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Abstract 

Forecasting of the solar irradiance is a key feature in order to increase the penetration rate of solar energy 
into the energy grids. Indeed, the anticipation of the fluctuations of the solar renewables allows a better 
management of the production means of electricity and a better operation of the grid-connected storage 
systems. If numerous methods for forecasting the mean of the solar irradiance were recently developed, 
there are only few works dedicated to the evaluation of prediction intervals associated to these point 
forecasts. 

Time series of solar irradiance and more specifically of clear sky index show some similarities with that 
of financial time series. The aim of this paper is to assess the performances of a commonly used 
combination of two linear models (ARMA and GARCH) in econometrics in order to provide probabilistic 
forecasts of solar irradiance. In addition, a recursive estimation of the parameters of the models has been 
set up in order to provide a framework that can be applied easily in an operational context. 

A comprehensive testing procedure has been used to assess both point forecasts and probabilistic 
forecasts. Using only the past records of the solar irradiance, the proposed model is able to perform point 
forecasts as accurately as other methods based on machine learning techniques. Moreover, the recursive 
ARMA-GARCH model is easier to set-up and it gives additional information about the uncertainty of the 
forecasts. Even if some strong assumption has been made regarding the statistical distribution of the error, 
the reliability of the probabilistic forecasts stands in the same order of magnitude as other works done in 
the field of solar forecasting. 

 

Keywords: probabilistic solar forecasts; clear sky index; ARMA; GARCH; operational framework; 
recursive least square 

 

1. Introduction 

Forecasts of the power output of solar renewables are required to improve their penetration rate into 
electricity grids and also to ensure the security of the supply-demand balance. Indeed, accurate forecasts 
allow a better scheduling of the energy resources and a better operation of the units commitment. The 
recent development of grid-connected storages associated with intermittent renewables (solar, wind and 
wave) also requires power forecasts in order to optimize their operational management (Hernández-Torres 
et al., 2015)(Haessig et al., 2015)(Hanna et al., 2014). In the case of solar renewables, the power output is 
directly related to the level of received solar irradiance. Thus, forecasting the solar irradiance is the key 
feature of the PV power prediction. 
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Many tools and methods for forecasting solar irradiance were developed for various time horizons and 
spatial resolutions (Diagne et al., 2013). For day ahead forecasting, the most accurate methods are based 
on Numerical Weather Predictions (NWP) (Perez et al., 2013). For horizons of several hours, satellite 
based models are the most suitable (Kühnert et al., 2013)(Dambreville et al., 2014). And finally, for very 
short term horizons, from few minutes up to 2 hours, the literature is dominated by statistical approaches 
based on time series modeling (Reikard, 2009)(Lauret et al., 2015). Most of these works are dedicated to 
the development of point forecasts that is the mean solar irradiance over the considered time step. No 
forecast is perfect. Prediction intervals are necessary to assess the uncertainty associated to the point 
forecasts. In the field of wind power prediction, an extensive literature exists about probabilistic 
forecasting (Zhang et al., 2014)(Jung and Broadwater, 2014). But, in the solar energy domain, only few 
works were published recently in relation to probabilistic forecasts.   

A first approach used numerical weather predictions (NWPs) models in order to derive the uncertainty of 
the solar forecasts. These models provide forecasts for a large range of time horizons, from 1 hour up to 
72 hours. Iversen et al. (2014) proposed a stochastic differential equation framework with NWP for 
modeling the uncertainty associated with the point irradiance forecasts. Alessandrini et al. (2015) assessed 
uncertainty of power forecasts of solar plants with an analog ensemble method. The uncertainty of the 
forecasts is obtained by gathering past conditions corresponding to analog sets of a reduced number of 
parameters provided by NWPs. Mathiesen et al. (2013) proposed a postprocessing of different NWPs to 
obtain an ensemble probabilistic forecasting of the solar irradiance. The forecast system is based on 
studying the correlation of uncertainty to local meteorological conditions describing synoptic-scale 
atmospheric flow. Another simple approach has been proposed by Lorenz et al. (2009). A normal 
distribution with zero mean and a standard deviation dependent on the solar zenith angle and the cloud 
situation is assumed to describe forecast errors of solar irradiance. A last approach is based on the 
probabilistic behavior of time series. Bacher et al. (2009) used a weighted quantile regression conditioned 
to a normalized power to produce the uncertainty associated to the point forecasts obtained with an 
autoregressive model (ARX). They applied this model to forecast the power output of a small solar plant 
for horizon ranging from 1 hour to 1 day. Bracale et al. (2013) propose 1 hour ahead probabilistic 
forecasts of the clearness index. The method uses only ground measurements and it is based on a 
Bayesian autoregressive model associated with a Monte Carlo simulation to generate the density 
probability function of the error. Bessa et al. (2015) proposed an original method to provide 6 hours ahead 
probabilistic forecasts of the output power of a small fleet of PV systems. This last method is based on a 
vector autoregressive framework (VAR). It enables to assess the uncertainty of the forecast from a 
spatially distributed network of measurements. 

This paper focuses on the very short term solar forecasting, from 10 minutes to 6 hours, applied to a 
single location. For these short horizons, the operational models should have low computational 
requirements in order to operate fast and the inputs must be available in real-time. The same issues are 
usually met in the financial domain. Furthermore, time series of solar irradiance recorded at high 
frequency (1-10 minutes) are composed of periods of low variability (clear sky or overcast sky) and 
periods with high variability (passing clouds). This behavior is also observed in financial time series that 
exhibit stable periods and clusters of volatility. This characteristic of times series is called 
heteroskedasticity (Engle, 1982). 

The first aim of this work is to test models commonly used in econometrics. The point forecasts are 
generated with the well-known AutoRegressive Moving Average model (ARMA) (Tsay, 2005). The 
associated prediction interval is produced with a Genearalized AutoRegressive Conditional 
Heteroskedasticity model (GARCH)(Bollerslev, 1986). The combination of these two models has been 
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extensively tested in econometrics but to our best knowledge it is the first time in the field of solar 
forecasting. The second objective is to propose an operational framework of the forecasting methodology. 
More precisely only past data of the measured solar irradiance are used to run the models and the 
parameters of the two models are estimated with a recursive method (Ljung and Söderström, 1983). 

The remainder of this paper is organized as follows. Section 2 describes the data used to build and to test 
the different models. Section 3 discusses the errors metrics used to assess the accuracy of the point and 
probabilistic forecasts. Section 4 depicts the structure of the different forecasting models with a special 
emphasis on the recursive estimation of the parameters.  Section 5 details the results of point forecasts 
while section 6 gives the results of the probabilistic forecasts.  Finally, Section 7 gives some concluding 
remarks. 

 

2. Data 
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Provider SURFRAD NREL LARGE PIMENT 

Position 36.6N 
119.0W 

48.3N 
105.1W 

21.3N 
158.1W 

16.6N 
61.5W 

21.3S 
55.5E 

21.3S 
55.5E 

Elevation 1007m 634m 11m 6m 75m 550m 

Climate type Desert Continental Insular 
tropic 

Insular 
tropic 

Insular 
tropic 

Insular 
heights 

Years of records 2012 
2013 

2012 
2013 

2010 
2011 

2010 
2011 

2012 
2013 

2012 
2013 

Annual solar irradiance (MWh/m2) 2.105 1.447 1.969 1.893 2.053 1.712 

Ratio of missing or removed days 0.68% 1.91% 16.44% 0.82% 0% 15.21% 

Ratio of interpolated data 0.28% 0.53% 0.00% 0.00% 0.05% 0.00% 

Solar variability 10-min (!∆!"!"!"#∗ ) 0.107 0.137 0.193 0.194 0.151 0.183 

Solar variability 1-hour (!∆!"!"!"#∗ ) 0.146 0.181 0.209 0.213 0.191 0.241 

Table 1: Main characteristics of the solar measurements used in this work 

In this work, we used data recorded at 6 different locations in the world (see Table 1). These sites were 
selected because they offered high frequency measurements of global horizontal solar irradiance (GHI) 
for long periods. They also represent a large variety of climates. The time step of record is different 
between the considered stations but never exceed 1 minute. For this study we computed 10-min. and 1-
hour averages of GHI directly from the raw data for 2 consecutive years. To get continuous and workable 
time series of GHI, we applied the following rules to treat the data: 

- To avoid the side effects induced by the low accuracy of the solar measurements at sunrise and 
sunset, we remove all the data for a solar zenith angle superior to 80°. Thus, the obtained time 
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series do not contain the null night values. This filtering method removes less than 1% of the 
annual total solar energy. 

- If a gap smaller than 20 minutes is detected, a linear interpolation is done in order to fill the 
missing data with the initial time step. 

- If a gap longer than 20 minutes is detected, the whole day is removed from the time series. 

The resulting data samples are continuous because the first data of the current day follow the last data of 
the previous day. Hence, the first forecasts of a day are done using the sky conditions observed before the 
sunset of the previous day. The measurements of the six selected stations are consistent and we detected 
only few missing data (table 1).  The sites of Oahu and Tampon present a significant amount of missing 
days, around 15%, because their periods of record are shorter than two years. 

A GHI time series can be divided into a deterministic part and a stochastic part. A clear sky model can 
accurately estimate the annual and diurnal cycles that represent the deterministic part (Iqbal, 2012). The 
aim of this work is to forecast the stochastic part induced by the cloud cover. Therefore, in order to 
remove the deterministic part from the radiation time series, we compute the clear sky index (kt*) by 
dividing the measured GHI with the GHI observed under a clear sky (eq. 1). The resulting time series is 
almost stationary and a linear process, like an ARMA, can be used to model it. 

(1) !"∗ = !"#
!"#!"#$%

  

In this work, we use the clear sky data provided by the McClear model (Lefèvre et al., 2013) available for 
free on the SoDa website (“SoDa,” 2015). This model use the AODs, water vapor and ozone date from 
the MACC project. 

Figure 1 plots the clear sky index distribution and table 1 (last rows) gives the solar variability. These two 
indicators allow a better understanding of the characteristics of the solar irradiance for each site. In figure 
1, one can notice a significant number of occurrences of overirradiance, that is to say a clear sky index 
above 1. These cloud enhancement events can be observed everywhere in the world (Almeida et al., 
2014). This phenomenon is more visible when using short time scales as in our study with 10-min mean 
of solar irradiance. The solar variability metric was defined by Perez et al. (2012) as the standard 
deviation of the changes in the clear sky index (!∆!"∆!∗ ). In our case we choose to compute the solar 
variability for a sampling intervals of 10 minutes and 1 hour that coincide with the time steps of our time 
series.  

The continental stations of Desert Rock and Fort Peck experience a weather dominated by clear skies with 
a relatively low variability. For the 4 insular locations, the occurrences of clear skies are lower and the 
variability is higher than the continental sites. However some differences exist between them. For 
example, Oahu presents more occurrences of clear sky than Fouillole but these two locations have the 
same variability.  Lauret et al. (Lauret et al., 2015) showed that the ability to generate an accurate point 
forecast with a linear process depends on the level of variability of the solar irradiance. Thus, the 
typology of the solar irradiance (i.e. radiation level, distribution and variability) of a site is a key factor to 
understand the level of error of a solar forecasting method. 
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Figure 1: Statistical distribution of the 10-min. clear sky index for the 6 considered locations 

 

3. Error metrics  

Several attempts have been made to define the state-of-the art validation metrics for point forecasts (Hoff 
and Perez, 2012)(David et al., 2012)(Coimbra et al., 2013). In the realm of the solar forecasting 
community, the commonly used error metrics for point forecasts are: the Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE) and the Forecast Skill (FS). The 
formulas used to evaluate these metrics are given in appendix C. In their work, David et al. (David et al., 
2012) show that the RMSE and MAE metrics remain the best indicators. These absolute indices are 
usually normalized by the mean GHI of the test period as the utility industry wants to understand error in 
relative terms rather than in absolute terms (Hoff and Perez, 2012). In this work, in order to characterize 
the quality of the point forecasts, we provide the standard set of relative error metrics. 

To evaluate and to rank the probabilistic forecasts, and following (Iversen et al., 2014), (Alessandrini et 
al., 2015), (Sperati et al., 2015), (Bessa et al., 2015) and (Pinson et al., 2010), we propose to use the 
reliability diagram, the rank histogram (or Talagrand histogram), the continuous ranked probability score 
(CRPS) and its associated skill score the CRPSS. 

The reliability diagram is a well-known representation to verify a probabilistic forecast. We used the 
methodology defined by (Pinson et al., 2010) to create it. The latter is specially designed for the case of 
continuous variables commonly met in the field of energy meteorology. On the horizontal axis, the 
reliability diagram gathers the forecasts into bins according to their cumulative probability. The frequency 
with which the meteorological parameter was observed to occur for each bin of the forecasts probability is 
then plotted against the vertical axis (Hamill, 1997). This representation is appealing because the 
deviations from perfect reliability (the diagonal) can be visually assessed (Pinson et al., 2010). 

The rank histogram is a tool for evaluating ensemble forecasts. They are useful for determining the 
reliability of probabilistic forecasts and for diagnosing errors in its mean and spread (Hamill, 2001). A 
rank histogram is generated by repeating the following two steps for every the time step of the 
verification sample: first sorting the members of the ensemble forecast and then tallying the rank of the 
corresponding observation. For a number of members N, the number of ranks of the histogram of an 
ensemble is N+1. A flat rank histogram shows that the members of an ensemble system are statistically 
indistinguishable from the observations (Alessandrini et al., 2015). A ∪-shape indicates a lack of spread 
while a ∩-shape indicates that the probabilistic forecasts are over-dispersive. In this work, we propose a 
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parametric model to generate the probabilistic forecasts. To plot the rank histograms, we created 
ensemble forecasts based on this model. The members of the ensemble are generated with a random 
variable that follow the distribution law assumed in the parametric model. 

The CRPS is also a commonly used verification index in order to compare a full probabilistic distribution 
with the observations, when both are represented as cumulative distribution functions (CDF) (Sperati et 
al., 2015). This index contains a sense of distance of how far the forecast was found from reality 
(Hersbach, 2000). In addition, for a deterministic forecast, the CRPS is the mean absolute error (MAE) 
and has a clear interpretation. The formulation of the CRPS is: 
(2) CRPS = !

!
!!"#! ! − !!"#! !

!!!
!!

!
!!! !"  

where !!"#! !  is the cumulative distribution function (CDF) of the forecast and !!"#! !  is the CDF of the 
observation for the ith ensemble forecast/observation pair. N is the number of pairs. The CRPS has the 
same dimension as the forecasted variable and a lower value (0 is the perfect score) of the CRPS 
corresponds to a better performance. The interested reader can refer to Hersbach (2000) that gives a 
complete and detailed presentation of how to asses the CRPS. As the metrics used to assess the accuracy 
of the deterministic forecasts, the relative counterpart of the CRPS is obtained by dividing the absolute 
value of this metric by the average GHI of the test period. 

As proposed by Bessa et al. (2015), the forecast skill of the proposed model is evaluated by computing 
the improvement over a reference model in terms of CRPS.  This comparative metric will be called 
further in this work the Continuous Rank Probability Skill Score (CRPSS). The reference model used to 
derive the CRPSS is a persistence ensemble (see sub-section  4.1). The formulation of the CRPSS is given 
in appendix C. 

 

4. Forecasting methods 

In this section the forecasting models and the recursive method used to estimate their parameters are 
presented. To clarify the equations we used the following notation. A variable with a hat (^) is a forecast. 
h is the horizon of forecast also called the lead time. t denotes the time when the forecasts are generated. 
We choose to create one model per horizon of forecast in order to avoid the error propagations usually 
observed while running the same model iteratively. The models and the method of regression presented in 
the following sub-section are expressed taking into account this approach. 

 

4.1 Reference models 

Following Perez et al. (2010), we propose to test our forecasting method against reference models like 
persistence, smart persistence and climatology. 

The persistence model is expressed as follows: 

(3) !"∗ !!! = !"∗ !   

This model assumes that the clear sky index for each time horizon ‘h’ only depends on the previous clear 
sky index values, which means that the sky conditions remain invariant between time ‘t’ and time ‘t+h’.  
The next model represents an easy way to improve persistence model and it is called Smart Persistence 
(Perssmart). It consists in forecasting clear sky index for each time horizon ‘h’ as the mean of the ‘h’ 
previous clear sky values (Perez et al., 2014). Smart-persistence model is defined by the following 
equation: 



 7 

(4) !"∗ !!! = !"#$ !"∗ ! ,… , !"∗ !!!    

We also propose the climatological mean model, which is independent of the forecast time horizon.  More 
precisely, this model performs a constant forecast of the clear sky index that corresponds to its mean 
historical value: 

(5) !"∗ !!! = !"#$   !"∗   

During this work, we used the mean clear sky index of the first year of records in order to forecast the 
second year. 

Finally, we propose to use a persistence ensemble as reference model (Alessandrini et al., 2015) to make a 
comparison with our probabilistic forecasts. The members of the persistence ensemble are derived from 
the 10 last records of the clear sky index. Thus, the probability density function (PDF) of a forecast is 
equal the PDF obtained from the 10 most recent observations: 

(6) !"# !"∗ !!! = !"# !"∗! , !"∗!!!,⋯ , !"∗!!!   

 

4.2 ARMA model 

The AutoRegressive Moving Average model (ARMA) is one of the most used time series models in 
forecasting. In particular, it has been extensively studied in renewable energy forecasting and, owing to its 
parsimony, it has turned out to be a very tough competitor. Applications already include among others 
forecasting of solar irradiance (Bacher et al., 2009). A general formulation of an ARMA(p,q) model with 
p autoregressive (AR) terms and q moving average (MA) terms is given by Tsay et al. (Tsay, 2005). Its 
application to the h-ahead forecast of the clear sky index is given by the following equation: 

(7) !"∗ !!! = !! + !! ∙ !"∗ !!!!!
!
!!! + !! ∙ ! !!!!!

!
!!!   

with h=1,2,… the forecast horizon. The error term  ! is the difference between the previous forecasts and 
observations as defined in the following equation: 

(8) ! !!! = !"∗ !!! − !"∗ !!!  

More broadly, an ARMA model can be formulated in a canonical way as follows: 

 (9) !"∗ !!! = ! !
!! !   

with ! ! = !!,!!,⋯ ,!!,!!,⋯ !!  the vector of parameters to be estimated and 
! !

! = 1, !"∗ ! ,⋯ , !"∗ !!!!! , ! ! ,⋯ , ! !!!!!  the vector of inputs. 

There are several methods to estimate the vector of parameters θ, with the two most widely implemented 
being the least squares (LS) and the Maximum Likelihood Estimation (MLE) methods. Here, we chose a 
variation of the LS method, namely the Recursive Least Squares (RLS) method. This method offers the 
advantage of reducing the computational cost for estimating the model with its parameters being updated 
in real-time as new data become available. This contrasts with more intensive estimation methods 
operating on a sliding window with the estimation process being carried out at each time step. The RLS 
method is particularly useful in an operational context where forecast have to be timely delivered. In the 
RLS method, ! is time varying and, by convention, it is subsequently denoted ! ! . The RLS method is 
detailed in the following sub-section 4.4. 
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4.3 GARCH Model 

The family of the ARCH (AutoRegressive Conditional Heteroskedasticity) models, introduced by Engle 
in the early 80’s (Engle, 1982), is used to model the volatility (i.e. the variance) of time series in the 
financial domain. These models are particularly suitable to describe changes in variance over the time. 
This family of models is commonly used in econometrics in order to forecast the realized volatility of 
high frequency data (Andersen, 2000)(McAleer and Medeiros, 2008) or to assess the volatility of the error 
of point forecast models like linear regressions (AR, ARMA, etc.) (Bollerslev, 1986). In this work, we 
applied this second approach to compute the prediction intervals associated with the point forecasts 
generated by a recursive ARMA model. 

Bollerslev (1986) proposed a Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) 
model, which provides a more parsimonious representation than the simple ARCH model in many 
applications. GARCH models express the conditional variance as a linear function of lagged squared error 
terms and also lagged conditional variance terms (Taylor, 2004). The general formulation of a 
GARCH(p,q) model, with p error terms, q conditional variance terms and an horizon of forecast h, is 
given by the equations 10 and 11 (Tsay, 2005): 

(10) ! !!! = ! ! ! !!!   

where ! is a random variable uniformly distributed with a zero mean and a unitary variance. 

(11) ! !!!
! = !! + !!! !!!!!

!!
!!! + !!! !!!!!

!!
!!!   

with the error term ! !!! = ! !!! − ! !!! . 

The basic idea is that the series is either serially uncorrelated or with minor lower order serial 
correlations, but it is a dependent series. GARCH models attempt to capture such dependence in the 
return series (Tsay, 2005). Figure 2 shows a representation of the serial correlations of the time series of 
forecasting errors. These errors are obtained for the site of Saint-Pierre with a recursive ARMA(p,q) and a 
lead time of 10 minutes. Figure 2(a) plots the autocorrelation function (ACF) of the errors, which 
suggests no serial significant correlations. Figure 2(b) shows the ACF of the squared errors of forecast. 
This second plot suggests that the time series contains autocorrelation. Similar ACF plots and 
characteristics can be observed for other lead times and for the other sites. Bollerslev (1986) shows that 
such time series can be modeled with a GARCH(1,1). Other models of heteroskedasticity exist, like the 
ARCH model. With a deeper analysis of the correlation in the data, they could also be set up with the 
same objectives (Boland, 2015). 
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Figure 2: Sample ACF of the 10-min. horizon errors of forecast derived from a recursive ARMA for the 
site of Saint-Pierre ; (a) ACF of the errors ; (b) ACF of the squared errors 

In order to define the confidence intervals of the point forecasts from the variance derived with the 
GARCH model, we assume a Gaussian distribution of the error. Thus, for each point forecast, the density 
of probability of the error corresponds to a normal law ! !"∗ !!! ,!!!! . This assumption is not 
rigorously supported by the data. Figure 3 shows the statistical distribution of the error of forecast for two 
sites that present significant differences in sky conditions. The distribution of the errors for Desert Rock 
presents a strong peak around the mean (kurtosis) and a lack of symmetry (skewness). It cannot be 
considered as gaussian. The distribution of the errors for Fouillole is closer to a normal law but there are 
also some important differences. 

 
Figure 3: Statistical distribution of the errors of forecast (bar chart) derived from a recursive ARMA 
model with a horizon of 30 minutes for the sites of Fouillole (a), Desert Rock (b) and the best fit curve 

corresponding to a normal law (line). 

Applied to the modeling of the forecasting error, equation 11 can be expressed with a canonical 
formulation as follows: 

(12) ! !!!
! = ! !

!! !  

with ! ! = !!,!!,⋯ ,!!,!!,⋯ !!  the vector of parameters to be estimated and 
! !

! = 1, ! !
! ,⋯ , ! !!!!!

! ,! !
! ,⋯ ,! !!!!!

!  the vector of inputs. The error term ! is the difference 
between the point forecast and the observation of the clear sky index at time t (eq. 13). 

(13) ! ! = !"∗ ! − !"∗ !  

A special issue concerning the GARCH model is the estimation of the past values of the variance (! !
! , 

…, ! !!!!!
! ). The ARMA process generates only one point forecast per time step and it is not possible to 

assess the variance of past errors. Engle define ARCH processes as time series with non-constant 
variances conditional on the past, but constant unconditional variances (Engle, 1982). This unconditional 
variance !! is obtained by applying unconditional expectation to ! !!!

!  in equations 11 or 12 (González-
Rivera, 1998). The unconditional variance is a function of the parameters !!and !! of a GARCH model 
and it can be used to initialize the GARCH process (i.e. ! !

! = !! in eq. 11) (Nelson and Cao, 1992). 
Equation 14 gives the unconditional variance for a GARCH(1,1) process: 
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(14) !! = !!
!!!!!!!

 

In this work, we build a GARCH(1,1) model as proposed by Bollerslev (1986). The estimation of the 
vector of parameters ! of the GARCH model is done with the same recursive method used for the ARMA 
model. 

 

4.4 Recursive estimation of the parameters 

We consider a time series ! !  that can be modeled by a linear regression process: 

(15) ! ! = ! !
!! ! + ! !  

where ! !  is the vector of parameters and ! !  the vector of inputs at time t. ! !  is a random variable 
with a normal law distribution. A forecast of the time series ! !!!  can be done with the same linear 
regression model considering a horizon of forecast h corresponding to h time steps: 

(16) ! !!! = ! !
!! ! ↔ ! ! = ! !!!

!! !!!   

We set up a recursive least square (RLS) to estimate the vector of parameters ! !  of this time series. For 
this work, the RLS methodology has been slightly modified to take into account the different time 
horizons h. For instance, the update step of the recursive process must be lagged in order to take into 
account that the forecasted ! !  was derived at time t-h. The adaptation of the RLS method integrates a 
different time lag between the current time and the forecasted time. In the equation 17 and 18, the gain 
matrix ! !  is assessed using a lagged input vector at time t-h. This change from the initial formulation 
takes into account that the forecast of the time series at time t was done at time t-h. 

(17) ! ! = ! !!! + ! ! ! !!! ! ! − ! !!!
!! !!!  

(18) ! ! = !
!
! !!! − ! !!! ! !!! ! !!!

!! !!!
!!! !!! !! !!! ! !!!

 

where ! !  is the gain matrix and ! is a forgetting factor. For this work, we use a forgetting factor ! = 
0.999. 

For the ARMA model, the RLS method was used in a classical way (Ljung and Söderström, 1983) like 
Madsen (2007) for the estimation of the parameters of their ARX model. The methodology directly 
minimizes the quadratic error between the observations ! !  and the forecasts ! ! . For the GARCH 
model, it is not possible to directly apply the RLS method. The prediction error is different from the 
GARCH residual. Kierkegaard et al. (2000) transform the residual by making the transformation !!! = !!! 
in equation 17 in order to assess the GARCH parameters with a pseudo-linear recursive method. This 
transform works for any situations where the conditional variance is independent from the sign of the 
prediction error !!. We use this convenient transform to run our RLS method. 

Even if the cyclical effects of the solar path are removed by the use of the clear sky index, the time series 
still present short-term trends (hurricanes, cold fronts, anticyclone, etc.). It seems important that the 
method used to assess the vector of parameters takes into account these short-term trends. The recursive 
methodology with forgetting is able to catch these short-term trends. 

 

4.5 Machine learning techniques 
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Regarding the point forecasts, we also propose to compare the results obtained with the recursive ARMA 
with those obtained by nonlinear machine learning techniques (see section 5). In a previous work (Lauret 
et al., 2015), three machine learning techniques namely Artificial Neural Networks (NNs), Gaussian 
Processes (GPs) and Support Vector Machines (SVMs) were employed for intraday solar forecasting. 
These machine-learning techniques are supervised learning methods or data-driven approaches.  As a 
consequence, these techniques rely on the information content embedded in the training data in order to 
produce forecasts on unseen data. More precisely, the models’ parameters are determined with the help of 
n pairs of input and output examples contained in the training data. Once the model is fitted, the model 
can be evaluated on a test dataset. This second phase, called the generalization phase, consists of 
evaluating on the test dataset, the ability of the technique to generalize, that is to say, to give correct 
outputs when it is confronted with examples that were not seen during the training phase. 

In our context, ! = x!, y! !!!!  represents the training dataset. The vector x! contains the p past values of 
the clear sky index for training and y! refer to the corresponding value of the clear sky index for the 
horizon h of interest. The column vector inputs for all n training cases can be aggregated in the so-called 
n×p  design matrix X  and the corresponding model’s outputs (or targets) are collected in the vector  y so 
we can write ! = X, y . Similarly, considering  n∗ test cases, we have !∗ = X∗, y∗  for the test dataset.  

These methods are briefly described below and the interested reader can refer to (Lauret et al., 2015) for 
details regarding the optimization of these types of models. 

 

4.5.1 Neural networks (NNs) 

A NN with d inputs, m hidden neurons and a single linear output unit defines a non-linear parameterized 
mapping from an input vector x to an output y. For our application, the prediction for an input test vector 
!∗ is given by the following equation: 

(19)  !"∗ !!! = y x;w = w!
!
!!! f w!"

!
!!! !∗ + b! + b!       

Each of the m hidden units are related to the tangent hyperbolic function f x =
e! − e!! e! + e!! .    The parameter vector ! = w! , w!" , b!, b! , which contains a set of weights 
w! , w!"   and two biases b!, b!, governs the non-linear mapping and is estimated during the training 

phase. 

 

4.5.2 Gaussian Processes (GPs) 

GPs are stated as a kernel-based method. Indeed, it can be shown (Rasmussen and Williams, 2006) that, 
given n training samples, the prediction for an input test vector !∗  can be seen in terms of a linear 
combination of n kernel functions; each one centered on a training point. Therefore, the forecasted clear 
sky index is given by Eq. (20): 

(20) !"∗ !!! = α!!
!!! !! !!, !∗    

where !!    denotes the squared exponential covariance function !! x!, x! = σ!
!exp ! !!!!!

!

!!!
 and !! is 

the ith input training vector. The coefficients α! are estimated during the training phase. σ!
! and l are 

called hyperparameters of the covariance function. These hyperparameters control the model complexity 
and can be learned (or optimized) from the training data at hand (Rasmussen and Williams, 2006). 



 12 

 

4.5.3 Support vector machines (SVMs) 

The support vector machine (SVM) is another kernel based machine learning technique used in 
classification tasks and regression problems (Cortes and Vapnik, 1995). Support vector regression (SVR) 
is based on the application of support vector machines to regression problems (Smola and Schölkopf, 
2004). This method has been successfully applied to time series forecasting tasks (Muller et al., 1997). In 
a similar manner as for the GPs, the prediction calculated by a SVR machine for an input test case  !∗ is 
given by Eq. (21): 

(21) !"∗ !!! = !!!
!!! !!"# !! , !∗ + ! 

k!"#    denotes the radial basis covariance function k!"# x!, x! = exp −γ x! − x!  with 
hyperparameter γ and b is a bias parameter.  

In the case of SVMs (unlike GPs), it must be noted that not all the training patterns participate to the 
preceding relationship. Indeed, a convenient setting of the optimization problem enables to obtain a sparse 
solution. The latter means that only some of the coefficients α! will be nonzero. The examples that come 
with non-vanishing coefficients are called Support Vectors.  

 

5. Results for the point forecasts 

The 2 years of data of the six considered sites are split into two sets as follow: the first year is used as 
training sample and the second year is used as test sample. All the metrics provided in this section are 
derived from the test samples (i.e. the second years of data). In the case of the recursive estimation of the 
parameters of the ARMA models, a calibration or training period is not required. Thus, to select the best 
orders of the ARMA(p,q) models, we directly used the first years of data of every sites. We selected the 
pairs of AR and MA lags that presented the lowest RMSE for each site and each forecasting horizon. To 
find this minimum, we varied the lags in the range [1;10]. Table 2 gives the AR and MA orders resulting 
from the cross validation. For a 10-min. granularity and for the sites with a low variability (i.e. Desert 
Rock, Fort Peck and Saint-Pierre), the AR and MA orders present the same evolution. As shown by Table 
2, the AR order increases and the MA order decreases when the forecasting horizon is increasing. 
Obviously, for these sites that present a relatively low variability in the 10-min time scale, very short-term 
forecasts (horizons inferior to 30 minutes) are mainly influenced by the trend of the change of the sky 
condition. For the sites with a higher variability and also for a granularity of 1 hour, no clear trend was 
seen in the values of the orders. 
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1-
ho

ur
 

1 hour 1 1 1 1 1 1 1 1 1 1 1 1 
2 hours 2 1 1 1 2 2 4 1 2 1 9 1 
3 hours 1 1 1 1 3 2 1 2 7 5 8 2 
4 hours 2 2 3 3 2 1 1 1 7 2 9 1 
5 hours 1 1 1 1 5 1 5 2 6 1 8 1 
6 hours 1 1 1 1 5 1 1 7 6 1 7 1 

Table 2: Orders of the recursive ARMA(p,q) models for different lead times, granularities and sites 

The detailed results of the simulations can be found in the tables A.1 to A.4 of the appendix A. These 
tables give the values of the error metrics for every site, horizon and granularity. The proposed method 
presents a very low bias (MBE), inferior to 2% for all sites. Figures 4 and 5 show the relative RMSE of 
the point forecasts respectively for the 10-min. granularity and for the 1-hour granularity. In terms of 
quadratic errors, the accuracy of the forecasts decreases when the lead-time increases. The recursive 
ARMA models outperform the two reference models (i.e. smart persistence and climatology) for all the 
horizons and granularities. As mentioned above, a comparison is also done with the machine learning 
techniques briefly described in section 4.5. The Gaussian Process technique from this previous work was 
not used for the 10-min. granularity because it led to a very long computation time. In terms of quadratic 
errors, the recursive ARMA slightly outperforms the machine learning models (Gaussian Process, 
Support Vector Machine and Neural Network) for a granularity of 1 hour. But for a granularity of 10 
minutes and for the other error metrics (see tables 5 and 6 in appendices), the accuracy of the recursive 
ARMA is practically the same as the machine learning methods. The main advantage of the proposed 
ARMA model compared to the machine learning methods comes from the simplicity provided by the 
recursive estimation of the parameters. Indeed, this method does not require training period and the 
parameters are estimated only with the last available records using a simple algorithm. Moreover, an 
ARMA model has only few parameters to estimate and it does not require complicated method to manage 
its complexity. Hence, it runs very fast and it is easier to set up for an operational use. 

The accuracy of the forecasts also depends on the sky conditions observed on a site. There is a clear 
relationship between the indices of variability (!∆!"!"!"#∗  and !∆!"!"!"#∗ ) and the ability to forecast 
accurately the solar irradiance. The stations of Oahu, Fouillole and Tampon experience the most variable 
sky conditions and they exhibit the less accurate forecasts. On the contrary, Desert Rock has the lowest 
index of variability and the accuracy of the forecasts is the best for this site. The more variable the sky 
conditions are, the less predictable the solar irradiance is. This relationship has already been highlighted 
in recent works (Lauret et al., 2015)(Voyant et al., 2015). 
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Figure 4: Relative RMSE for horizons of forecast from 10 minutes to 60 minutes and a granularity of 10 
minutes. In (a), the dashed lines are the error of the recursive ARMA model for each individual site. The 
bold line is the average RMSE of the recursive ARMA model considering all the sites. (b) Comparison of 
the reference models, the recursive ARMA and the models proposed in (Lauret et al., 2015) considering 

all the sites. 

 

 
Figure 5: Relative RMSE for horizons of forecast from 1 hour to 6 hours and a granularity of 1 hour. In 
(a) the dashed lines are the error of the recursive ARMA model for each individual site. The bold line is 

the average RMSE of the recursive ARMA model considering all the sites. (b) Comparison of the 
reference models, the recursive ARMA and the models proposed in (Lauret et al., 2015) considering all 

the sites. 

 

6. Results for the probabilistic forecasts 

An uncertainty envelope is associated to the point forecasts thanks to the GARCH(1,1) model (Figure 6). 
This probabilistic information is derived from the forecasts of the standard deviation of the error between 
the point forecasts and the observations. To generate the uncertainty, we assume that the distribution of 
the error of forecast follows a normal law. To assess the ability of the model to reproduce the distribution 
of his own error, we first use the well-known reliability diagram. This representation allows to graphically 
assess the reliability for a set of probabilistic forecasts. An example of a reliability diagram is given in 
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figure 7 for probabilistic forecasts done for the site of Tampon. The dashed line represents a perfect 
assessment of the errors by the model itself. As shown in figure 7, the probabilistic forecasts do not 
follow exactly the ideal line. For example, 54% of the observed errors occurred when forecast probability 
was 60%. In this case, the model is over confident. The probability of the forecasts is higher than the 
probability of the observations. 

 

 
Figure 6: Example of point forecasts with confidence intervals of the GHI for 2 days in Oahu generated 

with the recursive ARMA-GARCH model. The forecasting time horizon is 1 hour and the granularity is 10 
minutes. 

 

 
Figure 7: Reliability diagram of the probabilistic forecasts for Tampon with a forecasting time horizon of 

1 hour and a granularity of 1 hour 
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Figure 8 provides respectively the reliability diagrams for the 10-min. (a) and the 1-hour (b) granularities. 
For all the horizons, the reliability of the ARMA-GARCH models is almost the same. Around a 
cumulative probability of forecasts of 70%-80% the reliability of the model is changing. Below this 
threshold, the model is over confident. Inversely, above this threshold, the model is under confident. 
Strangely, the model based on stochastic differential equations developed by Iversen et al. (2014) shows a 
similar behavior. In our case, this deviation of the probabilistic forecasts to the ideal line is mainly due to 
the assumption done about the Gaussian distribution of the error. Figure 9 gives the effect of this 
assumption on the reliability of the probabilistic forecast. The distance between a Gaussian distribution 
and the distribution of the error of the forecasting method is measured with the help of the Kolmogorov-
Smirnov index (KSI). The KSI for each site is given in the table at the right part of figure 9. The smaller 
the KSI is, the closer the distribution to a normal law is. The distribution of the forecasting error of the 
site of Desert Rock is the most distant from a normal law.  The worst reliability is also observed for this 
site. Inversely, the site of Tampon presents the closest distribution to a normal law and the best reliability 
of our test samples. Thus, the assumption done about the statistical distribution of the error of the point 
forecasts affects directly the reliability of the probabilistic forecast done with our GARCH model. In our 
case, the sites that exhibit the lowest error for the point forecasts have the worst reliabilities. Thus, the 
higher the solar variability is, the better the reliability of the probabilistic forecasts is.  

 
Figure 8: Reliability diagrams of the recursive ARMA-GARCH model considering all the sites. (a) 

Horizons of forecast from 10 minutes to 60 minutes and a granularity of 10 minutes. (b) Horizons of 
forecast from 1 hour to 6 hours and a granularity of 1 hour. 
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 KSI  

Desert 
Rock 0.37  

Fort Peck 0.33  

Fouillole 0.31  

Oahu 0.31  

Saint-Pierre 0.33  

Tampon 0.29  

Figure 9: Reliability diagrams of the recursive ARMA-GARCH for a horizon of 30 minutes and a 
granularity of 10 minutes. The one-sample Kolmogorov-Smirnov index (KSI) for a correspondence with a 

normal law is given in the table for the error of forecasts on the kt*. 

 

To complete the analysis done above about the reliability, we plot rank histograms to assess the 
consistency of our method. Figures 10 and 11 show the rank histograms of our ARMA-GARCH models 
and of the persistence ensemble forecasts. The rank histogram is initially designed to assess the spread of 
an ensemble forecast system. In the case of a parametric method, like our approach, a rank histogram can 
be done by generating an ensemble of forecasts from a random variable that follow the selected 
distribution. As for the persistence ensemble, we choose to generate 10 members that follow our 
assumption of normal distribution of the error. The mean comes from the ARMA model and the variance 
comes from the GARCH model. With a U-shape, the rank histograms of the persistence ensemble show 
clearly a lack of spread in the forecasts. With a peak of population on the right side, the shape of the rank 
histograms of our ARMA-GARCH model shows an excess of variability with a negative bias. We can 
suppose that these bias results from the symmetry of the PDF of the normal law. Indeed, if the sky is clear 
at time t, at time t+h the probability that the sky will be “less clear” is higher than a probability to be 
“more clear”. This reality is not supported by our assumption of a Gaussian distribution of the error of 
forecast. 
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Figure 10: Rank histograms	
  computed over all the lead times of the ARMA-GARCH model (a) and of 

persistence ensemble (b) for a 10-min granularity. 

 

 
Figure 11: Rank histograms	
  computed over all the lead times of the ARMA-GARCH model (a) and of 

persistence ensemble (b) for a 1-hour granularity. 

 

The last investigated error metrics are the CRPS and the associated skill score the CRPSS. The CRPS - 
combines both the error of the point forecasts and the reliability of the probabilistic quantiles. Figure 12 
(Tables B.1 and B.2 in appendix B) gives the CRPS of each site for all the granularities and all the 
horizons. As the CRPS is equivalent to the MAE for a deterministic forecast, its trend is strongly 
influenced by accuracy of the point forecasts. Again, we can observe that the accuracy of the forecasts is 
directly dependent to the solar variability of the site. Even if the reliability of the probabilistic forecasts 
differs between the different sites, it affects very weakly the values of the CRPS. In figure 13, the CRPSS 
gives the improvement of the ARMA-GARCH model compared to the persistence ensemble.  Overall, the 
ARMA-GARCH model outperforms the persistence ensemble. This improvement is higher for the 
shortest horizons of forecast. There is also a difference of improvement between the different sites. Again, 
the variability of the observed sky conditions is the key factor of these differences. By definition, the 
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persistence ensemble has a good accuracy when the sky conditions remain stable. Thus, the improvement 
of our model is better for the sites that experience a higher variability. 

 
Figure 12: CRPS of the recursive ARMA-GARCH. The dashed lines are the CRPS for each individual 

site. The bold line is the average CRPS considering all the sites. (a) Horizons of forecast from 10 minutes 
to 60 minutes and a granularity of 10 minutes. (b) Horizons of forecast from 1 hour to 6 hours and a 

granularity of 1 hour. 

 

 
Figure 13: CRPSS of the recursive ARMA-GARCH. The dashed lines are the CRPSS for each individual 

site. The bold line is the average CRPSS considering all the sites. (a) Horizons of forecast from 10 
minutes to 60 minutes and a granularity of 10 minutes. (b) Horizons of forecast from 1 hour to 6 hours 

and a granularity of 1 hour. 

 

The results obtained for the analysis of the probabilistic forecasts are coherent with the formulation and 
the behavior of a GARCH model. For instance, a GARCH process is efficient to model time series that 
tend to “return to the mean” after an event of strong volatility. This mean volatility is also the 
unconditional volatility of the time series. For our time series of clear sky indices, the mean volatility (or 
variance) is site dependent and it has a value around 0.2 – 0.3. These mean values do not correspond to a 
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stable sky condition (i.e. clear sky or overcast) that exhibits an almost null variance. Thus, for stable sky 
conditions, the GARCH process tends to overestimate the volatility of the error. 

 

7. Conclusions and outlook 

In order to provide very short-term forecasts of the solar irradiance, operational tools with low 
computational requirements must be developed. The approach proposed in this work is built on models 
used for the high frequency trading in the financial domain. The ARMA-GARCH methodology is an 
efficient combination of models used to generate very short-term point forecasts of solar irradiance with 
confidence intervals. Furthermore the recursive estimation of the parameters of these two models 
facilitates the implementation of these methods in an operational framework. In other words, this 
approach can be set up using only the real time monitoring of the solar power. 

The recursive ARMA model offers a simple and operational tool to generate point forecasts. Using only 
the actual value of the solar irradiance, this technique outperforms other statistical models as applied in 
this work. The association of an ARMA model with a GARCH model allows assessing the prediction 
intervals associated with the point forecasts. This combination is an alternative to the ensemble approach 
commonly used for generating probabilistic forecasts. Furthermore, a recursive ARMA-GARCH needs 
lower computational requirement than an ensemble method based on NWP and it is more suitable for very 
short term forecasting. 

In this work, a normal distribution of the error of the point forecasts has been assumed. In reality, the 
error of the point forecasts does not fit with a Gaussian law. Following this assumption, the model is over 
confident when the forecast probability is below 60%-70% and under confident above this threshold. An 
improvement of the method could be achieved by assuming a distribution law that fits better to the data 
(e.g. a Student law). 

New tools are currently developed in order to provide real time monitoring of the sky conditions like fish-
eye cameras. The proposed framework can easily integrate exogenous inputs (e.g. through the use of an 
ARMAX model) in order to improve the quality of the point forecasts. Thus, the recursive ARMA-
GARCH model is not only an operational model but it is also an upgradeable tool. 
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Appendix A: MBE, RMSE and MAE of the point forecasts 
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10 min. -0.1% -0.2% -0.3% 0.5% -0.2% 0.4% 
20 min. -0.2% -0.3% -0.6% 0.6% -0.3% 0.7% 
30 min. -0.3% -0.5% -0.8% 1.0% -0.4% 1.0% 
40 min. -0.3% -0.6% -0.9% 1.3% -0.5% 1.1% 
50 min. -0.4% -0.7% -1.1% 1.3% -0.6% 1.2% 
60 min. -0.4% -0.8% -1.3% 1.4% -0.6% 1.2% 
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SE
 

10 min. 12.0% 18.5% 25.5% 23.7% 17.1% 26.8% 
20 min. 15.0% 22.9% 30.3% 28.0% 21.4% 32.2% 
30 min. 16.3% 25.1% 32.3% 29.7% 23.6% 34.7% 
40 min. 17.1% 26.6% 33.6% 31.0% 25.0% 36.5% 
50 min. 17.8% 27.7% 34.5% 31.8% 26.1% 38.0% 
60 min. 18.4% 28.7% 35.3% 32.4% 27.1% 39.3% 

M
A

E 

10 min. 5.4% 10.3% 17.6% 16.1% 10.1% 17.6% 
20 min. 7.4% 13.9% 22.1% 19.8% 13.6% 22.8% 
30 min. 8.6% 15.8% 24.2% 21.5% 15.6% 25.7% 
40 min. 9.3% 17.2% 25.6% 22.8% 17.1% 27.7% 
50 min. 9.9% 18.4% 26.7% 23.6% 18.2% 29.3% 
60 min. 10.4% 19.4% 27.5% 24.3% 19.2% 30.7% 

Table A.1: Relative error metrics of the point forecasts done for each site by the recursive ARMA models 
using a granularity of 10 minutes 
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M
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1 hour -0.2% -0.7% -0.9% 1.5% -0.4% 1.5% 
2 hours -0.5% -1.2% -1.8% 2.1% -1.0% 0.5% 
3 hours -1.0% -1.5% -2.1% 2.2% -1.3% 0.3% 
4 hours -1.3% -1.5% -2.2% 2.0% -1.8% 0.1% 
5 hours -1.4% -1.6% -2.1% 1.8% -1.9% -0.1% 
6 hours -1.4% -1.6% -1.9% 2.0% -1.9% -0.4% 

R
M

SE
 

1 hour 13.6% 21.0% 24.9% 23.1% 20.4% 29.3% 
2 hours 17.3% 27.2% 30.6% 27.2% 26.3% 36.4% 
3 hours 18.8% 30.2% 32.9% 29.2% 28.4% 40.6% 
4 hours 19.8% 32.2% 34.1% 30.1% 30.1% 41.7% 
5 hours 20.2% 33.5% 34.8% 30.4% 30.9% 42.0% 
6 hours 20.4% 34.2% 35.1% 30.6% 31.1% 42.0% 

M
A

E 1 hour 7.7% 14.2% 19.1% 17.0% 14.5% 22.7% 
2 hours 10.5% 19.4% 24.1% 20.7% 19.5% 28.4% 
3 hours 11.9% 22.1% 26.0% 22.3% 20.9% 31.8% 
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4 hours 12.7% 23.8% 27.0% 23.1% 22.3% 32.7% 
5 hours 13.1% 25.1% 27.4% 23.4% 22.8% 33.1% 

 6 hours 13.4% 25.7% 27.6% 23.5% 23.0% 33.2% 
Table A.2: Relative error metrics of the point forecasts done for each site by the recursive ARMA models 

using a granularity of 1 hour 
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M
B

E 

10 min. 0.1% -0.3% 0.0% 0.1% - 0.2% -1.3% 
20 min. 0.3% -0.3% 0.0% 0.0% - 0.3% -2.3% 
30 min. 0.4% -0.3% 0.0% -0.1% - 0.3% -3.1% 
40 min. 0.5% -0.3% -0.1% -0.1% - 0.4% -4.0% 
50 min. 0.5% -0.3% -0.1% -0.1% - 0.5% -5.0% 
60 min. 0.6% -0.3% -0.1% 0.1% - 0.5% -5.9% 

R
M

SE
 

10 min. 22.3% 38.3% 20.8% 20.8% - 20.6% 21.3% 
20 min. 27.2% 38.3% 25.1% 25.1% - 25.0% 26.3% 
30 min. 29.1% 38.3% 27.1% 27.1% - 27.0% 28.8% 
40 min. 30.4% 38.3% 28.4% 28.5% - 28.4% 30.5% 
50 min. 31.5% 38.3% 29.4% 29.6% - 29.4% 31.7% 
60 min. 32.5% 38.3% 30.3% 30.5% - 30.2% 32.8% 

M
A

E 

10 min. 12.0% 29.5% 12.5% 12.0% - 12.3% 12.1% 
20 min. 15.7% 29.5% 16.2% 15.8% - 16.1% 15.8% 
30 min. 17.5% 29.5% 18.1% 17.9% - 18.0% 17.9% 
40 min. 18.8% 29.5% 19.5% 19.4% - 19.3% 19.4% 
50 min. 19.9% 29.5% 20.5% 20.5% - 20.4% 20.8% 
60 min. 20.9% 29.5% 21.4% 21.4% - 21.2% 21.9% 

FS
 

10 min. 0.0% -71.7% 6.7% 6.8% - 7.8% 4.3% 
20 min. 3.0% -36.7% 10.4% 10.2% - 10.8% 6.2% 
30 min. 5.0% -24.9% 11.7% 11.5% - 12.0% 6.0% 
40 min. 6.5% -17.8% 12.5% 12.2% - 12.6% 6.1% 
50 min. 6.8% -13.4% 12.9% 12.4% - 12.9% 6.0% 
60 min. 6.7% -10.0% 13.0% 12.8% - 13.2% 5.7% 

Table A.3: Relative error metrics of the point forecasts done for all the sites (average GHI = 493W/m2) 
by the reference models, the recursive ARMA models and the models proposed in (Lauret et al., 2015) 

using a granularity of 10 minutes 
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M B E 1 hour 0.5% -0.4% 0.1% 0.2% 0.4% 0.3% -1.4% 
2 hours 0.5% -0.4% -0.4% 0.7% 0.2% 0.1% -2.7% 
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3 hours -0.3% -0.4% -0.6% 1.2% -0.2% -0.1% -4.2% 
4 hours -1.2% -0.4% -0.8% 1.1% -0.4% -0.4% -5.6% 
5 hours -1.6% -0.4% -1.0% 1.2% -0.5% -0.5% -6.9% 
6 hours -1.4% -0.4% -0.9% 1.2% -0.5% -0.5% -8.1% 

R
M

SE
 

1 hour 23.2% 33.8% 22.1% 22.1% 22.6% 22.1% 22.6% 
2 hours 31.4% 33.8% 27.5% 27.8% 27.9% 27.8% 29.4% 
3 hours 36.0% 33.8% 30.0% 30.6% 30.7% 30.4% 33.8% 
4 hours 38.1% 33.8% 31.3% 31.7% 31.9% 31.8% 36.9% 
5 hours 38.2% 33.8% 31.9% 32.1% 32.3% 32.3% 38.9% 
6 hours 37.4% 33.8% 32.1% 32.3% 32.4% 32.4% 40.0% 

M
A

E 

1 hour 14.7% 25.4% 15.5% 15.3% 15.8% 15.4% 15.2% 
2 hours 21.0% 25.4% 20.0% 20.0% 20.2% 20.1% 20.5% 
3 hours 24.6% 25.4% 22.0% 22.1% 22.5% 22.3% 23.7% 
4 hours 26.2% 25.4% 23.1% 23.0% 23.5% 23.3% 25.8% 
5 hours 26.2% 25.4% 23.6% 23.3% 23.9% 23.9% 27.1% 
6 hours 25.5% 25.4% 23.9% 23.4% 23.9% 23.9% 27.9% 

FS
 

1 hour 0.0% -45.8% 4.7% 4.8% 2.4% 4.8% 2.6% 
2 hours -0.9% -8.6% 11.5% 10.5% 10.2% 10.8% 5.4% 
3 hours 1.4% 7.4% 17.7% 16.2% 16.0% 16.7% 7.5% 
4 hours 6.1% 16.7% 22.9% 21.8% 21.3% 21.7% 9.1% 
5 hours 11.6% 21.9% 26.2% 25.7% 25.3% 25.3% 10.1% 
6 hours 16.4% 24.4% 28.2% 27.9% 27.7% 27.7% 10.6% 

Table A.4: Relative error metrics of the point forecasts done for all the sites (average GHI =491W/m2) by 
the reference models, the recursive ARMA models and the models proposed in (Lauret et al., 2015) using 

a granularity of 1 hour 

 

Appendix B: CRPS and CRPSS of the probabilistic forecasts 

 

H
or

iz
on

 

D
es

er
t R

oc
k 

(m
ea

n 
= 

54
9W

/m
2  ) 

 F
or

t P
ec

k 
(m

ea
n 

= 
39

5W
/m

2  ) 

Fo
ui

llo
le

 
(m

ea
n 

= 
51

5W
/m

2  ) 

O
ha

u 
(m

ea
n 

= 
49

2W
/m

2  ) 

Sa
in

t-P
ie

rr
e 

(m
ea

n 
= 

53
8W

/m
2  ) 

Ta
m

po
n 

(m
ea

n 
= 

45
8W

/-2
 ) 

A
ve

ra
ge

 
(m

ea
n 

= 
49

3W
/-2

 ) 

C
R
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10 min. 4.7% 8.0% 12.9% 11.8% 8.0% 13.0% 9.5% 
20 min. 6.2% 10.6% 15.8% 14.3% 10.3% 16.3% 12.0% 
30 min. 6.9% 11.8% 17.1% 15.4% 11.6% 18.0% 13.2% 
40 min. 7.4% 12.7% 17.9% 16.1% 12.5% 19.3% 14.0% 
50 min. 7.9% 13.5% 18.5% 16.7% 13.1% 20.2% 14.7% 
60 min. 8.2% 14.1% 19.1% 17.0% 13.7% 21.0% 15.2% 

C
R

PS
S 

10 min. 15.7% 25.1% 19.4% 19.1% 23.0% 22.2% 20.7% 
20 min. 0.6% 12.3% 10.0% 10.3% 10.9% 12.6% 10.2% 
30 min. -2.4% 9.5% 8.3% 9.0% 7.9% 10.9% 8.1% 
40 min. -2.9% 8.8% 8.2% 8.7% 7.3% 11.2% 7.8% 
50 min. -2.6% 8.7% 8.8% 9.2% 7.9% 12.3% 8.4% 
60 min. -1.9% 8.9% 9.5% 10.0% 8.6% 13.5% 9.2% 

Table B.1: CRPS and CRPSS of the probabilistic forecasts done for each site by the recursive ARMA 
models using a granularity of 10 minutes 
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1 hour 6.5% 10.7% 13.5% 12.2% 10.5% 15.8% 11.3% 
2 hours 8.2% 14.0% 16.7% 14.6% 13.6% 19.5% 14.1% 
3 hours 9.0% 15.6% 17.9% 15.6% 14.7% 21.6% 14.4% 
4 hours 9.6% 16.6% 18.5% 16.0% 15.5% 22.1% 16.1% 
5 hours 9.8% 17.3% 18.8% 16.2% 15.8% 22.3% 16.4% 
6 hours 10.0% 17.6% 20.0% 16.3% 16.0% 22.4% 16.5% 

C
R

PS
S 

1 hour 15.3% 30.6% 22.6% 22.6% 25.5% 29.9% 25.1% 
2 hours 2.6% 18.1% 12.3% 14.1% 11.0% 19.5% 13.8% 
3 hours -0.6% 14.4% 10.2% 12.1% 8.4% 13.8% 10.4% 
4 hours -2.0% 13.5% 10.2% 11.9% 5.9% 12.6% 9.4% 
5 hours -1.8% 13.2% 10.8% 12.6% 5.1% 11.6% 9.2% 
6 hours -0.7% 14.0% 11.3% 13.2% 5.3% 10.7% 9.5% 

Table B.2: CRPS and CRPSS of the probabilistic forecasts done for each site by the recursive ARMA 
models using a granularity of 1 hour 

 

Appendix C: Error metrics formula 

(C.1) MBE = !
!

GHI!"#$%&'(.! − GHI!"#$%&"'.!!
!!!   

 

(C.2) RMSE = !
!

GHI!"#$%&'(.! − GHI!"#$%&"'.! !!
!!!   

 

(C.3) MAE = !
!

GHI!"#$%&'(.! − GHI!"#$%&"'.!!
!!!   

 

(C.4) !" = 1 − !"#$ !"#$!"#$%&'  !"#$%
!"#$ !"#$%&'()"  !"#!  !"∗

∗ 100 

 

(C.5) !"#$$ = 1 − !"#$ !"#$%&'()*+  !"#$%
!"#$ !"#$%&'()"  !"#!$%&!  !"#!  !"∗

*100 
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