Variable selection for correlated data in high dimension using decorrelation methods
Emeline Perthame, David Causeur, Ching-Fan Sheu, Chloé Friguet

To cite this version:
Emeline Perthame, David Causeur, Ching-Fan Sheu, Chloé Friguet. Variable selection for correlated data in high dimension using decorrelation methods. Statlearn: Challenging problems in statistical learning, Apr 2016, Vannes, France. hal-01310571

HAL Id: hal-01310571
https://hal.archives-ouvertes.fr/hal-01310571
Submitted on 29 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Variable selection for correlated data in high dimension using decorrelation methods

Emeline Perthame
INRIA, team MISTIS, Grenoble

Joint work with

David Causeur	Ching-Fan Sheu	Chloé Friguet
Agrocampus, Rennes	NCKU, Tainan, Taiwan	UBS, Vannes

StatLearn, Vannes, April 2016
1. Introduction

2. Impact of dependence and dependence modeling

3. Disentangling signal from noise ...
 • ... for a multiple testing issue
 • ... for a supervised classification issue

4. Conclusion
The instrument: a 128-channel geodesic sensor net

- Electroencephalography (EEG) is the recording of electrical activity at scalp locations over time.
- The recorded EEG traces, which are time locked to external events, are averaged to form the event-related (brain) potentials (ERPs).

![Image of sensor net on a subject's head]

Table 1

<table>
<thead>
<tr>
<th>Task</th>
<th>Valence</th>
<th>Laterality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good/Bad task</td>
<td>Bad</td>
<td>Right</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>SD</td>
</tr>
<tr>
<td>Bad stimuli</td>
<td>0.55</td>
<td>3.1</td>
</tr>
<tr>
<td>Good stimuli</td>
<td>1.82</td>
<td>2.3</td>
</tr>
<tr>
<td></td>
<td>3.73</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>0.91</td>
<td>4.9</td>
</tr>
<tr>
<td></td>
<td>2.94</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>2.38</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Fig. 1. Electrode locations comprising the right and left anterior scalp regions where the frontal late positive potential (LPP) was recorded.
Auditory oddball experiment

A very commonly used experimental task

- Two auditory stimuli are presented to subjects
 - A stimulus (500Hz) occurring frequently
 - A stimulus (1000Hz) occurring infrequently
- ERPs are recorded on a 400 ms interval after the onset.

Motivations

- Auditory evoked potential (AEP): elicited by auditory stimulus
- Mismatch negativity (MMN): elicited by any change in the stimulus (odd/frequent)
- AEP and MMN are electrophysiological marker candidates for psychiatric disorders such as schizophrenia
Signal detection: is there any difference between the two conditions?

Signal identification: when does the difference occur?
Linear model framework for ERP curves

At time t for subject i in condition j

- Multivariate analysis of variance model

$$Y_{ijt} = \mu_t + \alpha_{it} + \gamma_{jt} + \varepsilon_{ijt}$$

- Functional analysis of variance model

$$Y_{ijt} = \sum_{s=1}^{S} m_s \varphi_s(t) + \sum_{s=1}^{S} a_{is} \varphi_s(t) + \sum_{s=1}^{S} g_{js} \varphi_s(t) + \varepsilon_{ijt}$$

where $\varphi_s(.)$, $s = 1, \ldots, S$ are B-splines.
Linear model framework for ERP curves

At time t for subject i in condition j

$$Y_{ijt} = \mu_t + \alpha_{it} + \gamma_{jt} + \varepsilon_{ijt}$$

Signal detection

- Is there any difference between the two conditions?

$$H_0: \text{ for } t = 1, \ldots, T \text{ and } j = 1, 2, \gamma_{jt} = 0$$

- Is it relevant to predict the label from ERP curves?

 \rightarrow High dimension: need for variable selection

Signal identification

For $t = 1, \ldots, T$, $H_{0t}: \text{ for } j = 1, 2, \gamma_{jt} = 0$
Some approaches

Detection

• F-test for multivariate (or functional) ANOVA \(^1\)

• Optimal detection (Higher Criticism \(^2\))

Supervised classification

• Ignoring correlations: Naive approaches \(^3\)

• Introducing sparsity: Lasso, Sparse LDA \(^4\)

Identification

• FDR controlling: Benjamini-Hochberg ...

→ Efficient under independence

2. Donoho and Jin, 2004, AOS
4. Tibshirani, 1996, JRSS; Clemmensen et al., 2011, Technometrics
• Assumes an auto-regressive process with auto-correlation ρ
• Distribution of L_ρ under the null:

$$L_\rho = \# \{ t, p_t \leq \alpha \}$$

where (p_1, \ldots, p_T) are p-values and α is a preset level

• A time interval is rejected if it is significant at the preset level and longer than usual time intervals

5. Guthrie and Buchwald, 1991, Psychophysiology
Strong and complex temporal dependence structure

→ Dependence affects the stability of selection procedures
1. Introduction

2. Impact of dependence and dependence modeling

3. Disentangling signal from noise ...
 - ... for a multiple testing issue
 - ... for a supervised classification issue

4. Conclusion
Rare and Weak paradigm

• Two components mixture for test statistics

\[T = \mu + \varepsilon, \varepsilon \sim \mathcal{N}(0, \mathbb{I}_T) \]

• Where signal is
 - Rare

\[\eta = T^{-\beta}, \beta \in \left(\frac{1}{2}, 1\right) \]

 - Weak

\[A = \sqrt{2r \log(T)}, r \in (0, 1) \]

Phase diagram under independence

- Signal is detectable when \(r > \rho^*(\beta) \):

\[
\rho^*_D(\beta) = \begin{cases}
\beta - \frac{1}{2} & \text{if } \frac{1}{2} < \beta \leq \frac{3}{4} \\
(1 - \sqrt{1 - \beta})^2 & \text{if } \frac{3}{4} < \beta < 1.
\end{cases}
\]

Impact of dependence - Signal identification

- Independence and ERP time dependence pattern
- 1000 datasets for each amplitude
- Benjamini Hochberg correction
Impact of dependence - Signal identification

- Independence and ERP time dependence pattern
- 1000 datasets for each amplitude
- Benjamini Hochberg correction
Instability of multiple testing procedures

\[\text{FDR} = \text{pFDR}(1-\text{PNR}) \]
Impact of dependence - Variable selection

\[\log \frac{P(Y = 2 | X)}{P(Y = 1 | X)} = \beta_0 + \beta' x \]

- Independence and ERP time dependence pattern
- 1000 datasets for each dependence structure
- Variable selection performed by Lasso

8. `glmnet` R package, Friedman et al., 2010, JSS
- Predictor X_t is assessed by its rank r_t deduced from its regression coefficient

- Relevance of a selected set S is given by the mean rank in S: $r_S = \frac{1}{\#S} \sum_{t \in S} r_t$
Impact of dependence - Variable selection

- Relevance: the most predictive variables are not selected under dependence
- Stability: selected subsets are not reproducible
Impact of dependence - Improving stability

- Bootstrap
 - Bolasso\(^9\)
 - Stability selection\(^{10}\)

- Dependence modeling
 - Surrogate variable analysis\(^{11}\)
 - Latent effect adjustment after primary projection\(^{12}\)
 - Factor analysis for multiple testing\(^{13}\)

10. Meinshausen and Bühlmann, 2010, JRSS
12. Sun, Zhang and Owen, 2012, AOAS
13. Friguet, Kloareg and Causeur, 2009, JASA
Factor modeling of dependence

- Distribution of ERP curves
 \[X = (X_1, \ldots, X_T) \mid Y = y \sim \mathcal{N}_T(\mu_y, \Sigma) \]

- Latent factor modeling
 \[X = \mu_y + BZ + e \text{ with } e \sim \mathcal{N}_T(0, \Psi) \]
 \[\Psi \text{ diagonal, rank}(B) = q, \]
 \[Z \sim \mathcal{N}_q(0, \mathbb{I}_q), \]

- Decomposition of covariance matrix
 \[\Sigma = \Psi + BB' \]
Signal is hidden by noise
Signal is hidden by noise
1. Introduction

2. Impact of dependence and dependence modeling

3. Disentangling signal from noise ...
 - ... for a multiple testing issue
 - ... for a supervised classification issue

4. Conclusion
Multiple testing issue

- ERP measure at time t, for subject i,

$$Y_{ijt} = \mu_t + \alpha_{it} + \gamma_{jt} + \varepsilon_{ijt}$$

- In matrix notations

$$Y_t = \mu_t + X_0\alpha_t + X\gamma_t + \varepsilon_t$$

with $\forall(\varepsilon_1, \ldots, \varepsilon_T) = \Sigma$

- Multiple testing for $t = 1, \ldots, T$

$$H_{0,t} : \gamma_t = 0$$

- Dependence among tests
A prior knowledge of the signal

- OLS signal estimation of $\gamma = (\gamma_1, \ldots, \gamma_T)$

$$\hat{\gamma} = \gamma + \delta$$

with $\delta \sim \mathcal{N}(0, \tilde{\Sigma})$ and $\tilde{\Sigma} \propto \Sigma$
A prior knowledge of the signal

- OLS signal estimation of $\gamma = (\gamma_1, \ldots, \gamma_T)$

$\hat{\gamma} = \gamma + \delta$

with $\delta \sim \mathcal{N}(0, \tilde{\Sigma})$ and $\tilde{\Sigma} \propto \Sigma$
A prior knowledge of the signal

- OLS signal estimation of $\gamma = (\gamma_1, \ldots, \gamma_T)$

 $\hat{\gamma} = \gamma + \delta$

 with $\delta \sim \mathcal{N}(0, \tilde{\Sigma})$ and $\tilde{\Sigma} \propto \Sigma$

- Noise is somewhere observed without signal

$$
\begin{pmatrix}
\delta_0 \\
\delta_{-0}
\end{pmatrix}
\sim \mathcal{N}\left[
\begin{pmatrix}
0 \\
0
\end{pmatrix},
\begin{pmatrix}
\tilde{\Sigma}_{0,0} & \tilde{\Sigma}'_{-0,0} \\
\tilde{\Sigma}_{-0,0} & \tilde{\Sigma}_{-0,-0}
\end{pmatrix}
\right]
$$

- And can be estimated elsewhere

$$
\hat{\delta}_{-0} = \hat{\Sigma}_{-0,0} \hat{\Sigma}_{0,0}^{-1} \delta_0
$$
A prior knowledge of the signal

- And can be estimated elsewhere

\[\hat{\delta}_0 - \hat{\Sigma}_{0,0}^{-1} \hat{\delta}_0 \]
A prior knowledge of the signal

- New estimation of the signal

\[\hat{\gamma}^{\text{new}} = \hat{\gamma} - \hat{\delta} \]
Iterative algorithm

- New estimation of the signal

\[\hat{\gamma}^{\text{new}} = \hat{\gamma} - \hat{\delta} \]

- Update of residual errors \(\hat{\varepsilon}^{\text{new}} = Y_t - (\hat{\mu}_t + \hat{\alpha}_{it} + \hat{\gamma}_t^{\text{new}}) \)

- New estimation of covariance matrix

- Alternates estimation of signal and covariance structure

- Until convergence of test statistics

- Update of \(T_0 \)
Choice of T_0

Prior knowledge

- ERP: psychologists may know that signal does not occur before/after some time points
- Genomics: biologists may know that some genes are not involved in a biological process

No prior knowledge

- Conservative approach

\[T_0 = \{ t, p_t \geq t_0 \} \]

where (p_1, \ldots, p_T) are p-values
- Dependence structure of ERP experiment
- 1000 generated datasets
Simulations - Adaptive factor analysis procedure

<table>
<thead>
<tr>
<th>Method</th>
<th>FDR(^{14})</th>
<th>TDR(^{15})</th>
<th>PD(^{16})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benjamini-Hochberg</td>
<td>0.031</td>
<td>0.057</td>
<td>0.281</td>
</tr>
<tr>
<td>Benjamini-Yekutieli</td>
<td>0.009</td>
<td>0.011</td>
<td>0.101</td>
</tr>
<tr>
<td>Guthrie-Buchwald</td>
<td>0.086</td>
<td>0.233</td>
<td>0.538</td>
</tr>
<tr>
<td>SVA</td>
<td>0.088</td>
<td>0.151</td>
<td>0.599</td>
</tr>
<tr>
<td>LEAPP</td>
<td>0.151</td>
<td>0.304</td>
<td>0.847</td>
</tr>
<tr>
<td>AFA</td>
<td>0.034</td>
<td>0.498</td>
<td>1.000</td>
</tr>
</tbody>
</table>

14. False Discovery Rate
15. True Discovery Rate
16. Probability of Detecting the peak
Estimated condition effect along time

80 - 120 ms: Auditory evoked potential
100 - 200 ms: Mismatch negativity for the difference curve
Conclusion

- Adaptive estimation of signal and factor model parameters
- Designed for strong dependence
- Efficient multiple testing procedure
 - FDR is controlled
 - Good detection power
- ERP package available on CRAN17

17 Causeur and Sheu, 2014, R package version 1.0.1
1. Introduction

2. Impact of dependence and dependence modeling

3. Disentangling signal from noise ...
 - ... for a multiple testing issue
 - ... for a supervised classification issue

4. Conclusion
Supervised classification issue

- Prediction of a label \rightarrow Hz500 or Hz1000 frequency
- From ERP curves profiles $X = (X_1, \ldots, X_T)$

$$
(X|Y = y) \sim \mathcal{N}_p(\mu_y, \Sigma)
$$

- Among linear classification rule

$$
LR(x) = \log \frac{P(Y = 2|X)}{P(Y = 1|X)} = \beta_0 + x' \beta
$$

- The best one is Bayes’ rule

$$
\beta = \Sigma^{-1}(\mu_2 - \mu_1)
$$

$$
\beta_0 = \log \frac{p_2}{p_1} - 0.5(\mu_2 + \mu_1)'\Sigma^{-1}(\mu_2 - \mu_1)
$$

- Theoretical misclassification rate π
Some estimation methods

Logistic regression

- Minimizing the deviance

\[
(\hat{\beta}_0, \hat{\beta}) = \text{argmin}_{\beta_0, \beta} - 2 \sum_{i=1}^{n} \log[1 + \exp(-V_i(\beta_0 + x_i'\beta))]
\]

where \(V_i = \pm 1 \)

- High dimension
 - \(\ell_2 \)-penalization: Ridge\(^{18} \)
 - \(\ell_1 \)-penalization: Lasso\(^{19} \)

19. Tibshirani, 1996, JRSS
Some estimation methods

Linear Discriminant Analysis

- OLS estimate → Method of moments

\[(\hat{\beta}_0, \hat{\beta}) = \arg\min_{\beta_0, \beta} \sum_{i=1}^{n} [V_i - (\beta_0 + x_i'\beta)]^2, \text{ where } V_i = \pm 1\]

- High dimension
 - Ignoring correlations: Diagonal Discriminant Analysis (DDA)\(^{18}\), Nearest Shrunken Centroids\(^{19}\)
 - Shrinkage Discriminant Analysis\(^{20}\) (SDA)
 - Sparse linear discriminant analysis\(^{21}\) (SLDA)

19. Tibshirani et al., 2003, Stat Sc
20. Ahdesmäki and Strimmer, 2010, AOAS
21. Clemmensen et al., 2011, Technometrics
Conditional classification rule

- Under factor model assumption \((\Sigma = \Psi + BB')\)

\[
\begin{pmatrix}
X \\
Z
\end{pmatrix} \sim \mathcal{N}\left[
\begin{pmatrix}
\mu_y \\
0
\end{pmatrix},
\begin{pmatrix}
\Sigma & B \\
B' & I_q
\end{pmatrix}
\right]
\]

- Among classification rules linear in \((x, z)\)

- The best one is the conditional Bayes’ classifier

\[
LR(x, z) = \log \frac{\mathbb{P}(Y = 2|X, Z)}{\mathbb{P}(Y = 1|X, Z)} = \beta^*_0 + (x - Bz)'\beta^*
\]

with \(\beta^* = \Psi^{-1}(\mu_2 - \mu_1)\)

\[
\beta^*_0 = \log \frac{p_2}{p_1} - 0.5(\mu_2 + \mu_1)'\Psi^{-1}(\mu_2 - \mu_1)
\]

- Analytical expression of misclassification rate \(\pi^*_Z\)
Conditional classification rule

- Bayes rule error π
- Under factor model assumption

$$
\begin{pmatrix}
X \\
Z
\end{pmatrix}
\sim
\mathcal{N}
\left[
\begin{pmatrix}
\mu_y \\
0
\end{pmatrix},
\begin{pmatrix}
\Sigma & B \\
B' & I_q
\end{pmatrix}
\right]
$$

- Conditional Bayes rule error π^*_Z
- One can show that $\pi \geq \pi^*_Z$

\rightarrow Theoretical superiority of conditional approach based on decorrelated data $\tilde{X} = X - BZ$
Iterative decorrelation of data

- Estimation of μ_1 and μ_2
- Computation of centered profiles
- Estimation of factor model parameters $^{22} (\Psi, B)$
- Decorrelation of data using generalized Thompson’s formula

$$\tilde{x} = x - \hat{B} \hat{z}'$$

Generalized Thompson’s formula

$$\hat{Z} = \mathbb{E}_X (Z) = (I_q + B' \Psi^{-1} B)^{-1} B' \Psi^{-1} \left(x - [\mu_1 \mathbb{P}_X (1) + \mu_2 \mathbb{P}_X (2)] \right)$$

22. Friguet, Kloareg and Causeur, 2009, JASA
Simulations

- $n_0 = n_1 = 13$
- Various dependence structures23
- 1000 learning datasets
- 1 testing dataset

23 Meinshausen and Bühlmann, JRSS, 2010
→ Variable selection methods compared to their factor-adjusted version
Simulations - Selection accuracy

<table>
<thead>
<tr>
<th>Method</th>
<th>Nb of selected var.</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>LASSO (^{24})</td>
<td>13.10</td>
<td>62.36</td>
</tr>
<tr>
<td>Factor-adjusted LASSO</td>
<td>8.03</td>
<td>93.02</td>
</tr>
<tr>
<td>SLDA (^{25})</td>
<td>10.00</td>
<td>62.50</td>
</tr>
<tr>
<td>FA SLDA</td>
<td>10.00</td>
<td>90.90</td>
</tr>
<tr>
<td>SDA (^{26})</td>
<td>57.20</td>
<td>75.07</td>
</tr>
<tr>
<td>FA SDA</td>
<td>68.22</td>
<td>67.93</td>
</tr>
<tr>
<td>DDA (^{27})</td>
<td>149.42</td>
<td>15.58</td>
</tr>
<tr>
<td>FA DDA</td>
<td>97.65</td>
<td>48.76</td>
</tr>
</tbody>
</table>

24. Tibshirani, 1996, JRSS; Friedman et al., 2010, JSS
25. Clemmensen et al., 2011, Technometrics
27. Bickel and Levina, 2004, Bernoulli
Conclusion

- Decorrelation method designed for prediction issues
- Preprocessing of the data which enables the use of usual selection methods
- **FADA** package available on CRAN28
- Application in genomics
- Adjustment for batch effect29

28 Perthame, Friguet and Causeur, 2014, R package version 1.2
29 Hornung, Boulesteix and Causeur, submitted
1. Introduction

2. Impact of dependence and dependence modeling

3. Disentangling signal from noise ...
 • ... for a multiple testing issue
 • ... for a supervised classification issue

4. Conclusion
→ Whatever the statistical analysis, it would be efficient to account for dependence because it is a *blessed* situation.

→ Accounting for dependence introduces hyper-parameters

- Risk of overfitting
- Results depend on the estimation of the dependence model
 - Need for robust models
 - With few parameters
 - To guarantee reproducible results

30. Hall and Jin, 2010, AOS
D. Causeur and C.-F. Sheu.
R package version 1.0.1.

E. Perthame, C. Friguet, and D. Causeur.
R package version 1.2.

E. Perthame, C. Friguet, and D. Causeur.
Stability of feature selection in classification issues for high-dimensional correlated data.

Accounting for time dependence in large-scale multiple testing of event-related potential data.