2) for the evalation of soll
hydraulic properties from a synthetic one-dimensional diaage experiment.

Finally, a summary with conclusions is presented in Sectiof

2. Inverse Problem

2.1. Bayesian inference

a computer model is inferred from a set of observation data using the

Bayesian inference, which de nes the conditional joint pasrior pdf as fol-



lows:
p(xjy) /' p(yjx)p(x); (1)

where p(x) is the prior density that characterizes the investigator'sbeliefs
about the parameters before collecting the new observatimnand p(yjx) is
the likelihood function, which measures how well the modelts the data.

The parameter set that maximizes Eg. 1), namely:
xMAP = argmax p(xjy); (2)
X

is called the Maximum A Posteriori (MAP) estimate of the paraneters. Itis
the most probable parameter set given the data and can be infed via an
optimization technique. The marginal posterior pdf that claracterizes the

uncertainty of a single parameter is de ned by the followingntegral:
Z

p(xijy) = p(xjy)dx i;  8i=1;:::;d 3)
where x ; represents all the parameters except;. Usually, the integral in
Eq. (3) is evaluated by a multidimensional quadrature method or bylirect

summations in a large sample gi(x;jy) obtained, for instance, via an MCMC

technique.

2.2. Maximal conditional posterior distribution

Mara et al. (2019 de ne the maximal conditional posterior distribution

of x; as follows:
P(xi) = max (p(x ijy:xi)) pxijy): (4)

An informal de nition can be given by stating that a point estimate of the
MCPD is the maximal value reached by the joint pdf Eq. {) for a given (pre-

scribed) value of one parameterig. x;). This maximal value, in the context



of model inversion, assumes that the sat ; maximizes Eq. (), knowing that
X;j is prescribed. By applying the axiom of conditional probabities to Eq. (4),
it can be stated that maxfp(x ijy;Xi)g p(xijy) = maxy  fp(Xx i;xijy)g.
Therefore, the MAP estimate (when it exists) belongs to the K@PD of all
parameters.

In view of the MCPD de nition, especially its interpretation in terms of
the x; draws for the other parameters at their optimal values, the @PD
can provide information on the uncertainty attached to a sigle parameter.
Obtaining uncertainties for all parameters is simply achied by calculating

the individual MCPD of all parameters.

3. Parameter uncertainty assessment

3.1. The DREAM(zsy MCMC sampler

The MCMC samplers generate successive draws of parametets dbat
converge toward the posterior densityp(xjy). Several methods are reported
in the literature (e.g. Grenander and Miller, 1994 Haario et al,, 2006 Vrugt et al.,
2009 Laloy and Vrugt, 2012, but they all rely on the Metropolis-Hasting al-

gorithm, which proceeds according to the following scheaul

(i) Choose an initial estimate of the parameter sex® and a proposal dis-
tribution q(a;b) that randomly derives the parameter seta from an

input b.

(i) From the current set x¥, generate a new candidate with the generator

a(x ;x¥).

(i) Compute = p(x jy)p(x  x¥)=p(x¥jy)p(xk x ), wherep(b a)
is the transition probability from individual a to individual b associated



with the generator gq. Additionally, draw a random numberu 2 [0; 1]

from a uniform distribution.

(iv) If u, setx**! = x , otherwise, setxk** = xX,

number of iterationskax IS reached.

The calculation ofp(x jy) in (iii) requires that the forward model be run
for the set of parameters< . This is the most expensive computational step.
The crux step at the origin of the computation costs is the sfe(iv), which
may reject many candidates. The choice of the generatagf) is a key feature

for the acceptance rate.

converge for its last elements toward the targeted posteridistribution p(xjy)

(Geyer, 1992 Robert and Casella 2004. Unfortunately, the number of nec-
essary draws cannot be guessed in advance. In practice, oaegularly eval-
uates the R-statistic of Gelman and Rubin (1999 and decides whether to
stop the sampling procedure. Usually, the rst draws of theltains are over-
looked because they correspond to a so-called burn-in periwithin which

the Markov process wanders in the entire parameter space. #oof the
improvements brought to the MCMC samplers in the last decadaimed at
diminishing this burn-in period.

In this study, we use the DREAMgs) software developed by aloy and Vrugt
(2012. The algorithm relies on a multiple-chain method that comptes dif-
ferent trajectories (sub-chains) in parallel to better exjpre the parameter
space when seeking the target posterior pdf. A new candiddta each chain
is drawn from an archive of past states (denoted) by using the di erential

evolution algorithm and a snooker updater developed ligr Braak and Vrugt



(2008. These two algorithms ensure that the new candidates havée de-
sired scale and orientation. Note that the sample of past dies Z plays the
role of the generatorg (see above) and is periodically archived and updated.
DREAM (zs) also uses a self-adaptive randomized subspace sampling exd
plicitly discards aberrant trajectories in the parameter pace. The initial
candidates can be sampled from any desired distributionsn particular, the
user can impose an initial proposal distributionq like we did in the rst
two numerical exercises in 8. The interested readers are referred torugt
(2016 for more details about the use and implementation of DREAM iad
DREAM (zs,.

3.2. The MCPD sampler

As compared to the MCMC sampler, the MCPD sampler is thoroudi
described because it is a very recent approach. The algorthused to com-
pute the MCPDs is divided into three parts: in part 1 (step (i) below), all
the probable optima ofp(xjy) are investigated. In part 2 (steps (ii-v) be-
low), the MCPD of the current parameter around each probableptimum is
roughly estimated. In part 3, the discretization of the MCPDis re ned. It is
worth noting that in parts 2 & 3, because the conditional optnizations are
performed around a local optimum, it is assumed that there isnly a single

optimum. The algorithm proceeds as follows:
() Find by optimization all probable optimal candidates (including the
according to the following criterion: p(x°PtMjy)=p(xMAPjy) > 0:01
with xMAP = maxfp(x°P*™Mjy); m = 1;:::;Mg. Seti = 1 for the

current parameterx; and de ne a maximum number of iterations for

the re nement of the MCPDs, e.g. N;; = 10.
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(i) Set m =1 for the current optimal candidate x°Pt™,

(iii) Set the iteration number k =1 and the initial discretization step =
0:10.

(iv) Set x, = x®™@1 k) and nd x =(x ;;x ) by solving Eq. @).
This is achieved by maximizingp(x jy;x;) for x; = xi" and x; = x;

successively.

(v) If p(x jy)=p(xMAPjy) > 0:01, setk = k+ 1 and go to iv); else, set

it =1 and continue

asx/ < x* Re ne the current MCPD sampling by nding x**! =

(x**1: xk*1) such that x*** = argmax p(x ijy;x***) , with

X

8 '
2y o XX
| 2 (5)
Z kn = argmax jP(xK*t) P (x)j
ki

(vii) Set k = k+1 and add x¥*1;P(xk*!) to the subsetfxX;P(x);k =

(viii) Set m = m + 1 (change of local optimum). Ifm M go to iii);

otherwise continue

(ix) Seti = i+1 (next parameter) and ifi  dresume from (ii); otherwise,

stop.

Unlike MCMC, the MCPD relies on an optimization technique insteps (i),
(iv) and (vi). The computational e ort of the algorithm resides in these

steps. In the numerical exercises below, the optimizatiorere performed

11



with a gradient-based algorithm. Nevertheless, MCPD caltations are com-
patible with any optimization algorithm and could use, for nstance, global
optimization techniques that do not rely on gradients. A grdient-based
method requires that an initial guess of the solutiox® be provided before-
hand. To nd all local optima, we systematically performN;j,; = 20 opti-
mization procedures with di erent initial solutions randomly drawn within
the parameters' prior (.e. x° p(x)).

It is worth noting that the convergence of gradient-based gbrithms ac-
celerates if the Jacobian of the target pdf is also providedThe number
of initial optimizations Nj,; is a matter of choice as well as the number of
re nement points N;j;. They condition the total computational costs. Our
experience suggests thall; = 10 is su cient to obtain accurate results (see
alsoMara et al., 2019.

The rough estimation of the current MCPD is performed in the scond
part of the algorithm (from (ii) to (v)). In step (v), at the r st iteration
(k = 1) for the current variable x;, if p(x jy) p(xMAPjy), it can mean that
P(xj) is at. It is then recommended that the size step be increasefe.g.
set =1 5 ). Conversely, ifp(x jy) 0, P(x;) can be very narrow and
one must decrease the current size step.¢. set = =1.5).

The strategy to re ne the MCPD assessment given in EqX5) is illustrated
in Figure 1. After the second part of the algorithm, one obtains a rough
discretization of the MCPD (in circles). Then, according tcEqg. (5), the next
prescribed value ofx; (i.e. x!‘*l) is determined. The latter is chosen where
the gap between two successive MCPD values is maximal. In aiioh to the
above schedule, one can mention that the algorithm is set up sample the
values of the parameterx; in the vicinity of each probable local optimum.

In complex problems, it is not ensured that any optimizatiortechnique will

12



retrieve all local optima. However, some previous tests skied that when a
local optimum has been missed, it is often retrieved in steffis) or (vi) when

sampling the MCPDs by optimizing the conditional pdfp(x ijy;X;).

Insert Figure 1 about here

4. Computational issues

4.1. MCPD versus MCMC draws

By de nition, the MCMC and MCPD samplers provide di erent results.
Nevertheless, both approaches assess the same target ttigtion, namely,
the parameter posterior pdfp(xjy). The MCMC sampler provides a large
set of candidates and their associated weigh{Xvcmc ; P(Xmeme JY)) while
the MCPD sampler only provides a small set of draw& wcep ; P(Xmcep JY)) -
The MCMC draws Xycmc represent a stochastic sample of the parameter
values distributed with respect top(xjy). The MCPD samplexycpp IS a set
of probabilistic draws of the parameter values.

Regarding the implementation of the two algorithms, the MCNC DREAM (25,
sampler is much easier to plug into a given computer model. [HRAM (zs)
does not need for modi cations of the computer model but onlgequires that
the target distribution be de ned. The e ciency of the MCPD sampler is
enhanced if the partial derivatives (of the model response.nt. the param-
eters) are also provided by the computer model. Otherwisehe use of the
nite-di erences approach to estimate the partial derivatves deteriorates the
performance of the MCPD calculations. Typically, the numbeof model calls
is multiplied by the number of parameters. This is an importat feature to
be aware of before using the MCPD approach for inverse probis. In the

following numerical exercises, the partial derivatives arsystematically com-
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puted by the forward models. This slightly increases the cgputational time
of one model run.

The MCPD of a given parameter, sayP (Xx;), does not always match its
posterior marginal pdfp(x;jy). This only happens whemax (p(X ijy; X)) Is
constant for all prescribed values o%; around the current optimum. In that
case, it can be shown thaP (x;) / p(xijy) (seeMara et al., 2019. Itis worth
specifying that this invariance ofmax (p(x ijy;Xi)) with respect to the value
of x; does not mean thatp(x ijy;X;) is independent ofx;. Let us consider the
example of the following target density:p(X1;X2] o; )= N( o ), with N
the bi-Gaussian density, , the vector of means and a given non-diagonal
covariance matrix. It is obvious thatp(x,j o; ;X1) depends on the value of
X1. However,max (p(Xz] o :X1))=1=2 b det for any value ofx;. Thus,
for the considered target density, the posterior pdf oX;, i = 1;2, matches
its maximal conditional posterior density de ned as,
P(xi) .

(Xi)z Il P(Xi)dXi.

(6)

From the MCPD draws, the integral in Eqg. 6) is computed with the Simp-
son quadrature rule. By de ning the vector of normalized weihts as,w =
R,
p(x jy)= ! P (x;)dx;, the maximal conditional posterior densitie$Xmcpp ; Wmcep )

and the MCMC draws (Xmcme ; Wueme ) can be plotted on the same graph.

4.2. Predictive uncertainty

To obtain the predictive posterior density of an observatio datay given

the dataset at handy, the following integral must be calculated:
Z

p(y jy) = p(y jy;x)p(xjy)dx (7)

p(y jy;Xx) measures how likely the model response valueyisgiven the set of

parametersx and the datasety. This integral merges the likelihood function
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and the parameter joint posterior pdf. Evaluating Eq. ¥) allows assigning
uncertainty bounds to the model predictions. Assume that tb assessment
of the MCPDs providesn draws, then with the MCPD approach Eq. ) is

approximated by:

E:l W;_ijCPD ply Jy; XK/ICPD ):

n K
k=1 Wmcpp

ply Jy) = (8)

with X§cpp the k™ MCPD draw.

5. Numerical exercises

5.1. A 10-dimensional twisted Gaussian target distributio

For this rst numerical exercise, we target the twisted Gausian distribu-

tion proposed byHaario et al. (1999 given by,

PXj ov )IN (o0 )

where N ( ,; ) is the ten-dimensional Gaussian distribution i(e. x

(X1;:::;X10)) with mean ,=(0; 0:1x2+10;0;:::;0) and covariance
diag(10Q1; :::;1).
This target distribution is very challenging for both MCPD and MCMC

samplers because of the nonlinear (banana-shaped) relasbip between(x; X»).

Note that when P (x,) is assessed, the maximization of the conditional distri-

bution p(x 2] o ;X2) can return three local optima:x; 2 f p100 1x, 050

P 100 10x, 0:5g. Part 2 of the MCPD algorithm described above allows

retrieval of only one of them (depending on the initial gue}sbecause it
is assumed, in this part, that the conditional distributiors have only one
optimum. Hence, the MCPD sampler may fail at inferringP (x,) directly.

However, evaluating the MCPD ofx; that is, maximizing p(X 1j o ;X1)
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givesx, = 10 0:1x2. Thus, one obtains the banana-shaped relationship
between the two variables and can infeP (x,) subsequently.

The results are depicted in Figure2. They conrm that the MCPD
sampler fails to infer the true MCPD ofx, (broken red line) because the
conditional maximization around the MAP estimate providesx; = 0, which
is a local optimum whenx, < 10. However, as expectedP(x;) can be
inferred from the conditional maximization ofp(x 1j o; ;Xi1) (continuous
red line). This result supports the idea that when an optimums missed, it
can be retrieved during the other optimization steps.

The pairwise analysis of the MCPD draws reveals the bananaaped re-
lationship betweenx; and x, (row #2 column#1 in Figure 2). Two curves
are depicted for(xq; X;), the rst corresponding to the optimal sought values
of the parameterx, for the sampled (prescribed) values of;, and the second

one corresponding to optimal values of; for sampledx,. The MCPD of the

beyondxs are not reported in Figure2). An analysis of their pairwise scatter-
plots does not reveal other correlation structures. In factike the scatterplot
of (X1; X3), one observes two orthogonal lines that represent the optatvalues
of x; versus prescribed values of; and optimal x; versus prescribed;, re-
spectively. They indicate that prescribingx; and maximizingp(X ij o; ;Xi)

always providesxMA” (and vice versa).
Insert Figure 2 about here

This numerical exercise with the MCPD algorithm required aproxi-
mately 900model calls to nd the MAP estimate. We recall that, for this pur-
pose, the optimization program was repeatel;,; =20 times with di erent
initial guesses. The conditional optimizations for infeing the MCPDs re-

quired around1; 000extra model calls. Distributing the independent searches
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of the MAP and then the independent calculations of the ten dtinct MCPDs
over ten computers (or ten CPU cores) would yield an inexpens total num-
ber of computational time units (CTU) of approximately 190.

We also assessef(x] o; ) with DREAM (zs). For a fair comparison
with the MCPD approach, we launched\. = 10 chains simultaneously. With
DREAM (zs), it is possible to impose an initial proposal distribution. The
choice of the proposal distribution can have a substantiaipact on the
length of the burn-in period. Following the work ofVrugt et al. (2009, we
chose:q(a;b) = N (b; 5l 1), with 1o representing the 10-dimensional identity
matrix. First, a total number of 10, 000CTUs was chosen, which corresponds
to a total of 10 10;000model calls. As reported in Figures, the R-statistic
of X1, X, and x3 show that the overall chains have converged aft€t0; 000
runs.

Figure 2 (diagonal plots) shows that the MCMC draws are located, as
expected, below the MCPD envelope. MCMC samples probablelgmns,
when MCPD only seeks solutions that maximize the target digbution con-
ditioned onto one of the parameters (and the data). We note &t the MCMC
draws of each parameter are spread over the uncertainty ramglelimited by
the MCPD draws. Both samples seem to satisfactorily reprasethe salient
feature of the target distribution. The comparison of the ésnated densities
also indicates a good agreement between the two approachescept for x,
(see Figure2 row #2, column #2). As already mentioned, (X,) matches
the marginal posterior pdfp(xzj o; ) if max(p(X 2 o ;X2)) IS constant.

However, it can be proven that
max (p(X 2f o ;X2))/ e 5( 3 olxe).

which depends on the value ok,. Consequently, the MCPD ofx, does

not match its marginal pdf. This explains the di erence between the two
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densities in Figure2 (row #1, column #2).
Insert Figure 3 about here

5.2. An 11-dimensional multimodal target density

In this exercise, we consider the following multimodal taeg density:
1 . . . 1 . 2 . 3 .
pP(Xj 15 2 3:C)= éN ( 1;5C)+ éN ( 2:5lq) + éN ( »51a) (9)

whereN ( ;;5l4) is the multi-Gaussian density of mean vector ; and covari-

ancebl 4. 14, the d-dimensional identity matrix, indicates that the parametes

C is a correlation matrix with null o -diagonal elements excet for Cy., =
Cy1 = 05andCy3 = C3p = 0:8 These non-null terms impose, for the
rst Gaussian density in Eq. (9), a negative correlation betweerx; and x;
and a strong positive correlation betweerx; and x3. The three modes of

each parameter are grouped in the vectors of meangs =( 5;:::;5), ,=

In Mara et al. (2019, the MCPD sampler was faced with a similar tar-
get density with d = 25. It was shown that the MCPD did not match
the marginal pdf because the di erent Gaussian densities ikg. (9) over-
lapped. Here, we consider a mildly dimensional case by sagid = 11. With
DREAM (zs), eleven chains in parallel were run simultaneously to inf¢he
target density in a maximal prescribed number of0; 000 CTUs.

Figure 4 reports on the draws from the MCPD and MCMC samplers for
parametersx;, X, and x3. Both samplers were able to retrieve the three
modes. As noted in the previous exercise, the MCMC draws arpread

beneath the MCPD envelope (diagonal plots of Figurd). Figure 5 shows
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that the three modes were located after abous; 000 runs, a relatively long
burn-in period. With the eleven chains, DREAMzs, identi ed two modes
of three at the beginning of the search (fok; these two modes ar¢ 5;11)
see Figureb), then it took about 3; 000CTUs to nd the last mode (x; = 1).
This burn-in period could have been reduced by increasing éhnumber of
chains or by imposing the three modes as initial candidates.

The correlation structure between(xi; X,) and (x1; x3) for the mode as-
sociated with ; is con rmed by the MCPD draws. The o -diagonal plot in
row #2 and column#1 of Figure 4 shows that the MCPD draws close to

, are located upon two non-orthogonal lines. We remind that #se lines
are the optimal values ofx; for the prescribed values ok; and optimal x;
for the prescribedx;. The negative slopes for the pai(xs; X,) indicates the
negative correlation between the parameters. Converselyje pair (X1; X3)
shows positive correlation (row#3, column #1 in Figure 4). Despite the
fact that MCMC and MCPD provide di erent results (here, MCPD does not
match the marginal pdf), the MCPD sampler is able to assess ¢hposterior
uncertainty range of the parameters which is an important f&ture of model
inversion.

Finally, it is worth mentioning that the MCPD sampler took about 140
runs to nd the three modes and aboutl; 600 additional model calls to
evaluate all MCPDs in a sequential calculation. WithL1 parallel sessions (for
11 parameters), the CTU would have been approximately56runs, which is
few compared with the3; 000CTU required by the burn-in period of MCMC
(see above). This result is conducive to perform a preliminiy search for all
local optima (as for the MCPD) before running DREAM;zs). This should
alleviate the computational burden of the MCMC sampler by réducing the

burn-in period.

19



Insert Figure 4 about here
Insert Figure 5 about here

5.3. Identi cation of soil hydraulic parameters
5.3.1. Synthetic drainage experiment

Characterizing the hydraulic properties of soils is cruci&o predict ground-
water resources in aquifers and forecast the future of conténants in the soil.
Multistep out ow drainage experiments are usually conduad to estimate
these parameters\an Dam et al, 1994 Eching et al, 1994 Vrugt and Bouten,
2002 Durner and Iden 201]). In these experiments, a ow cell lled with
a saturated soil is drained by imposing multistep negativerpssure heads
at the lower boundary of the column. The experimental devices generally
equipped with a tensiometer that measures the pressure heddring the ex-
periment. The out ow volume of water is monitored automatially with an
electronic balance. Inverse modeling consists in identifig the soil hydraulic
properties from these measurements.

The ow through the porous medium is governed by the nonlingaone-

dimensional Richard's equation:

@ _ © @h ,
o @M 4, 1 (10)

wheret (min) is time, z (cm) is the vertical coordinate (positive downward),
and K (cm.min 1) is the unsaturated hydraulic conductivity. The water
content ! (cm3.cm 3) and the pressure heach cm are the state variables.
In the present work,K (h) is modeled by the Mualem-van Genuchten (MvG)

retention curve (Mualem, 1976 van Genuchten 1980,

2
K(Se)=ks S, 1 1 s=™ (11)
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where ks (cm.min 1) is the saturated hydraulic conductivity, and S, ( ) is

the e ective saturation de ned as follows:

> 1
L T S TN ) L (12)
o ! >
s T 1 h 0

wherem =1 1=n. The soil hydraulic parameters are the saturated hydraulic
conductivity ks (cm.min 1), the saturated water content! s (cm3.cm 2), the
residual water content!, (cmi.cm 3) and the MvG tting coe cients

(cm Y, n( Yand ().

Egs. (10-12) are solved with a standard Galerkin nite element method
in conjunction with the Newton linearization method assoeited with the pri-
mary variable switching method Diersch and Perrochet 1999 Hayek et al,
2009. An implicit time scheme is used. The calculation of the pdial deriva-
tives matrix @ h=@is computed analytically by solving the sensitivity equa-
tions of the discretized direct problem. The program also agputes the
partial derivatives of the average water content with resps to the unknown
parameters at each time stepife. @=@x). The latter allows for the fast
convergence of the optimization procedure used in the MCP2ssessment.

We model a laboratory multistep out ow drainage experimenbf a column
of lengthL = 6 cm and diameterD = 8:5 cm. Synthetic data are obtained
by running the ow model for a given input parameter set and nising the
model responses with independent Gaussian random noisedieTresponses
of interest that are used in the inverse modeling are the prasre headh at 3
cm below the top of the column (the corresponding noisy data denotedyy,)
and the average soil water content (data denotedy, ) obtained from the
cumulative out ow using the initial water content. The data are depicted in
Figure 6.

In the present application, the two data serieqyy;y:) have been cor-
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rupted (see above) for each observation with an additive ighendent and
normally distributed error with variances ( 2)®* = 4 (cm?) and ( 2)® =
9:10 8 (dimensionless) respectively. Under the assumption of isdendent

and uniform priors, the parameter joint posterior is written as:

. 1 1 S SS
POX; hy iy Yi)/ WGXP > Shz(X)+ '2(X)

, (13)
h !

whereSS, and SS are the sum of square errors of the pressure head and av-
erage water content, respectively. The random vector = (Kkg;!(;!s; ;n; )
contains the soil hydraulic parameters. For the MCPD apprazh, maximiz-

ing the joint posterior pdf amounts to minimize the followirg weighted sum

SSh(x) SS) (x) ; MAP 2 _  SS,(xMAP)
(MAP)z +('MAP)2 , with | = N :

MAP 2 _ %MAP) and N = 481.

of squaresWSS(x) =

The MAP estimate of the hydraulic parameters and error variaces is
based on the following algorithm:

1. Set M = =1, M¥ = =1,

2. Find the current MAP estimate xMAP by minimizing the weighted sum

of squaresxMAP = argmin W SS(x)
X

. 2 MAP 2
3. Update the error variances, MAP © = SS) gpg  MAP © =
SS (XMAP )
=
: | s : wi =
4. If MAP L, and MAP ., then stop. Otherwise set MAP
and , = MA" and resume from2.

Step 2 is performed with the Levenberg-Marquardt algorithm Levenberg
1944 Marquardt, 1963 which requires an initial solution (starting point).
With the MCPD approach, the search of the MAP estimate is pedrmed
Ninit = 20 times with di erent initial solutions.

With both the MCMC and MCPD samplers, eight unknowns were saght,

the six hydraulic parametersx = (Kks;!;!s; ;n; ) as well as the two error
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variances 2 (cm?), 2 (). To speed up the MCPD evaluation, we took
advantage that their estimations were independent. The g MCPDs of in-
terest were determined simultaneously on a multicore comiar. The model
was also inverted with DREAM;s) for which eight chains were run simulta-
neously for a total maximum number 064; 000model calls 8; 000per chain).
To accelerate the convergence of the chains, the prior unt@nty range as-
signed to each parameter was set to the posterior plausiblange obtained

after the MCPD assessment (see Tabl®).
Insert Figure 6 about here

5.3.2. Results and discussion

The maximal conditional posterior densities are gatherediFigure 7 as
well as the parameter pairwise correlations. The bell-shad posterior densi-
ties mean that the optimal parameter set is well identi ed. V¥ note that the
parameters are highly correlated, which indicates that ogpla small volume of
the input space contains the plausible parameter sets (sels@Tablel). The
posterior uncertainty range of the saturated water content s is particularly
narrow (i.e. well-identi ed).

The saturated hydraulic conductivity ks is positively correlated with! g,

, and negatively correlated with! , and n. The correlation betweenkg
and ! ; indicates that when xing ks and maximizing the conditional pdf,
the estimate of! , is localized upon a curve (see Figuré row #2, column
#1). This curve is slightly dierent when xing !, and investigating the
conditional estimate ofks. Conversely, the correlation betweerks and
is so strong that the two curves coincide (row#l, column #4). We can
conclude thatks and are virtually fully correlated. The sets of variables

('r;n; )and(!s; ) are also fully correlated.
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The MCMC draws are depicted in the diagonal plots (Figure7). We
see that the draws are encompassed within the MCPD curves. @tMCMC
algorithm has virtually converged toward the true distribution after sampling
8 8;000draws. An initial attempt with 8 4;000draws was unsuccessful.
However, it can be noticed that the MCMC sampler hardly drawsalues of
n > 1:3. Because of the correlations mentioned above, this also iagts the
sampling of! ; and . As a consequence, Figuréreveals slight discrepancies
between the densities of these parameters estimated witheMCPD sampler
and the MCMC sampler. These results are also con rmed in Tabll, which
reports the posterior uncertainty ranges. Note that the MAPestimates of
the two samplers are similar and very close to the true solain x** that was
used to generate the data.

The MCPD sampling required about7; 500model calls; however, because
of the parallel computation, the CTU was only approximately2; 000 which
corresponded to the estimate dfs's MCPD. The assessment of the remaining
MCPDs required far less computational e orts.

Finally, the predictive uncertainty has been assessed witie stochastic
MCMC sample of sizel6; 000 and the 185 probabilistic MCPD draws. The
95% credible intervals are depicted in Figures. There is a good agreement
between the two approaches. The uncertainty ranges are venarrow be-
cause many data were used for the statistical calibration g@roximately one

thousand).

Insert Figure 7 about here

6. Conclusions

In this work, a comparison of two sampling techniques for stigtical in-

version of computer models was carried out. The rst technige is the well-
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Parameter ks (e ls n
Unit [cm/min]  [cm 3/cm3]  [cm3/cm 3] [cm 1] [-] [
Post ' [0.02,0.12] [0.050.18] [0.42,0.435] [0.008,0.011] M.235] [0.2,0.8]
Post  10.03,0.08] [0.08,0.14] [0.42,0.435] [0.008,0.011] R229] [0.08,0.58]

X X 0.0700 0.0900 0.4300 0.0100 1.2300 0.5000
xMAP 0.0419 0.1264 0.4267 0.0090 1.2762 0.1917
xMap 0.0470 0.1176 0.4274 0.0092 1.2644 0.2683

Table 1: Parameters of the unsaturated ow model with their posterior uncertainty ranges
for both MCPD and MCMC solutions. The best parameters of the MCPD and MCMC
solutions are also reported. x®* is the set of parameters used to de ne the synthetic

reference data of the soil drainage experiment.

known Markov Chain Monte Carlo (MCMC) sampler and the seconane
is a recent approach called the Maximal Conditional Postest Distribution
(MCPD) sampler.

MCMC samples stochastic draws that converge toward the desd target
distribution. DREAM (zs), the MCMC sampler used in the present work,
is a user-friendly exible software for statistical invere problems. It can
be easily employed to infer any target distributions and dsenot require
to modify the computer model under assessment. Several agican be
launched simultaneously to reduce the computational burdeinherent to
MCMC samplers but they do not evolve independently.

MCPD only samples probabilistic draws such that, for a giveparameter
set at a prescribed value, the other parameters maximize theonditional
target distribution. Although the MCPD of a given parameter does not
always match its posterior probability density function (which is inferred with
MCMC), the MCPD sampler is a valuable tool for statistical irverse problems

if the target distribution has a nite number of modes. For sich problems, the
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e ectiveness of MCPD sampler enhances if the Jacobian matris accurately
and e ciently computed which may require to modify the compuer model.

In this study, the comparison between the two samplers wasst carried
out for two analytical distributions with collinearity and multimodality. Then
they were employed to assess the posterior pdf of soil hydhauparameters
from an arti cial multistep out ow experiment. For the stud ied problems,

a good agreement is observed between the results of the twopegaches.
The MCPD approach was found to be less computationally demdimg than
DREAM (zsy mainly because the MCPD assessment of parameters can be
performed independently and simultaneously.

Finally, it has to be mentioned that MCMC provides stochastt draws
that change if the calculations are repeated. MCPD providegrobabilistic
draws that remain unchanged if one restarts the calculatienfor the same
problem without changing the settings of the algorithm. Thé can be a prob-
lem if, posterior to the calibration, one wants to perform tle uncertainty
and sensitivity analysis of a model response that has not beesed for the
calibration. The authors are currently developing an algathm to generate

stochastic samples from MCPD draws.

Acknowledgments

This work has been funded by the French National Research Augy
through the research project RESAIN (nANR-12-BS06-0010-02). The au-
thors are grateful to the anonymous reviewers for their inghtful comments
that helped improving the manuscript. The authors are alsondebted to
Jasper Vrugt for the free availability of DREAM(zsy. The MCPD sampler
is written in MATLAB. The source code can be obtained upon ragest from

the rst author (mara@univ-reunion.fr).

26



References

Angelikopoulos, P., Papadimitriou, C., Koumoutsakos, P.2015. X-tmcmc:
Adaptive kriging for bayesian inverse modeling. Computer Bthods in Ap-

plied Mechanics & Engineering 289, 409 428.

Bayarri, M. J., Berger, J. O., Paulo, R., Sacks, J., Cafeo, A., Cavendish, J.,
Lin, C. H., Tu, J., 2007. A framework for validation of compuer models.

Technometrics 49, 138 154.

Diersch, H., Perrochet, P., 1999. On the primary variable stehing technique
for simulating unsaturated-saturated ows. Advances in Wger Resources
23 (3), 271 301.

Dostert, P., Efendiev, Y., Mohanty, B., 2009. E cient uncertainty quanti ca-
tion techniques in inverse problems for richards' equatiomsing coarse-scale

simulation models. Advances in Water Resources 32, 329 339

Durner, W., Iden, S. C., 2011. Extended multistep out ow mehod for the
accurate determination of soil hydraulic properties near ater saturation.

Water Resources Research 47, W08526.

Eching, S. O., Hopmans, J. W., Wendroth, O., 1994. Unsaturatl hydraulic
conductivity from transient multistep out ow and soil water pressure data.

Soil Science Society of America Journal 58, 687 695.

Gelman, A., Rubin, D. B., 1992. Inference from iterative simlation using

multiple sequences. Statistical Science 7, 457 511.

Geyer, C. J., 1992. Practical Markov chain Monte Carlo. Stadtical Science
7 (4), 473 483.

27



Grenander, U., Miller, M., 1994. Representations of knowdge in complex

system. Journal of the Royal Statistical Society, Serie B 5@}), 549 603.

Haario, H., Laine, M., Mira, A., Saksman, E., 2006. DRAM: E cient adap-
tive MCMC. Statistics and Computing 16 (339 354).

Haario, H., Saksman, Tamminen, J., 2001. An adaptive Metragis algo-
rithm. Bernouilli 7, 223 242.

Haario, H., Saksman, E., Tamminen, J., 1999. Adaptive progal distribution
for random walk Metropolis algorithm. Computational Statstics 14, 377
395.

Hastings, H., 1970. Monte Carlo sampling methods using Mayk chains and
their applications. Biometrika 57, 97 109.

Hayek, M., Lehmann, F., Ackerer, P., 2008. Adaptive multi-sale parameter-
ization for one-dimensional ow in unsaturated porous medi Advances in

Water Resources 31, 28 43.

Laloy, E., Vrugt, J. A., 2012. High-dimensional posterior xploration of
hydrologic models using multiple-try DREAM(ZS) and high-performance
computing. Water Resources Research 48, W01526.

Levenberg, K., 1944. A method for the solution of certain nehnear problems

in least squares. The Quarterly of Applied Mathematics 2, ¥6168.

Lu, D., Ye, M., Hill, M. C., Poeter, E. P., Curtis, G. P., 2014. A computer
program for uncertainty analysis integrating regressionral bayesian meth-

ods. Environmental Modelling and Software 60, 45 56.

Mara, T. A., Fajraoui, N., Younes, A., Delay, F., 2015. Invesion and uncer-

tainty of highly parameterized models in a bayesian framewoby sampling

28



the maximal conditional posterior distribution of parameers. Advances in

Water Resources 76, 1 10.

Marquardt, D., 1963. An algorithm for least-squares estimen of nonlinear

parameters. SIAM Journal on Applied Mathematics 11, 431 44

Metropolis, N.-A., Rosenbluth, A. W., Rosenbluth, M. N., Tdler, A. H.,
Teller, E., 1953. Equations of state calculations by fast egputing ma-

chines. Journal of Chemical Physics 21, 1087 1091.

Mualem, Y., 1976. A new model for predicting the hydraulic awuctivity of

unsaturated porous media. Water Resources Research 12, 523.

Robert, C. P., Casella, G., 2004. Monte Carlo statistical mbkod. Springer

series in statistics, second edition, New York.

ter Braak, C. J. F., 2006. A markov chain monte carlo versionfahe ge-
netic algorithm di erential evolution: easy bayesian compting for real

parameter spaces. Statistics and Computing 16, 239 249.

ter Braak, C. J. F., Vrugt, J., 2008. Di erential evolution markov chain with
snooker updater and fewer chains. Statistics and Computint8 (4), 435
446.

Tierney, L., Mira, A., 1999. Some adaptive monte carlo mettus for bayesian

inference. Statistics in Medecine 18, 2507 2515.

van Dam, J. C., Stricker, J. N. M., Droogers, P., 1994. Inveesmethod to
determine soil hydraulic functions from multistep out ow experiment. Soil

Science Society of America Journal 58, 647 652.

29



van Genuchten, M. T., 1980. A closed form equation for preding the hy-
draulic properties of unsaturated soils. Soil Science Setyi of America

Journal 44 (5), 892 898.

Vrugt, J. A., 2016. Markov chain monte carlo simulation usig the DREAM
software package: Theory, concepts, and MATLAB implement®n. En-

vironmental Modelling and Software 75, 273 316.

Vrugt, J. A., Bouten, W., 2002. Validity of rst-order appro ximations to de-
scribe parameter uncertainty in soil hydrologic models. 8&cience Society

of America Journal 66, 1740 1751.

Vrugt, J. A., Gupta, H. V., Bouten, W., Sorooshian, S., 2003A shu ed
complex evolution metropolis algorithm for optimization ad uncertainty
assessment of hydrologic model parameters. Water Resowgrdeesearch
39 (8), 1201.

Vrugt, J. A, ter Braak, C. J. F., Diks, C. G. H., Higdon, D., Robinson, B. A.,
Hyman, J. M., 2009. Accelerating markov chain monte carlo raulation
by di erential evolution with self-adaptive randomized sispace sampling.
International Journal of Nonlinear Sciences and Numeric&imulation 10,
273 290.

30



Figures

List of Figures

1 TheMCPDrenement . .. ... ... ... ... ....... 32
2 Banana-shaped distributions 1 . . . . ... ... ... .... 33
3  Gelman-Rubin convergence diagnostic. . . . . . ... .. .. 34
4 MCPD versus MCMC: Multimodal case . . . . .. ... ... 35
5 Chainevolution . . . . ... ... ... ... .......... 36
6  Data used for the soil hydraulic parameter identi cation . . . 37
7 MCPDs of the unsaturated soil hydraulic parameters. . . . . 38

31



O
@)
O
O
O
E
o X
[
[
O [
[
I O
[
x 1
I [ @)
I 1
1 1 @)
o—1 . @) )
x+2 x k1

Xj

Figure 1: Re nement of the MCPD in the third part of the algori thm. The circle plots
represent the MCPD assessment of; after the second part of the calculations. The crosses

indicate the next draws selected in the third part of the algarithm.
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Figure 2: Assessment of the probability densities of the paameters in the twisted-Gaussian

function.

The continuous and broken red lines represent theMCPD draws while the

black dots and broken lines represent the MCMC draws. The digonal plots represent

the estimated posterior densities. The o -diagonal plots cepict the pairwise correlations.

Note the banana-shaped relationship betweerfx;; x») (row #2, column #1).
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Convergence of sampled chains
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Figure 3: Evolution of the Gelman-Rubin R-statistics for the convergence diagnostic of
the rst three parameters. The convergence criterion is acleved if the chains reach the
threshold in broken-line (R 1:2).
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