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ABSTRACT1

Self-fertilizing species often present lower levels of neutral polymorphism than2

their outcrossing relatives. Indeed, selfing automatically increases the rate of coales-3

cence per generation, but also enhances the effects of background selection and genetic4

hitchhiking by reducing the efficiency of recombination. Approximations for the effect5

of background selection in partially selfing populations have been derived previously6

assuming tight linkage between deleterious alleles and neutral loci. However, loosely7

linked deleterious mutations may have important effects on neutral diversity in highly8

selfing populations. In this paper, I use a general method based on multilocus popula-9

tion genetics theory to express the effect of a deleterious allele on diversity at a linked10

neutral locus in terms of moments of genetic associations between loci. Expressions for11

these genetic moments at equilibrium are then computed for arbitrary rates of selfing12

and recombination. An extrapolation of the results to the case where deleterious al-13

leles segregate at multiple loci is checked using individual-based simulations. At high14

selfing rates, the tight linkage approximation underestimates the effect of background15

selection in genomes with moderate to high map length; however, another simple ap-16

proximation can be obtained for this situation, and provides accurate predictions as17

long as the deleterious mutation rate is not too high.18
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INTRODUCTION19

Understanding the evolutionary consequences of transitions between reproduc-20

tive systems has been the focus of an important number of theoretical and empirical21

studies. In particular, the shift from biparental sexual reproduction to self-fertilization22

has occurred frequently in plants and animals (Goodwillie et al., 2005; Jarne and Auld,23

2006), but the phylogenetic distribution of selfing lineages suggest that these are often24

relatively short-lived, and may thus correspond to an“evolutionary dead end”or“blind25

alley” (e.g., Stebbins, 1957; Williams, 1992; Takebayashi and Morrell, 2001; Goldberg26

et al., 2010; Igic and Busch, 2013). A possible reason for the lack of macroevolutionary27

success of selfing species may be their reduced capacity to produce novel genotypes28

(in particular, genotypes adapted to new environmental conditions), due to a reduced29

efficiency of recombination. Furthermore, self-fertilization lowers the effective size of30

populations and should thereby decrease the efficiency of natural selection against dele-31

terious alleles, which may lead to mutation accumulation and population extinction32

(Lynch et al., 1995; Schultz and Lynch, 1997). Analyses based on molecular data show33

little evidence for increased ratios of non-synonymous to synonymous substitutions34

(dN/dS) in selfing lineages, that would indicate a reduced efficiency of purifying selec-35

tion (Glémin and Muyle, 2014; Hartfield, 2015 and references therein): this may be due36

to the recent origin of those lineages, or to the low rates of outcrossing maintained by37

most predominantly selfing species (Wright et al., 2013). However, several recent stud-38

ies showed elevated ratios of non-synonymous to synonymous polymorphism (πN/πS)39

in various selfing species (compared with their outcrossing relatives), suggesting that40

deleterious alleles may reach higher frequencies in selfers (e.g., Brandvain et al., 2013;41
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Burgarella et al., 2015, and other references listed in Table 1 of Hartfield, 2015).42

The lower effective size of selfing populations has been demonstrated empirically43

using neutral diversity data from a variety of species (e.g., Charlesworth, 2003; Glémin44

et al., 2006), and is thought to result from two types of effects. The first is an automatic45

increase in the rate of coalescence per generation, since the ancestral lineages of the two46

homologous copies of a gene in an individual may coalesce in a single generation (with47

probability 1/2) if this individual has been produced by selfing. Due to this effect, the48

effective population size is given by Ne = N/ (1 + F ) (Pollak, 1987; Nordborg, 2000),49

where N is the census size and where the inbreeding coefficient F equals α/ (2− α) in50

a population in which a proportion α of individuals are produced by selfing. Therefore,51

Ne is expected to decline linearly from N to N/2 as α increases from 0 to 1. However,52

Ne may be further decreased by selective sweeps or by selection against deleterious53

alleles (background selection, Charlesworth et al., 1993; Charlesworth, 2012), whose54

effects are amplified by the lower effective recombination rates of selfing populations.55

Several models have computed the effect of background selection on neutral di-56

versity in randomly mating populations, using different approaches (Hudson and Ka-57

plan, 1995; Nordborg et al., 1996; Santiago and Caballero, 1998; Charlesworth, 2012).58

These showed in particular that a deleterious allele at mutation-selection balance re-59

duces the expected diversity at a linked neutral locus by a factor≈ 1−(ush) / (r + sh)2,60

where u is the mutation rate towards the deleterious allele, sh the heterozygous fit-61

ness effect of this allele (assumed different from zero) and r the recombination rate62

between the two loci. The case of partially selfing populations has been addressed by63

Nordborg (1997) using a structured coalescent model and a separation of timescales64

argument. Indeed, assuming that recombination and coalescence of lineages present65
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in different individuals occur at a much lower rate than the coalescence of lineages66

present in the same individual due to selfing, the population can be described in terms67

of haplotypes instead of diploid genotypes, which considerably simplifies the analysis.68

Under this assumption, the effect of a deleterious allele on linked neutral diversity is69

given by a similar expression as in the panmictic case, replacing sh by s [h (1− F ) + F ]70

(measuring the strength of selection against the deleterious allele in a partially selfing71

population), and r by the effective recombination rate r (1− F ) (see also Nordborg,72

2000). Extrapolating this result to the case of deleterious alleles segregating at many73

loci, Glémin (2007) and Glémin and Ronfort (2012) showed that the effective size of74

highly selfing populations may be strongly reduced by background selection effects.75

Strictly, Nordborg (1997)’s result holds for tightly linked loci, since the sepa-76

ration of timescales argument supposes a low recombination rate. While the effective77

population size at a given locus should be little affected by loosely linked loci as long as78

the selfing rate remains moderate, this may be less so when the selfing rate is high, so79

that linkage disequilibria may extend over relatively large genetic distances (e.g., Nord-80

borg et al., 2002). Using multilocus individual-based simulations of partially selfing81

populations, Kamran-Disfani and Agrawal (2014) observed discrepancies between the82

estimated Ne and predictions obtained by extrapolating Nordborg (1997)’s result over83

a whole genetic map. These may be caused by the fact that the effects of loosely linked84

loci are not sufficiently well predicted by the separation of timescales approximation,85

and become important at high selfing rates.86

In this paper, I construct a model of background selection in partially selfing87

populations by extending the multilocus population genetics framework previously de-88

veloped by Barton and Turelli (1991) and Kirkpatrick et al. (2002). As we will see,89
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a strength of this approach is that it allows one to decompose evolutionary processes90

(here the background selection effect) into different terms involving linkage disequi-91

libria and other forms of genetic associations, for which intuitive interpretation can92

be given. Expressions valid for any value of the recombination rate will be derived,93

and shown to converge to Nordborg (1997)’s result when linkage is tight. However,94

this tight linkage approximation may significantly underestimate the strength of back-95

ground selection when the selfing rate is high (but below 1); we will see that another96

approximation yielding better predictions at high selfing rates can be obtained from97

the general model. A good match between the analytical predictions and multilocus98

simulation results is observed as long as the genomic deleterious mutation rate U is99

not too high (0.1 per haploid genome), while discrepancies appear at higher values of100

U : those are likely due to genetic associations between deleterious alleles at different101

loci, which are neglected in the analysis.102

MODEL103

General method. As in previous models of background selection (e.g., Hudson and104

Kaplan, 1995; Nordborg et al., 1996), I will first consider the effect of a single deleteri-105

ous allele maintained at mutation-selection balance at a given locus on the dynamics of106

genetic diversity at a linked neutral locus. This effect can be quantified by computing107

the expected change in neutral diversity over one generation, which is affected by vari-108

ous moments of genetic associations between the two loci (e.g., the variance in linkage109

disequilibrium, and other moments of associations between genes present either on the110

same haplotype or on different haplotypes of a diploid individual). Assuming recurrent111
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mutation at the neutral locus, the effective population size Ne at the neutral locus can112

be deduced from the expected neutral diversity at equilibrium (Nordborg et al., 1996).113

Alternatively, we may ignore mutation at the neutral locus and calculate Ne by equat-114

ing the expected rate of loss in diversity per generation to −1/ (2Ne), since diversity115

is eroded at a rate −1/ (2N) per generation in a Wright-Fisher population. This is116

the approach that will be used here. Strictly, it relies on a quasi-equilibrium approx-117

imation, since moments of genetic associations (for example, the variance in linkage118

disequilibrium) will be expressed in terms of diversity at the neutral locus and of the119

frequency of the deleterious allele, implying that these moments of genetic associations120

equilibrate fast relative to changes in allele frequencies. However, this approximation121

is justified when population size is sufficiently large (so that changes in allele frequen-122

cies due to drift remain small) and yields the same expression for Ne as what would be123

obtained by calculating the equilibrium neutral diversity under recurrent mutation.124

I consider the following life cycle: N individuals are present at the start of125

each generation, and produce a very large (effectively infinite) number of juveniles in126

proportion to their fitness. A proportion α of offspring is produced by selfing, while the127

remaining 1− α is produced by random fusion of gametes. Finally, N individuals are128

sampled randomly among all juveniles produced, to form the next generation (drift).129

Fitness depends on genotype at the selected locus, where two alleles (denoted 0 and130

1) are segregating: allele 1 is deleterious, reducing fitness by a factor 1 − sh in the131

heterozygous state, and 1 − s in the homozygous state. The deleterious mutation132

rate (from allele 0 to allele 1) is denoted u. As in previous treatments (Hudson and133

Kaplan, 1995; Nordborg et al., 1996) I will assume that sN � 1 and u � s, so134

that the frequency of the deleterious allele remains small and can be approximated135

7



by the deterministic mutation-selection balance frequency (strictly, this also assumes136

Npdel � 1, where pdel is the frequency of the deleterious allele). Finally, r measures137

the recombination rate between the two loci.138

In the following I use a general method to compute the effects of selection,139

reproduction and drift on moments of genetic associations. This method is based on140

a previous formalism for the analysis of multilocus models (Barton and Turelli, 1991;141

Kirkpatrick et al., 2002), extended to include genetic drift. It was used previously to142

study selection for sex in finite diploid populations undergoing both sexual and asexual143

reproduction (Roze and Michod, 2010), and is described in Appendix A for the case144

of a partially selfing population. To simplify the notation, the examples shown in145

Appendix A concern the case of a biallelic neutral locus; however the method extends146

to multiple alleles, yielding the same expression for the decay of neutral diversity per147

generation. The analysis of the two-locus model will then proceed in three steps.148

First, I will express the expected decay of genetic diversity per generation in terms of149

various genetic moments involving both loci. Then, recurrence equations describing150

the dynamics of these two-locus moments will be derived (to the first order in 1/N , and151

assuming that the deleterious allele stays at low frequency). Finally, these equations152

will be solved to obtain expressions for two-locus moments at (quasi-)equilibrium, in153

terms of diversity at the neutral locus and of the different parameters of the model.154

Injecting these solutions into the equation describing the decay of neutral diversity will155

yield an expression for the effect of the deleterious allele on Ne at the neutral locus.156

The results of this two-locus model will then be extrapolated to a situation157

where deleterious alleles segregate at a large number of loci, located at various genetic158

distances from the neutral locus. For this, I will assume that the effects of the different159
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selected loci on diversity at the neutral locus are multiplicative, thereby neglecting ge-160

netic associations between selected loci. In the absence of epistasis between deleterious161

alleles, this approximation is expected to yield correct results under random mating162

in the regime considered here (where selection against deleterious alleles is stronger163

than drift, e.g., Hudson and Kaplan, 1995) but may be less accurate under partial164

selfing, as inbreeding generates different forms of associations between loci (correla-165

tions in homozygosity in particular, e.g., Roze, 2015). Nonetheless, we will see that166

this assumption of multiplicative effects often generates accurate predictions, as long167

as the genomic deleterious mutation rate is not too high.168

169

Defining genetic associations. The parameters and variables of the model are170

summarized in Table 1. Throughout the following, the neutral locus is denoted A,171

while the selected locus is denoted B. Two alleles denoted 0 and 1 segregate at each172

locus (we will see below how the notation can be extended to deal with multiple neu-173

tral alleles), allele 1 at locus B being the deleterious allele. Indicator variables XM
i and174

XP
i describe the genotype of an individual at locus i: these variables equal 1 if allele 1175

is present on the maternally or paternally (respectively) inherited chromosome of this176

individual at locus i, and 0 otherwise. The frequency of allele 1 at locus i (denoted pi)177

is thus:178

pi = E

[
XM

i +XP
i

2

]
(1)

where E stands for the average over all individuals in the population. Neglecting drift,179

the frequency of the deleterious allele at mutation-selection balance (denoted p̃B) is180

given by:181

p̃B ≈
u

s [h (1− F ) + F ]
(2)
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with F = α/ (2− α) (e.g., Glémin, 2003).182

For each locus i, centered variables ζMi and ζPi are defined as:183

ζMi = XM
i − pi, ζPi = XP

i − pi . (3)

Following Kirkpatrick et al. (2002), the association between the sets S and T of loci184

present on the two haplotypes of the same individual is given by:185

DS,T = E [ζS,T] (4)

where186

ζS,T =
ζMS ζPT + ζPS ζ

M
T

2
,

ζMS =
∏
i∈S

ζMi , ζPT =
∏
i∈T

ζPi

(5)

(note that DS,T = DT,S), and where sets S and T may be the empty set ∅, A, B187

or AB. Associations between genes present on the same haplotype of an individual188

(DS,∅) will be simply denoted DS. For example, DA,A = E
[(
XM

A − pA
) (
XP

A − pA
)]

189

is a measure of the departure from Hardy-Weinberg equilibrium at locus A, while190

DAB = 1
2
E
[(
XM

A − pA
) (
XM

B − pB
)

+
(
XP

A − pA
) (
XP

B − pB
)]

represents the linkage191

disequilibrium between loci A and B (genetic association between alleles present on the192

same haplotype, maternal or paternal). Similarly, DA,B = 1
2
E
[(
XM

A − pA
) (
XP

B − pB
)

193

+
(
XP

A − pA
) (
XM

B − pB
)]

measures the association between alleles at loci A and B194

present on different haplotypes of the same individual.195

Because population size is finite, allele frequencies and genetic associations196

are random variables. Throughout the paper, I will use the notation 〈M〉 for the197

expected value of the genetic moment M (a product of allele frequencies, genetic198

associations, or both) at a given generation: for example, 〈DAB
2〉 is the expected199
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squared linkage disequilibrium between the two loci. In the following, the moment200

〈DAA〉 =
〈

1
2
E
[(
XM

A − pA
)2

+
(
XP

A − pA
)2]〉

will be of particular importance: indeed,201

using the fact that
(
XM

A

)2
= XM

A and
(
XP

A

)2
= XP

A (since these variables equal 0 or 1),202

one obtains that 〈DAA〉 = 〈pAqA〉 (where qi = 1− pi), thus representing the expected203

genetic diversity at locus A. Therefore, the effective population size at the neutral204

locus can be quantified by computing the rate of decay of 〈DAA〉 per generation.205

As mentioned above, the model can be extended to an arbitrary number n of206

alleles segregating at the neutral locus. In this case, we can define indicator vari-207

ables XM
A,k and XP

A,k that equal 1 if the maternally (respectively, paternally) inherited208

chromosome of a given individual carries allele k at locus A (and 0 otherwise), with209

k = 1, . . . , n. Vectors XM
A and XP

A are defined as XM
A =

(
XM

A,1, X
M
A,2, . . . , X

M
A,n

)
and210

XP
A =

(
XP

A,1, X
P
A,2, . . . , X

P
A,n

)
; in each of these vectors (and for a given individual)211

a single element equals 1 while all other elements equal zero. Finally, the vector212

pA = E
[(

XM
A + XP

A

)
/2
]

holds the frequencies of the different alleles at locus A in the213

population. Defining ζM
A = XM

A − pA and ζP
A = XP

A − pA, genetic associations may be214

defined in the same way as above, associations with two “A” subscripts involving a dot215

product between the corresponding ζA vectors. In particular:216

DAA =
1

2
E
[
ζM
A .ζ

M
A + ζP

A.ζ
P
A

]
= 1−

n∑
k=1

p2A,k (6)

where pA,k is the frequency of allele k at locus A in the population. Similarly,217

DA,A = E
[
ζM
A .ζ

P
A

]
, while DAB,A = 1

2
E
[(
ζM
A .ζ

P
A

) (
ζMB + ζPB

)]
. Equation 6 shows that,218

as in the biallelic case, 〈DAA〉 represents the expected genetic diversity at the neu-219

tral locus. As mentioned earlier, the method for computing multilocus moments is220

explained in Appendix A for the case of a biallelic neutral locus, but the results shown221
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below are valid for any number of alleles segregating at this locus.222

223

Multilocus simulations. Analytical predictions will be tested using individual224

based, multilocus simulations. The simulation program (written in C++, and avail-225

able from Dryad) is very similar to the program used in Roze (2015), representing of226

population of N diploid individuals whose genome consists of a linear chromosome227

with total map length R. Relatively large values of R (usually 10 Morgans) will be228

used in most simulations in order to mimic a whole genome with multiple chromo-229

somes. Each generation, deleterious alleles occur at rate U per haploid genome; all230

deleterious alleles have the same selection and dominance coefficient, and have multi-231

plicative effects on fitness (no epistasis). As we will see, variable selection coefficients232

have been implemented in a different version of the program. Offspring are formed by233

selfing with probability α, and by random fusion of gametes with probability 1 − α.234

A neutral locus with an infinite number of possible alleles is located at the mid-point235

of the chromosome, mutating at a rate µ = 10−3 per generation. The program runs236

for 2× 106 generations, genetic diversity at the neutral locus being recorded every 50237

generations, and measured as D = 1 −
∑

i pi
2 (where pi is the frequency of neutral238

allele i). The effective population size at the neutral locus is then estimated from239

D = 4Neµ/ (1 + 4Neµ) where D is the average neutral diversity at equilibrium, yield-240

ing:241

Ne =
D

4µ
(
1−D

) (7)

(the exact expression including terms in µ2 yields undistinguishable results for the242

parameter values used here). In the simulations, D is obtained by averaging after a243

burn-in period of 15000 generations, which was sufficient for diversity to reach equi-244
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librium with µ = 10−3. As we will see, a different version of the program including a245

neutral sequence with an infinite number of sites was also used, in which case diversity246

takes longer to equilibrate.247

248

Data availability: DRYAD DOI: doi:10.5061/dryad.p3r01249

RESULTS250

All results are obtained using the method presented in Appendix A for com-251

puting recursions for multilocus moments, implemented in a Mathematica notebook252

(Supplementary File 1). All terms are derived to the first order in 1/N and to the253

first order in p̃B (the frequency of the deleterious allele at mutation-selection balance,254

given by equation 2).255

256

General results. The expected change in genetic diversity at locus A per gener-257

ation can be written as:258

〈∆DAA〉 = 〈∆sDAA〉+ 〈∆dDAA〉 (8)

where 〈∆sDAA〉 is the change in diversity due to selection and 〈∆dDAA〉 the change in259

diversity due to drift, given by:260

〈∆dDAA〉 = − 1

2N
(〈DAA〉+ 〈DA,A〉) (9)

to leading order. In the absence of selection, 〈∆sDAA〉 equals zero while 〈DA,A〉 at261

quasi-equilibrium is given by (from equation A10):262

〈DA,A〉 = F 〈DAA〉 (10)
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with F = α/ (2− α), and the expected change in neutral diversity per generation thus263

becomes:264

〈∆DAA〉 = 〈∆dDAA〉 = − 1

2N
(1 + F ) 〈DAA〉 . (11)

This corresponds to the classical result that Ne equals N/ (1 + F ) under partial selfing265

(Pollak, 1987): the increased homozygosity caused by selfing amplifies the effect of266

drift, since the same allele is sampled twice every time a homozygote is sampled.267

When selection acts at locus B, one obtains the following expression for 〈∆sDAA〉 to268

the first order in s:269

〈∆sDAA〉 = −sh (〈DAAB〉+ 〈DAA,B〉)

− s (1− 2h) (〈DAAB,B〉 − 〈DAADB,B〉) .
(12)

An expression to the second order in s is provided in Appendix B; however both ex-270

pressions generally yield very similar quantitative results, although adding the terms271

in s2 may slightly improve the predictions under loose linkage. The different terms272

that appear in equation 12 may be interpreted as follows. From the definitions273

given in the previous section, the term 〈DAAB〉 + 〈DAA,B〉 may also be written as274

E
[
1
2

(
ζMAA + ζPAA

) (
ζMB + ζPB

)]
(where again E stands for the average over all individ-275

uals), thus measuring a covariance between 1
2

(
ζMAA + ζPAA

)
and ζMB + ζPB (note that276

E
[
ζMB + ζPB

]
= 0). The quantity 1

2

(
ζMAA + ζPAA

)
is higher in individuals carrying rarer277

alleles at the neutral locus: for example in the case of a biallelic neutral locus, it equals278

pA
2, (pA

2 + qA
2) /2 and qA

2 in 00, 01 and 11 individuals, where pA is the frequency279

of allele 1. Furthermore, the quantity ζMB + ζPB is higher in individuals carrying more280

deleterious alleles at the selected locus (it is nearly 0, 1 and 2 in individuals carrying281

0, 1 and 2 deleterious alleles at locus B, assuming pB is small). Therefore, a positive282

value of 〈DAAB〉 + 〈DAA,B〉 indicates that rarer alleles at the neutral locus tend to283
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be found in individuals carrying higher numbers of deleterious alleles at the selected284

locus, while a negative value of 〈DAAB〉+ 〈DAA,B〉 indicates the opposite. Recursions285

for the moments 〈DAAB〉 and 〈DAA,B〉 over one generation are given in Appendix B,286

to the first order in s, p̃B and 1/N . In the absence of selfing (α = 0), one obtains that287

〈DAA,B〉 = 0 at quasi-equilibrium, while 〈DAAB〉 is generated by the variance in link-288

age disequilibrium 〈DAB
2〉 and by the effect of selection, and is positive when sh > 0.289

Indeed, when a given neutral allele becomes associated (by chance) to the deleterious290

allele at locus B, this neutral allele tends to decrease in frequency, generating a positive291

〈DAAB〉 (the deleterious allele at locus B tends to become associated with rarer alleles292

at locus A). This in turns reduces genetic diversity at the neutral locus (as shown by293

equation 12), since these rarer alleles will further decrease in frequency due to their as-294

sociation with the deleterious allele. Because partial selfing generates cross-haplotype295

associations (between genes present on different haplotypes of a diploid), 〈DAAB〉 and296

〈DAA,B〉 are given by more complicated expressions when α > 0, involving moments297

such as 〈DABDA,B〉, 〈DABDAB,B〉 or 〈DAB,B
2〉 (see Appendix B).298

Similarly, the quantity 〈DAAB,B〉 − 〈DAADB,B〉 that appears on the second line299

of equation 12 measures a covariance between 1
2

(
ζMAA + ζPAA

)
and ζB,B, the quantity300

ζB,B being higher in homozygotes at locus B than in heterozygotes. A positive value301

of 〈DAAB,B〉− 〈DAADB,B〉 thus indicates that rarer alleles at locus A tend to be found302

more often in homozygotes at locus B than in heterozygotes. As shown by equation303

12, this would reduce neutral diversity when the deleterious allele is partially recessive304

(h < 0.5), since in this case homozygotes at the selected locus have a lower fitness than305

heterozygotes. A recursion for 〈DAAB,B〉−〈DAADB,B〉 is given in Appendix B (equation306

B14); remarkably, it shows that identity disequilibrium (covariance in homozygosity)307
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between the two loci generates negative 〈DAAB,B〉−〈DAADB,B〉 (that is, rarer alleles at308

locus A tend to be found more often in heterozygotes at locus B) even in the absence309

of selection. Indeed, setting s = 0 in equation B14 yields at quasi-equilibrium:310

〈DAAB,B〉 − 〈DAADB,B〉 = − 2

N (2− α)
GAB p̃B 〈DAA〉 (13)

where GAB is the identity disequilibrium between loci A and B (Weir and Cockerham,311

1969). It is given by GAB = φAB − F 2, where312

φAB =
α

2− α
2− α− 2 (2− 3α) r (1− r)

2− α [1− 2r (1− r)]
(14)

is the probability of joint identity-by-descent at the two loci. This result may be in-313

terpreted as follows. Due to identity disequilibrium, the frequency of heterozygotes at314

locus A is higher among heterozygotes at locus B than among homozygotes. Further-315

more, the frequency of rarer neutral alleles is higher among heterozygotes than among316

homozygotes at locus A (this is easily seen in the case of a biallelic locus): therefore,317

the frequency of rarer alleles at locus A should be higher among heterozygotes at locus318

B. As shown by equation 12, this effect tends to increase neutral diversity, as long319

as the deleterious allele is partially recessive (h < 0.5), so that heterozygotes at locus320

B have a higher fitness than homozygotes. As we will see in the next subsection,321

the effect of identity disequilibrium dominates over all other effects when the effective322

recombination rate r (1− F ) is sufficiently high (more precisely, r (1− F ) � s), in323

which case partially recessive deleterious alleles tend to increase neutral diversity (this324

effect usually stays rather small). However, weaker effective recombination increases325

the relative importance of the terms on the first line of equation 12, that tend to de-326

crease neutral diversity. Furthermore, weak effective recombination changes the sign327

of 〈DAAB,B〉 − 〈DAADB,B〉 (through the terms in s in equation B14), due to the fact328
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that the association between rarer alleles at locus A and the deleterious allele at locus329

B (represented by moments 〈DAAB〉, 〈DAA,B〉) generate an association between those330

rarer alleles and homozygosity for the deleterious allele at locus B.331

As shown in Appendix B, calculating the different terms of equation 12 at332

quasi-equilibrium requires computing 6 two-locus moments that are generated by fi-333

nite population size: 〈DAB
2〉, 〈DABDA,B〉, 〈DA,B

2〉, 〈DABDAB,B〉, 〈DA,BDAB,B〉 and334

〈DAB,B
2〉. Recursions for these moments are also given in Appendix B. Although the335

solutions obtained are rather complicated, they are readily computed numerically us-336

ing Mathematica (see Supplementary File 2); furthermore, we will see that they can337

be approximated by simpler expressions in several cases. Importantly, all expressions338

obtained are in 1/N , and thus vanish when N tends to infinity.339

Besides its effect on 〈∆sDAA〉, selection at locus B also affects the average excess340

homozygosity at locus A 〈DA,A〉, and thus the term 〈∆dDAA〉 in equation 8. Because341

〈DA,A〉 is multiplied by 1/N in equation 9, it is sufficient to compute this moment in342

the limit as N tends to infinity, in order to obtain an expression for 〈∆DAA〉 to the343

first order in 1/N . Using the results in Roze, 2015 (also derived in Supplementary File344

1), we have at quasi-equilibrium, to the first order in s and p̃B:345

〈DA,A〉 = F [1− s (1− 2h)GAB p̃B] 〈DAA〉 (15)

where again GAB is the identity disequilibrium between loci A and B. Indeed, homozy-346

gosity at locus A is reduced when the deleterious allele at locus B is partially recessive347

(h < 1/2), due to the fact that homozygotes at locus A tend to be also homozygous348

at locus B, while homozygotes at locus B have a lower fitness than heterozygotes.349

Putting everything together, one obtains an expression for the change in diver-350
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sity at locus A over one generation of the form:351

∆ 〈DAA〉 = − 1

2N
(1 + F ) (1 + T p̃B) 〈DAA〉 (16)

where T is a function of s, h, r and α. To the first order in p̃B, we thus have:352

Ne =
N

1 + F
Bsel (17)

where Bsel = 1 − T p̃B represents the effect of background selection. Although the353

expression obtained for T from the equations given in Appendix B is complicated, we354

will now see that simple approximations can be obtained in several regimes (in partic-355

ular, high effective recombination, tight linkage, and high selfing).356

357

High effective recombination (with partial selfing). Under partial selfing and358

when the effective recombination rate r (1− F ) is high (and assuming that the domi-359

nance coefficient h of the deleterious allele is significantly different from 0.5), equation360

12 is dominated by the term on the second line, since 〈DAAB,B〉 − 〈DAADB,B〉 is gen-361

erated by drift even in the absence of selection and is thus proportional to 1/N (see362

equation 13), while the terms 〈DAAB〉 and 〈DAA,B〉 on the first line are generated by363

selection and drift, and are thus proportional to s/N . Neglecting the term on the first364

line of equation 12 and using equations 9 and 15 yields the following expression for365

the change in neutral diversity, to the first order in s, p̃B and 1/N :366

∆ 〈DAA〉 = − 1

2N
(1 + F )

[
1− s (1− 2h)

4 + α

2
GAB p̃B

]
〈DAA〉 . (18)

Using equation 2, one obtains for the effective population size at the neutral locus:367

Ne ≈
N

1 + F

[
1 +

u (1− 2h)

h (1− F ) + F

4 + α

2
GAB

]
, (19)
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independent of s. Equation 19 shows that identity disequilibrium between the neutral368

and the selected locus (GAB) increases the effective population size at the neutral lo-369

cus when the deleterious allele is partially recessive. This is caused by two effects: (i)370

identity disequilibrium reduces the excess homozygosity at locus A caused by selfing371

(equation 15), since homozygotes at locus A tends to be also homozygous at locus372

B, while homozygotes at locus B have a lower fitness than heterozygotes when the373

deleterious allele is partially recessive; (ii) the higher fitness of heterozygotes at lo-374

cus B increases diversity at locus A since heterozygotes at locus B tend to be also375

heterozygous at locus A (equation 13).376

This increase in effective population size caused by identity disequilibrium usu-377

ally stays modest, however (since it is only expected to occur for high effective recom-378

bination), and is thus difficult to observe in simulations. Background selection has379

stronger effects when the effective recombination rate becomes low, in which case the380

term 〈DAAB〉+ 〈DAA,B〉 on the first line of equation 12 becomes of the same order of381

magnitude than the term on the second line (indeed, one can show that the denomina-382

tor of 〈DAAB〉 and 〈DAA,B〉 is proportional to ε when both r (1− F ) and s are of order383

ε), while the sign of 〈DAAB,B〉−〈DAADB,B〉 changes due to the effect of selection. Two384

approximations for this regime are given below (tight linkage, high selfing).385

386

Random mating. In the absence of selfing (α = 0), equation B4 – B9 yield the387

following expressions for 〈DAB
2〉 and 〈DA,B

2〉 at quasi-equilibrium:388

〈
DAB

2
〉

=
1 + r2 (1− 2sh)

2N
[
1− (1− r)2 (1− 2sh)

] p̃B 〈DAA〉 (20)

389 〈
DA,B

2
〉

=
1

2N
p̃B 〈DAA〉 (21)
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while 〈DABDA,B〉, 〈DABDAB,B〉, 〈DA,BDAB,B〉 and 〈DAB,B
2〉 equal zero. Furthermore,390

equations B10 – B14 yield:391

〈DAAB〉 =
2sh [(1− r) 〈DAB

2〉+ r 〈DA,B
2〉]

1− (1− r) (1− sh)
(22)

while 〈DAA,B〉 and 〈DAAB,B〉 − 〈DAADB,B〉 equal zero. Finally, the rate of decay of392

neutral diversity is given by:393

〈∆DAA〉 = −sh 〈DAAB〉 − (sh)2
(〈
DAB

2
〉

+
〈
DA,B

2
〉)
− 1

2N
〈DAA〉 . (23)

Under tight linkage (i.e., both r and s are of order ε, where ε is a small term), one394

obtains from equations 20 – 22:395

〈
DAB

2
〉
≈ p̃B 〈DAA〉

4N (r + sh)
�
〈
DA,B

2
〉
, (24)

396

〈DAAB〉 ≈
sh p̃B 〈DAA〉
2N (r + sh)2

(25)

giving:397

〈∆DAA〉 ≈ −
1

2N

[
1 +

(
sh

r + sh

)2

p̃B

]
〈DAA〉 (26)

in agreement with the results obtained by Hudson and Kaplan (1995) and Nordborg398

et al. (1996). Under loose linkage (r � s), equations 20 – 23 yield:399

〈∆DAA〉 ≈ −
1

2N

[
1 +

(sh)2 (1 + 4r2)

r2
p̃B

]
〈DAA〉 . (27)

Setting r = 1/2 in equation 27 and replacing p̃B by u/ (sh) yields Ne ≈ N (1− 8shu),400

which is equivalent to Robertson (1961)’s heuristic result that selection at unlinked401

loci decreases the effective population size by four times the additive variance in fitness402

— indeed, the variance in fitness caused by selection against the deleterious allele is403

approximately 2shu (see also Charlesworth, 2012).404

405
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Tight linkage. When r is small, Nordborg (1997)’s separation of timescales argument406

can be used to express associations between genes present on different haplotypes of a407

diploid in terms on associations between genes present on the same haplotype (see also408

Nordborg, 2000; Padhukasahasram et al., 2008). Consider for example the association409

DA,B, between two genes sampled at loci A and B from different haplotypes of an in-410

dividual. Going backwards in time, two different events may happen to the ancestral411

lineages of these genes: they may find themselves on the same haplotype (which may412

take only a few generations if both lineages stay in the same individual due to selfing),413

or move to different individuals due to an outcrossing event, in which case it will take414

a long time before find themselves again in the same individual (assuming N is large).415

To leading order, the probability that these lineages join on the same haplotype be-416

fore moving to different individuals is F . Considering now all possible pairs of genes417

at loci A and B on different haplotypes of the same individual (in all individuals of418

the population) and going backwards in time, we may assume that a proportion F419

of such pairs find themselves on the same haplotype after a small number of gener-420

ations, while the remaining 1 − F have moved to different individual lineages (and421

thus become independent): therefore, DA,B ≈ F DAB — note that this approximation422

assumes tight linkage, as it neglects recombination events separating genes that have423

joined on the same haplotype, over the small number of generations considered. Using424

this approximation, we have:425

〈DABDA,B〉 ≈ F
〈
DAB

2
〉
,
〈
DA,B

2
〉
≈ F 2

〈
DAB

2
〉
. (28)

Similarly, DAB,B ≈ F DABB = F (1− 2pB)DAB (from equation A9), which yields426
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(assuming that pB is small):427

〈DABDAB,B〉 ≈ F
〈
DAB

2
〉
, 〈DA,BDAB,B〉 ≈

〈
DAB,B

2
〉
≈ F 2

〈
DAB

2
〉
. (29)

Last, DAAB,B ≈ F DAABB = F (DAADBB + (1− 2pB)DAAB), from which one obtains428

(using the fact that the moment 〈pBDAAB〉 is negligible, as shown in Supplementary429

File 1):430

〈DAAB,B〉 − 〈DAADB,B〉 ≈ 〈DAA,B〉 ≈ F 〈DAAB〉 . (30)

Equations 28 – 30 can also be obtained from equations B4 – B14, under the assumption431

that r is small (see Supplementary File 1). Plugging equations 28 – 30 into equation432

12 yields:433

〈∆sDAA〉 ≈ −s [h (1− F ) + F ] 〈DAAB〉 (31)

Furthermore, plugging equations 29 – 30 into equations B4 and B10 and assuming that434

r is small yields the same expressions as equations 24 and 25 (obtained for random435

mating) for 〈DAB
2〉 and 〈DAAB〉, replacing h by h (1− F ) + F , r by r (1− F ) and N436

by N/ (1 + F ). Therefore, the present model converges to Nordborg (1997)’s result437

when loci are tightly linked.438

Figure 1A shows the decrease in effective population size at the neutral locus439

caused by the deleterious allele (Bsel, see equation 17), as a function of the recombi-440

nation rate between the two loci (on a log scale). When r tends to zero, Bsel tends to441

1− p̃B, and selfing increases Ne (as it decreases the frequency of the deleterious allele).442

When r is sufficiently high, however (roughly, higher than 0.01 for the parameter val-443

ues used in Figure 1), increased selfing causes stronger background selection. Under444

complete selfing (α = 1), Bsel becomes independent of r and is approximately 1−u/s.445

As can be seen on Figure 1A, the tight linkage approximation accurately predicts the446
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solution obtained from equations B4 – B14, except when r and α are high (in which447

case it underestimates the strength of background selection). As we will see, this dis-448

crepancy for high values of r may lead to substantial differences when integrating over449

a large genetic map, as the majority of deleterious alleles are only loosely linked to450

the neutral locus, yet significantly affect Ne at this locus when selfing is high (this is451

more visible on Figure 1C, showing the strength of background selection as a function452

of the position of the deleterious allele along the genetic map). Note however that453

the tight linkage approximation yields the same prediction as the more general model454

when α = 1 (Bsel ≈ 1− u/s).455

456

High selfing. Simple approximations can also be obtained when the selfing rate is457

high, for any value of the recombination rate r. From equations B4 – B9 and assuming458

that α is close to 1, one obtains:459

〈
DAB

2
〉
≈ 〈DABDA,B〉 ≈

〈
DA,B

2
〉
≈ 〈DABDAB,B〉

≈ 〈DA,BDAB,B〉 ≈
〈
DAB,B

2
〉
≈ 1 + 2r

2N [s+ 2r (1− α + s)]
p̃B 〈DAA〉 .

(32)

Furthermore, equations B10 – B14 yield:460

〈DAAB〉 ≈ 〈DAA,B〉 ≈ 〈DAAB,B〉 − 〈DAADB,B〉

≈ (1 + 2r)2 s

N [s+ 2r (1− α + s)]2
p̃B 〈DAA〉 ,

(33)

which, using p̃B ≈ u/s, generates the following approximation for the rate of decay of461

neutral diversity:462

〈∆DAA〉 ≈ −
1

2N
(1 + F )

[
1 +

(
(1 + 2r) s

s+ 2r (1− α + s)

)2

p̃B

]
〈DAA〉 . (34)

Note that equation 34 again yields Bsel ≈ 1 − u/s when α = 1. As shown by Figure463

1D, this approximation better matches the general model than the tight linkage ap-464
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proximation when the selfing rate is high (but lower than 1) and when linkage is loose.465

However, Figure 1B shows that it differs substantially from the general model under466

tight linkage, and is thus expected to perform poorly when the selfing rate is not high467

(since in this case background selection is mainly caused by deleterious alleles that are468

tightly linked to the neutral locus).469

470

Multilocus extrapolation and simulations. Following previous work (e.g., Hud-471

son and Kaplan, 1995; Nordborg, 1997; Glémin, 2007; Kamran-Disfani and Agrawal,472

2014), results from the two-locus model may be extrapolated to the case of deleterious473

alleles segregating at multiple loci by assuming multiplicative effects of the different474

deleterious alleles on neutral diversity. When the neutral locus is located at the mid-475

point of a linear genome with total map length R, and when all deleterious alleles476

have the same selection and dominance coefficients (as in the simulation program),477

this yields (using equation 2):478

Ne ≈
N

1 + F
exp

[
− U

s [h (1− F ) + F ]
× 2

R

∫ R
2

0

T (x) dx

]
(35)

where U is the deleterious mutation rate per haploid genome and the T (x) corresponds479

to the term T in equation 16, in which the recombination rate r is expressed in terms of480

the genetic distance x (in Morgans) between the neutral locus and the deleterious allele481

using Haldane’s mapping function r = 1
2

[1− e−2x] (Haldane, 1919). This integral can482

be computed numerically as shown in Supplementary File 2.483

Figure 2 shows the effective size of a population of census size 20000 as a484

function of the selfing rate, for a haploid genomic deleterious mutation rate U = 0.1485

and genome map length R = 10 Morgans. As can be seen on the figure, the analytical486
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model (solid curves) fits well with the simulation results for all values of α. Note that487

in Figures 2 – 5, solid curves have been obtained by calculating numerically the integral488

in equation 35, using a system of recursions expressed to the second order in s for the489

different moments shown in Appendix B (see Supplementary Files 1 and 2); however,490

the results obtained using the recursions given in Appendix B (expressed to the first491

order in s) are undistinguishable in most cases (results not shown). Explicit forms492

can be obtained for the integral in equation 35 (as a function of R and the different493

parameters of the model) when using either the tight linkage approximation or the494

high selfing approximation, and are given in Supplementary File 2. The results shown495

on Figure 2 confirm that the tight linkage approximation underestimate the effect of496

background selection when the selfing rate is high, as loosely linked deleterious alleles497

significantly affect neutral diversity. In this case, the high selfing approximation is498

more accurate, closely matching the simulation results when α > 0.85.499

Figures 3 and 4 show that the full model provides accurate predictions for Ne500

for different values of map length R (from 0.1 to 100) and strength of selection against501

deleterious alleles s (from 0.005 to 0.5). As expected, the tight linkage approximation502

works better at lower values of R. When the selfing rate is low, increasing s magni-503

fies the strength of background selection, while it has the opposite effect under high504

selfing (due to the fact that mutation-free individuals are more abundant when selec-505

tion against deleterious alleles is stronger). Finally, Figure 5 shows that increasing the506

deleterious mutation rate U (to 0.5 per haploid genome) increases the strength of back-507

ground selection, leading to very low values of Ne at high selfing rates (Ne estimated508

from the simulations is close to 45 when α = 1). When U = 0.5, discrepancies between509

the full model and the simulations appear at low values of h (h = 0.1 in particular) and510
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intermediate values of α: these are probably caused by genetic associations between511

selected loci (identity disequilibrium in particular), which are neglected in the analysis.512

Using an expression for the frequency of deleterious allele p̃B that takes into account513

the effect of identity disequilibria (Roze, 2015) does not significantly improve the re-514

sults (not shown). Discrepancies also appear at higher values of h and high selfing515

rate (α ≈ 0.8 – 0.9), the analytical model underestimating the strength of background516

selection. Finally, the model overestimates the effect of background selection when517

the selfing rate is very high (α > 0.95), for all values of h: although this is not visible518

on Figure 5 (as Ne is very small when α is high), it becomes apparent when Ne is519

plotted on a log scale, as shown by Supplementary Figure 1. For these parameter520

values (α = 0.98, 1), selection against deleterious alleles is no longer efficient and these521

accumulate over time in the population (results not shown).522

Equation 35 can be extended to the more realistic case where deleterious al-523

leles at different loci have different fitness effects (assuming that selection remains524

sufficiently strong at most loci so that deleterious alleles stay near mutation-selection525

balance), by replacing s and h by functions of map position x (e.g., Charlesworth,526

2012). If the number of deleterious loci is large and if the distribution of fitness effects527

of mutations does not depend on genomic location, the integral in equation 35 can528

be replaced by a double integral, over map position x and over the joint distribution529

of s and h. In order to test this, the simulation program was modified to include530

a log-normal distribution of selection coefficients s across loci, assuming a constant531

heterozygous effect of mutations (sh), generating a negative covariance between s and532

h (see Figure 5 in Roze, 2015). Figure 6 shows results for α = 0.9 and for different533

values of the variance of deleterious effects of mutations across loci, setting the av-534
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erage of the log-normal distribution and the heterozygous effect of mutations so that535

s = 0.05 and h = 0.25 in all cases. As can be seen on Figure 6, increasing the variance536

of s slightly increases Ne, and this effect is captured by integrating equation 34 (high537

selfing approximation) over the distribution of s.538

539

Temporal change in population size. It is worth emphasizing that the moment-540

based method presented in this paper yields an expression for the “inbreeding effective541

size” (as it is based on the rate of decay of neutral diversity, or the instantaneous542

rate of coalescence), while coalescent-based methods (e.g., Hudson and Kaplan, 1995;543

Nordborg, 1997) yield an expression for the “coalescence effective size”, corresponding544

to half the average coalescence time between two sequences randomly sampled from545

the population. After a single change in population size, and if selection and recombi-546

nation rate are sufficiently large relative to 1/Ne, the different moments computed in547

Appendix B should equilibrate quickly relative to the change in neutral diversity, and548

the inbreeding effective population size should thus rapidly converge to its equilibrium549

value for the new census population size. By contrast, expected coalescence times will550

take longer to equilibrate. Assume that the inbreeding effective size instantaneously551

reaches its new equilibrium value, the expected coalescence time t generations after552

the change is given by:553

E [T ]t = 2Ne +

(
1− 1

2Ne

)t

(E [T ]0 − 2Ne) (36)

where Ne is the new inbreeding effective size and E [T ]0 the average coalescence time at554

the time of the change in population size. In order to test this prediction, the simulation555

program was modified to include a neutral sequence with an infinite number of sites at556
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the mid-point of the chromosome. Indeed, the expected coalescence time between two557

sequences is simply given by D/ (2µ), where µ is the mutation rate within the sequence558

andD the average number of differences between two sequences, given byD = 2
∑

i piqi559

(where the sum is over all segregating neutral sites within the sequence). Figure 7560

shows an example in which N = 20000 during the first 105 generations (starting from561

a monomorphic population, which is equivalent to the coalescence of all lineages at562

generation zero), while N = 40000 during the last 105 generations. As can be seen on563

the figure, the quasi-equilibrium argument leading to equation 36 correctly predicts564

the dynamics of E [T ] both during the initial phase and after the change in population565

size. The quasi-equilibrium argument could also possibly be used in situations where566

population size changes continuously over time (i.e., exponential population growth),567

although this was not explored here.568

DISCUSSION569

We have seen how multilocus population genetics theory can be used to express570

the effect of a deleterious allele at mutation-selection balance on the dynamics of diver-571

sity at a linked neutral locus in terms of moments of linkage disequilibrium and other572

genetic associations between these two loci. This provides an alternative to methods573

based on computing expected coalescence times of pairs of genes present on different574

types of genetic backgrounds (e.g., Nordborg, 1997; Agrawal and Hartfield, 2016), and575

allows one to decompose the background selection effect into different terms for which576

intuitive interpretation may be given. In a panmictic population, background selection577

is driven by the variance in linkage disequilibrium 〈DAB
2〉 between the two loci: neutral578
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alleles that become associated to the deleterious allele tend to decrease in frequency,579

eventually causing their loss from the population. Under partial selfing, background se-580

lection is reinforced by random associations between a given neutral allele and selected581

alleles present on the other haplotype of the same individual (DA,B), and associations582

between neutral alleles and homozygosity at the selected locus (DAB,B). Furthermore,583

we have seen that identity disequilibrium (correlation in heterozygosity between loci)584

has the opposite effect and enhances neutral diversity when the deleterious allele is585

partially recessive, but this effect usually stays modest.586

Under tight linkage, the results converge to the approximation derived by Nord-587

borg (1997) using a separation of timescales argument. In that case, the population588

behaves approximately as a panmictic population of size N/ (1 + F ), in which the dom-589

inance coefficient of the deleterious allele and the recombination rate are replaced by590

the effective parameters h (1− F )+F and r (1− F ). Similarly, Agrawal and Hartfield591

(2016) showed that in a population reproducing sexually at rate σ and asexually (by592

mitosis) at rate 1−σ, the effect of a deleterious allele located at a small recombination593

distance r from the neutral locus takes the same form as in a panmictic (fully sexual)594

population, replacing r by the effective recombination rate rσ (as shown in Appendix595

C, the effect of partial asexuality can also be derived using the methods of the present596

article). However, Agrawal and Hartfield (2016) also showed that this tight linkage597

approximation underestimates the strength of background selection caused by loosely598

linked loci, which becomes important when sex is rare. We have seen that a similar599

result holds under partial selfing: at high selfing rates, neutral diversity may be sig-600

nificantly affected by loosely linked deleterious alleles, whose effect is underestimated601

by the tight linkage approximation. In that case, a more precise approximation is602
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provided by equation 34 above.603

As mentioned previously (Nordborg, 1997), assuming multiplicative effects of604

deleterious alleles at different loci on neutral diversity (equation 35) should be less605

accurate under partial selfing than under random mating, since inbreeding gener-606

ates different forms of genetic associations between those loci (e.g., Kamran-Disfani607

and Agrawal, 2014; Roze, 2015). Nevertheless, we have seen that equation 35 yields608

accurate predictions as long as the genomic deleterious mutation rate stays moder-609

ate (U = 0.1, Figures 2 – 4), so that the average number of deleterious alleles per610

genome is not too large. Another important assumption of the model is that selection611

against deleterious alleles is sufficiently strong relative to drift, so that these alleles are612

maintained near their deterministic mutation-selection equilibrium frequency. In the613

regime where Nes ≈ 1 or lower, sometimes called “interference selection” or “weak Hill-614

Robertson interference” regime (e.g., McVean and Charlesworth, 2000; Comeron and615

Kreitman, 2002; Good et al., 2014), background selection models assuming Nes � 1616

may overestimate the effect of deleterious alleles on neutral diversity by several orders617

of magnitude (Kaiser and Charlesworth, 2008; Good et al., 2014). This may possibly618

be due to negative linkage disequilibria between deleterious alleles generated by the619

Hill-Robertson effect (Hill and Robertson, 1966), reducing the variance in fitness in620

the population and thus increasing coalescence times. As illustrated by Supplementary621

Figure 1, this regime may be particularly important in highly selfing populations and622

when the deleterious mutation rate U is high, since Ne may be sufficiently reduced to623

affect the efficiency of selection at an important proportion of selected sites. This is624

confirmed by empirical observations of higher ratios of non-synonymous to synonymous625

polymorphism (πN/πS) in selfing lineages than in their outcrossing relatives (Glémin626
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and Muyle, 2014; Hartfield, 2015 and references therein), indicating that a significant627

fraction of deleterious alleles may increase in frequency due to drift (in which case the628

assumption that Nes � 1 at most loci is not valid). It is thus important to keep in629

mind that background selection models such as the one presented here overestimate630

the reduction in Ne in such situations, and it would be interesting (although probably631

challenging) to obtain analytical predictions for neutral diversity in populations un-632

dergoing low rates of sex or high selfing rates, and in which selection against a high633

proportion of deleterious mutations is rendered ineffective.634

More generally, the strong reduction in effective population size of highly self-635

ing (or asexual) populations caused by background selection may give an important636

influence to stochastic processes that would play a more marginal role in populations637

with larger Ne. For example, identity disequilibrium between selected loci in a par-638

tially selfing population generates positive linkage disequilibrium between these loci,639

but as shown by Kamran-Disfani and Agrawal (2014), stochastic forces generating640

negative linkage disequilibrium become stronger than this deterministic effect when641

the selfing rate is high. In a similar way, deterministic forces acting on the evolution of642

recombination rates (e.g., Roze and Lenormand, 2005) or mutation rates (e.g., Lynch,643

2010) may be overwhelmed by stochastic forces under strong inbreeding. Developing644

analytical models that could scale these different types of effects may thus help us645

to better understand how mating systems affect the evolution of genetic architecture.646

The methods presented in the present paper could possibly be used to explore such647

questions.648
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2010. Species selection maintains self-incompatibility. Science 330:493–495.686

Good, B. H., A. M. Walczak, R. A. Neher, and M. M. Desai. 2014. Genetic diversity687

in the interference selection limit. PLoS Genetics 10:e1004222.688

Goodwillie, C., S. Kalisz, and C. G. Eckert. 2005. The evolutionary enigma of mixed689

mating systems in plants: occurence, theoretical explanations, and empirical evi-690

dence. Ann. Rev. Ecol. Evol. Syst. 36:47–79.691

Haldane, J. B. S. 1919. The combination of linkage values and the calculation of692

distances between the loci of linked factors. J. Genet. 8:299–309.693

34



Hartfield, M. 2015. Evolutionary genetic consequences of facultative sex and outcross-694

ing. J. Evol. Biol. 29:5–22.695

Hill, W. G. and A. Robertson. 1966. The effect of linkage on limits to artificial selection.696

Genet. Res. 8:269–294.697

Hudson, R. R. and N. L. Kaplan. 1995. Deleterious background selection with recom-698

bination. Genetics 141:1605–1617.699

Igic, B. and J. W. Busch. 2013. Is self-fertilization an evolutionary dead end? New700

Phytol. 198:386–397.701

Jarne, P. and J. R. Auld. 2006. Animals mix it up too: the distribution of self-702

fertilization among hermaphroditic animals. Evolution 60:1816–1824.703

Kaiser, V. B. and B. Charlesworth. 2008. The effects of deleterious mutations on704

evolution in non-recombining genomes. Trends Genet. 25:9–12.705

Kamran-Disfani, A. and A. F. Agrawal. 2014. Selfing, adaptation and background706

selection in finite populations. J. Evol. Biol. 27:1360–1371.707

Kirkpatrick, M., T. Johnson, and N. H. Barton. 2002. General models of multilocus708

evolution. Genetics 161:1727–1750.709

Lynch, M. 2010. Evolution of the mutation rate. Trends Genet. 26:345–352.710

Lynch, M., J. Conery, and R. Bürger. 1995. Mutational meltdowns in sexual popula-711

tions. Evolution 49:1067–1080.712

McVean, G. A. and B. Charlesworth. 2000. The effects of Hill-Robertson interference713

35



between weakly selected mutations on patterns of molecular evolution and variation.714

Genetics 155:929–944.715

Nordborg, M. 1997. Structured coalescent processes on different time scales. Genetics716

146:1501–1514.717

———. 2000. Linkage disequilibrium, gene trees and selfing: and ancestral recombi-718

nation graph with partial self-fertilization. Genetics 154:923–929.719

Nordborg, M., J. O. Borevitz, J. Bergelson, C. C. Berry, J. Chory, J. Hagenblad,720

M. Kreitman, J. N. Maloof, T. Noyes, P. J. Oefner, E. A. Stahl, and D. Weigel.721

2002. The extent of linkage disequilibrium in Arabidopsis thaliana. Nat. Genet.722

30:190–193.723

Nordborg, M., B. Charlesworth, and D. Charlesworth. 1996. The effect of recombina-724

tion on background selection. Genet. Res. 67:159–174.725

Padhukasahasram, B., P. Marjoram, J. D. Wall, C. D. Bustamante, and M. Nord-726

borg. 2008. Exploring population genetics models with recombination using efficient727

forward-time simulations. Genetics 178:2417–2427.728

Pollak, E. 1987. On the theory of partially inbreeding finite populations. I. Partial729

selfing. Genetics 117:353–360.730

Robertson, A. 1961. Inbreeding in artificial selection programmes. Genet. Res. 2:189–731

194.732

Roze, D. 2009. Diploidy, population structure and the evolution of recombination.733

Am. Nat. 174:S79–S94.734

36



———. 2015. Effects of interference between selected loci on the mutation load, in-735

breeding depression and heterosis. Genetics 201:745–757.736

Roze, D. and T. Lenormand. 2005. Self-fertilization and the evolution of recombination.737

Genetics 170:841–857.738

Roze, D. and R. E. Michod. 2010. Deleterious mutations and selection for sex in finite,739

diploid populations. Genetics 184:1095–1112.740

Roze, D. and F. Rousset. 2008. Multilocus models in the infinite island model of741

population structure. Theor. Popul. Biol. 73:529–542.742

Santiago, E. and A. Caballero. 1998. Effective size and polymorphism of linked neutral743

loci in populations under selection. Genetics 149:2105–2117.744

Schultz, S. T. and M. Lynch. 1997. Mutation and extinction: the role of variable mu-745

tational effects, synergistic epistasis, beneficial mutations and degree of outcrossing.746

Evolution 51:1363–1371.747

Stebbins, G. L. 1957. Self fertilization and population variability in higher plants. Am.748

Nat. 91:337–354.749

Takebayashi, N. and P. L. Morrell. 2001. Is self-fertilization an evolutionary dead750

end? Revisiting an old hypothesis with genetic theories and a macroevolutionary751

approach. Am. J. Bot. 88:1143–1150.752

Weir, B. S. and C. C. Cockerham. 1969. Group inbreeding with two linked loci.753

Genetics 63:711–742.754

37



Williams, G. C. 1992. Natural Selection: Domains, Levels, and Challenges. Oxford755

University Press, New York, NY.756

Wright, S. I., S. Kalisz, and T. Slotte. 2013. Evolutionary consequences of self-757

fertilization in plants. Proc. Roy. Soc. (Lond.) B 280:20130133.758

38



APPENDIX A: DERIVING RECURSIONS FOR MULTILOCUS MOMENTS759

In the following, I use the notation D′S,T for genetic associations measured at760

the next generation, while Djuv
S,T and Dpar

S,T represent associations measured among ju-761

veniles (after reproduction, before drift) and among parents after selection (that is,762

weighting each parent by its relative fitness). Therefore, selection changes associations763

DS,T to Dpar
S,T, recombination and fertilization (with partial selfing) change associations764

Dpar
S,T to Djuv

S,T, while drift changes associations Djuv
S,T to D′S,T. Similarly, pi

′ will denote765

allele frequencies at the next generation, while pjuvi will represent allele frequencies766

among juveniles (which are the same as among selected parents, as recombination and767

fertilization do not change allele frequencies). In the following I show how to derive768

equations representing these different steps. For this, I focus on examples rather than769

presenting general (and necessarily cumbersome) equations; however, general expres-770

sions are implemented in a Mathematica notebook (Supplementary File 1). Through-771

out the paper, I assume that selection is weak (s small), and that population size is772

sufficiently large so that 1/N � s, r; however, no assumption is done on the relative773

orders of magnitude of r and s. Finally, I assume that u � s so that the frequency774

of the deleterious allele at mutation-selection balance (p̃B, given by equation 2) is small.775

776

Drift. In order to illustrate the effect of drift on genetic moments, we will con-777

sider the expected diversity at the neutral locus, 〈DAA〉. By definition, 〈D′AA〉 =778 〈
1
2
E′
[(
XM

A − pA′
)2

+
(
XP

A − pA′
)2]〉

, where E′ is the average over all individuals of779

the next generation, while pA
′ is the frequency of allele 1 at locus A among these780

individuals. Writing ∆dpA = pA
′ − pjuvA the change in allele frequency due to drift, we781
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have:782

〈D′AA〉 =

〈
1

2
E′
[(
XM

A − p
juv
A −∆dpA

)2
+
(
XP

A − p
juv
A −∆dpA

)2]〉
. (A1)

Expanding and grouping terms in ∆dpA, this is:783

〈D′AA〉 =

〈
1

2
E′
[(
XM

A − p
juv
A

)2
+
(
XP

A − p
juv
A

)2]〉
− 2

〈
∆dpA

1

2
E′
[(
XM

A − p
juv
A

)
+
(
XP

A − p
juv
A

)]〉
+
〈
(∆dpA)2

〉
.

(A2)

In the following, I use the notation Ddft
S,T for moments measured among individu-784

als of the next generation (after drift), but using the values of allele frequencies785

(called “reference values” in Kirkpatrick et al., 2002) before drift (among juveniles):786

in particular, Ddft
AA = 1

2
E′
[(
XM

A − p
juv
A

)2
+
(
XP

A − p
juv
A

)2]
, while we have Ddft

A =787

1
2
E′
[(
XM

A − p
juv
A

)
+
(
XP

A − p
juv
A

)]
. Noting that Ddft

A = ∆dpA, equation A2 can be788

written as:789

〈D′AA〉 =
〈
Ddft

AA

〉
−
〈(
Ddft

A

)2〉
. (A3)

Next, we can note that products of genetic associations may also be viewed as associ-790

ations between genes present in two individuals, sampled with replacement from the791

whole population: for example,
(
Ddft

A

)2
is the association between one gene at locus A792

from a first individual, and one gene at locus A from a second individual sampled with793

replacement from the population at the next generation (and using allele frequencies794

among juvenile as reference values). Following previous works (Roze and Rousset,795

2008; Roze, 2009; Roze and Michod, 2010), I will thus write such products as single796

associations, using the symbol
a

/ to separate sets of genes present in different individ-797

uals sampled with replacement from the population. Using this notation,
(
Ddft

A

)2
is798

written as Ddft

A
a
/A

, and equation A3 becomes:799

〈D′AA〉 =
〈
Ddft

AA

〉
−
〈
Ddft

A
a
/A

〉
. (A4)
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Equation A4 corresponds to the first step of the computation of the effect of drift800

on genetic moments (i.e., taking into account changes in allele frequencies due to801

drift). The second (and last) step consists in expressing associations between genes802

present in different individuals sampled with replacement from the population (at the803

next generation) in terms of associations between genes in individuals sampled without804

replacement. For example, we have:805

〈
Ddft

A
a
/A

〉
=

1

2N

(〈
Ddft

AA

〉
+
〈
Ddft

A,A

〉)
+

(
1− 1

N

)〈
Ddft

A/A

〉
(A5)

where Ddft
A/A is the association between two genes at locus A from two individuals806

sampled without replacement, at the next generation (and using allele frequencies807

before drift as reference values). Indeed, two genes sampled with replacement from808

the population may be the same gene with probability 1/(2N), the two homologous809

copies of the same individual with probability 1/(2N), or come from two different810

individuals with probability 1 − 1/N . Finally, because the different individuals of811

the next generation have been sampled independently from an infinite population812

of juveniles, associations between genes present in different individuals (and using813

as reference values allele frequencies among juveniles) are the same as associations814

measured among juveniles: in particular,
〈
Ddft

AA

〉
=
〈
Djuv

AA

〉
,
〈
Ddft

A,A

〉
=
〈
Djuv

A,A

〉
and815 〈

Ddft
A/A

〉
=
〈
Djuv

A/A

〉
. Noting that

〈
Djuv

A/A

〉
= 0 (indeed, because the population of816

juveniles is infinite, we have Djuv
A/A = Djuv

A
a
/A

=
(
Djuv

A

)2
, while Djuv

A = 0 from the817

definition of genetic associations), one finally obtains:818

〈D′AA〉 =
〈
Djuv

AA

〉
− 1

2N

(〈
Djuv

AA

〉
+
〈
Djuv

A,A

〉)
, (A6)

representing the effect of drift on the moment 〈DAA〉. Because all results will be819

computed to the first order in 1/N , it will be sufficient to express the moments that820
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are multiplied by 1/ (2N) in equation A6 in the limit as N tends to infinity.821

The same method can be used to compute the effect of drift on other genetic822

moments. For example, using the same reasoning as for deriving equation A4 above,823

one obtains for the expected squared linkage disequilibrium:824

〈
D′AB

2
〉

=
〈
Ddft

AB
a
/AB

〉
− 2

〈
Ddft

AB
a
/A

a
/B

〉
+
〈
Ddft

A
a
/A

a
/B

a
/B

〉
(A7)

while computing these moments in terms of associations among juveniles yields:825

〈
D′AB

2
〉

=
〈
Djuv

AB
2
〉

+
1

2N

(〈
Djuv

AABB

〉
+
〈
Djuv

AB,AB

〉
− 2

〈
Djuv

ABD
juv
A,B

〉
− 4

〈
Djuv

AB
2
〉)

+ o

(
1

N

)
.

(A8)

Again, because all results are computed to the first order in 1/N , it will be sufficient to826

compute the four moments within parentheses in equation A8 in the limit as population827

size tends to infinity (we will see below that the moments
〈
Djuv

ABD
juv
A,B

〉
and

〈
Djuv

AB
2
〉

828

become negligible in this limit, while the moment
〈
Djuv

AB,AB

〉
is generated by selfing).829

Equation A8 shows that genetic associations with repeated “B” indices (such830

as DAABB) may appear within recursions (see also equation A12). Because locus B is831

biallelic, these repeated indices can be eliminated using the relation (e.g., equation 5832

in Kirkpatrick et al., 2002):833

DSii = piqiDS + (1− 2pi)DSi (A9)

where S is any set of loci, and i is a biallelic locus. However, repeated “A” indices834

will not be eliminated when computing recursions, so that the equations obtained still835

hold for the case where more than two alleles segregate at the neutral locus.836
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Recombination and fertilization. Computing moments measured among juveniles837

in terms of moments measured among selected parents is somewhat simpler, as recom-838

bination and fertilization do not change allele frequencies: therefore, one only has to839

consider the different possible modes of transmission of genes between generations. In840

particular,
〈
Djuv

AA

〉
= 〈Dpar

AA〉, while:841

〈
Djuv

A,A

〉
=
α

2

(
〈Dpar

AA〉+
〈
Dpar

A,A

〉)
. (A10)

Indeed, the two homologous genes of a juvenile at locus A come from the same parent842

if this juvenile has been produced by selfing (probability α), in which case they are843

copies of the same parental gene with probability 1/2, while they come from the two844

homologous genes of the parent with probability 1/2. With probability 1 − α the845

juvenile has been produced by outcrossing, in which case its two homologous genes are846

sampled with replacement from the parental population: the association thus becomes847

Dpar

A
a
/A

= (Dpar
A )2, which equals zero (since Dpar

A = 0). Similarly, we have:848

〈
Djuv

AB
2
〉

=
〈
Djuv

AB
a
/AB

〉
= (1− r)2

〈
Dpar

AB
a
/AB

〉
+ 2r (1− r)

〈
Dpar

AB
a
/A,B

〉
+ r2

〈
Dpar

A,B
a
/A,B

〉
,

(A11)

while849 〈
Djuv

AB,AB

〉
=
α

2

[
(1− r)2

(
〈Dpar

AABB〉+
〈
Dpar

AB,AB

〉)
+ 2r (1− r)

(〈
Dpar

AAB,B

〉
+
〈
Dpar

ABB,A

〉)
+ r2

(
〈Dpar

AABB〉+
〈
Dpar

AB,AB

〉)]
+ (1− α)

〈
Djuv

AB
a
/AB

〉 (A12)

where
〈
Djuv

AB
a
/AB

〉
is given by equation A11.850
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Selection. As for the effect of drift, computing the effect of selection on genetic mo-851

ments can be decomposed into two steps (see also Barton and Turelli, 1991; Kirkpatrick852

et al., 2002). The first step consists in taking into account the change in reference val-853

ues (i.e., allele frequencies that appear within associations) due to selection: denoting854

Dsel
S,T moments measured among selected parents, but using allele frequencies before855

selection (pi) as reference values (instead of allele frequencies after selection pjuvi ), we856

have (following the same reasoning as for the derivation of equations A4 and A7):857

〈Dpar
AA〉 =

〈
Dsel

AA

〉
−
〈
Dsel

A
a
/A

〉
(A13)

while858 〈
Dpar

AB
a
/AB

〉
=
〈
Dsel

AB
a
/AB

〉
− 2

〈
Dsel

AB
a
/A

a
/B

〉
+
〈
Dsel

A
a
/A

a
/B

a
/B

〉
. (A14)

Finally, computing associations measured after selection (using as reference values859

allele frequencies before selection) Dsel
S,T, in terms of associations measured before se-860

lection DS,T is done by weighting each individual by its relative fitness:861

Dsel
S,T = E

[
W

W
ζS,T

]
(A15)

where E is the average over all individuals before selection, W is the fitness of the862

individual while W = E [W ] is the mean fitness of the population. In order to express863

the right hand side of equation A15 in terms of genetic associations, it is useful to864

write W/W in terms of ζS,T variables (e.g., Barton and Turelli, 1991; Kirkpatrick et865

al., 2002). The fitness of an individual can be written as:866

W = 1− sh
(
XM

B +XP
B

)
− s (1− 2h)XM

BX
P
B (A16)

which, after rearranging and averaging over all individuals yields:867

W

W
=

1− C − sh
(
ζMB + ζPB

)
− s (1− 2h)

[
ζB,B + pB

(
ζMB + ζPB

)]
1− C − s (1− 2h)DB,B

(A17)
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with C = 2sh pB + s (1− 2h) pB
2. Equation A17 thus takes the form of a polynomial868

of ζS,T variables. However, because terms in pB and DB,B appear in the denominator,869

obtaining expressions in terms of moments of genetic associations and allele frequencies870

requires developing W/W as a Taylor series in s. To the first order in s, we have:871

W

W
= 1− sh

(
ζMB + ζPB

)
− s (1− 2h)

[
ζB,B −DB,B + pB

(
ζMB + ζPB

)]
. (A18)

From this, one obtains, to the first order in s:872 〈
Dsel

AA

〉
=

〈
E

[
W

W
ζAA

]〉
= 〈DAA〉 − sh (〈DAAB〉+ 〈DAA,B〉)

− s (1− 2h) (〈DAAB,B〉 − 〈DAADB,B〉+ 〈pBDAAB〉+ 〈pBDAA,B〉) .

(A19)

Given that moments 〈pBDAAB〉 and 〈pBDAA,B〉 equal zero at quasi-equilibrium to the873

first order in 1/N and p̃B (see Supplementary File 1), equation A19 yields equation874

12 in the main text. Associations between genes present in different individuals are875

obtained similarly. For example,
〈
Dsel

A
a
/A

〉
equals zero to the first order in s (because876

DA = 0), while equation A18 yields the following expression to the second order in s:877 〈
Dsel

A
a
/A

〉
=

〈
E

[
W

W
ζA

]
E

[
W

W
ζA

]〉
= (sh)2

(〈
D

AB
a
/AB

〉
+ 2

〈
D

AB
a
/A,B

〉
+
〈
D

A,B
a
/A,B

〉)
+ 2s2h (1− 2h)

(〈
D

AB
a
/AB,B

〉
+
〈
D

A,B
a
/AB,B

〉
+
〈
pBDAB

a
/AB

〉
+ 2

〈
pBDAB

a
/A,B

〉
+
〈
pBDA,B

a
/A,B

〉)
+ s2 (1− 2h)2

(〈
D

AB,B
a
/AB,B

〉
+ 2

〈
pBDAB

a
/AB,B

〉
+ 2

〈
pBDA,B

a
/AB,B

〉
+
〈
pB

2D
AB

a
/AB

〉
+ 2

〈
pB

2D
AB

a
/A,B

〉
+
〈
pB

2D
A,B

a
/A,B

〉)
.

(A20)

Equations A19 and A20 illustrate the fact that computing the effect of selection on a878

given genetic moment introduces more complicated moments, with a higher number879
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of “B” indices. This may lead to an infinite system of recursions, as the effect of selec-880

tion on these moments will introduce yet other moments with even more “B” indices.881

However, assuming Ns� 1 and s� u (so that the frequency of the deleterious allele882

at mutation-selection balance, p̃B, remains small), we may neglect moments that are883

proportional to p̃B
2 — more precisely, moments that are o(p̃B) — in order to obtain884

expressions to the first order in p̃B. As we will see, using this “rare allele approxima-885

tion” yields closed systems of recursions for genetic moments.886

887

Rare allele approximation. Deriving expressions to the first order in p̃B can be888

done using the following general rule. Because all genetic associations involving at889

least one “B” index are proportional to pB, moments involving two elements with a890

“B” index (where an element is either an allele frequency pi or an association DS,T891

among genes present in the same individual) are of order p̃B
2 in the limit as popula-892

tion size tends to infinity. For example, 〈pBDAB〉, 〈DAB
2〉 and 〈DABDAB,B〉 are all of893

order p̃B
2 as N tends to infinity, while 〈DB,B〉 and 〈DAB,AB〉 are of order p̃B in the894

same limit. Now, taking the effect of drift into account when computing recursions895

for genetic moments generally introduces moments with one less element carrying a896

“B” index, multiplied by 1/N . This is illustrated by equation A8 showing the effect897

of drift on the moment 〈DAB
2〉 (two elements with a “B” index): drift introduces two898

terms involving moments carrying a single element with a “B” index (〈DAABB〉 and899

〈DAB,AB〉). Because these moments are multiplied by 1/N in equation A8, it is suf-900

ficient to express them in the limit as N tends to infinity: in this limit, these terms901

are thus proportional to p̃B (by contrast, the terms in 〈DAB
2〉 /N and 〈DABDA,B〉 /N902

in equation A8 are proportional to p̃B
2, and may thus be neglected). More generally,903
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moments carrying x elements with a “B” index are thus of order p̃B
x in the limit as904

N tends to infinity, and of order p̃B
x−1 to the first order in 1/N (for x > 1). In order905

to compute expressions to the first order in p̃B, we may thus neglect all moments that906

must be expressed to the first order in 1/N and that carry more than two elements907

with a “B” index (such as 〈pBDABDAB,B〉), and all moments expressed in the limit as908

N tends to infinity carrying more than one element with a “B” index (such as 〈DAB
2〉).909

Using this approximation, equation A20 simplifies to:910 〈
Dsel

A
a
/A

〉
= (sh)2

(〈
DAB

2
〉

+ 2 〈DABDA,B〉+
〈
DA,B

2
〉)

+ 2s2h (1− 2h) (〈DABDAB,B〉+ 〈DA,BDAB,B〉)

+ s2 (1− 2h)2
〈
DAB,B

2
〉
,

(A21)

Furthermore, one obtains for the moments
〈
Dpar

AB
a
/AB

〉
,
〈
Dpar

AB
a
/A,B

〉
and

〈
Dpar

A,B
a
/A,B

〉
911

(that are needed to compute a recursion for 〈DAB
2〉, as shown by equation A11):912

〈
Dpar

AB
a
/AB

〉
= (1− 2sh)

〈
DAB

2
〉
− 2s (1− h) 〈DABDAB,B〉 (A22)

913 〈
Dpar

AB
a
/A,B

〉
= (1− 2sh) 〈DABDA,B〉−s (1− h) (〈DABDAB,B〉+ 〈DA,BDAB,B〉) (A23)

914 〈
Dpar

A,B
a
/A,B

〉
= (1− 2sh)

〈
DA,B

2
〉
− 2s (1− h) 〈DA,BDAB,B〉 . (A24)
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APPENDIX B: RECURSIONS FOR TWO-LOCUS MOMENTS915

Using the method shown in Appendix A, one obtains for the change in neutral916

diversity during selection, to the second order in s:917

〈∆sDAA〉 = −sh (〈DAAB〉+ 〈DAA,B〉)

− s (1− 2h) (〈DAAB,B〉 − 〈DAADB,B〉)

− (sh)2
(〈
DAB

2
〉

+ 2 〈DABDA,B〉+
〈
DA,B

2
〉)

− 2s2h (1− 2h) (〈DABDAB,B〉+ 〈DA,BDAB,B〉)

− s2 (1− 2h)2
〈
DAB,B

2
〉

(B1)

while the change in neutral diversity during drift is given by equation 9 in the main text.918

The same method can be used to compute recursions for the different moments that919

appear in equation B1, from which solutions at quasi-equilibrium can be obtained. For920

example, equations A8, A11 and A22 – A24 yield the following recursion for 〈DAB
2〉:921

〈
D′AB

2
〉

= (1− 2sh)
[
(1− r)2

〈
DAB

2
〉

+ 2r (1− r) 〈DABDA,B〉+ r2
〈
DA,B

2
〉]

− 2s (1− h) [(1− r) 〈DABDAB,B〉+ r 〈DA,BDAB,B〉]

+
1

2N
(〈DAABB〉+ 〈DAB,AB〉) .

(B2)

In order to obtain an expression to the first order in 1/N , it is sufficient to express922

〈DAABB〉 and 〈DAB,AB〉 in equation B2 in the limit when N tends to infinity. Using923

equation A9, we have DAABB = pBqBDAA + (1− 2pB)DAAB. Furthermore, DAAB924

equals zero at quasi-equilibrium in an infinite population (indeed, the solution obtained925

for 〈DAAB〉 from the equations below is in 1/N): therefore, 〈DAABB〉 ≈ p̃B 〈DAA〉 when926

population size tends to infinity. From equation A12, an recursion for 〈DAB,AB〉 when927
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N tends to infinity and s = 0 is given by:928 〈
D′AB,AB

〉
=
α

2

[
[1− 2r (1− r)] (〈DAABB〉+ 〈DAB,AB〉)

+ 2r (1− r) (〈DAAB,B〉+ 〈DABB,A〉)
]
.

(B3)

Using 〈DAABB〉 ≈ p̃B 〈DAA〉 and 〈DAAB,B〉 = 〈DABB,A〉 ≈ F p̃B 〈DAA〉 yields 〈DAB,AB〉 =929

φAB p̃B 〈DAA〉, where φAB is given by equation 14, and corresponds to the probability930

of joint coalescence of two pairs of genes sampled at loci A and B due to selfing, in an931

infinite population. It is possible de compute φAB to the first order in s, but the term932

in s is always negligible when selection is weak, and is thus ignored here. Using the933

expressions just derived for 〈DAABB〉 and 〈DAB,AB〉, equation B2 becomes:934

〈
D′AB

2
〉

= (1− 2sh)
[
(1− r)2

〈
DAB

2
〉

+ 2r (1− r) 〈DABDA,B〉+ r2
〈
DA,B

2
〉]

− 2s (1− h) [(1− r) 〈DABDAB,B〉+ r 〈DA,BDAB,B〉]

+
1

2N
(1 + φAB) p̃B 〈DAA〉

(B4)

Similarly, one obtains the following recursions for moments 〈DABDA,B〉, 〈DA,B
2〉,935

〈DABDAB,B〉, 〈DA,BDAB,B〉 and 〈DAB,B
2〉 (which are also generated by finite pop-936

ulation size), to the first order in s, p̃B and 1/N (recursions to the second order in937

s are derived in Supplementary File 1, but yield very similar quantitative results in938

most cases):939

〈
D′ABD

′
A,B

〉
=
α

2

[
(1− 2sh)

[
(1− r)

〈
DAB

2
〉

+ 〈DABDA,B〉+ r
〈
DA,B

2
〉]

− s (1− h)
[
(2 (1− r) + 1) 〈DABDAB,B〉

+ (2r + 1) 〈DA,BDAB,B〉
]]

+
1

N
F p̃B 〈DAA〉

(B5)

940 〈
D′A,B

2
〉

=
(α

2

)2 [
(1− 2sh)

(〈
DAB

2
〉

+ 2 〈DABDA,B〉+
〈
DA,B

2
〉)

− 4s (1− h) (〈DABDAB,B〉+ 〈DA,BDAB,B〉)
]

+
1

2N
(1 + φAB) p̃B 〈DAA〉

(B6)
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941 〈
D′ABD

′
AB,B

〉
=
α

2

[
(1− 2sh)

[
(1− r)2

〈
DAB

2
〉

+ 2r (1− r) 〈DABDA,B〉+ r2
〈
DA,B

2
〉]

+ [1− s (3− h)] [(1− r) 〈DABDAB,B〉+ r 〈DA,BDAB,B〉]

− s (1− h)
〈
DAB,B

2
〉]

+
1

2N
(F + φAB) p̃B 〈DAA〉

(B7)

942 〈
D′A,BD

′
AB,B

〉
=
(α

2

)2 [
(1− 2sh)

[
(1− r)

〈
DAB

2
〉

+ 〈DABDA,B〉+ r
〈
DA,B

2
〉]

+ (1− 2s) (〈DABDAB,B〉+ 〈DA,BDAB,B〉)

− 2s (1− h) [(1− r) 〈DABDAB,B〉+ r 〈DA,BDAB,B〉]

− 2s (1− h)
〈
DAB,B

2
〉]

+
1

2N
(F + φAB) p̃B 〈DAA〉

(B8)

943 〈
D′AB,B

2
〉

=
(α

2

)2 [
(1− 2sh)

[
(1− r)2

〈
DAB

2
〉

+ 2r (1− r) 〈DABDA,B〉+ r2
〈
DA,B

2
〉]

+ 2 (1− 2s) [(1− r) 〈DABDAB,B〉+ r 〈DA,BDAB,B〉]

+ [1− 2s (2− h)]
〈
DAB,B

2
〉]

+
1

2N
(F + φAB) p̃B 〈DAA〉

(B9)

Equations B4 to B9 can be solved at quasi-equilibrium (setting 〈M′〉 = 〈M〉 for each944

moment) to obtain expressions for the 6 moments of the form Z p̃B 〈DAA〉 /N , where945

Z is a function (that differs for each moment) of s, h, r and α. Although these946

expressions are complicated, they are easily computed numerically using Mathematica947

(see Supplementary File 2).948

Recursions for the moments 〈DAAB〉 and 〈DAA,B〉 that appear on the first line949
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of equation 12 are given by (to the first order in s, p̃B and 1/N):950

〈D′AAB〉 = (1− sh) [(1− r) 〈DAAB〉+ r 〈DAA,B〉]

+ 2sh
[
(1− r)

〈
DAB

2
〉

+ 〈DABDA,B〉+ r
〈
DA,B

2
〉]

+ 2s (1− 2h) [(1− r) 〈DABDAB,B〉+ r 〈DA,BDAB,B〉]

− s (1− h) (〈DAAB,B〉 − 〈DAADB,B〉)−
1

N
〈DAB,A〉

(B10)

951 〈
D′AA,B

〉
=
α

2

[
(1− sh) (〈DAAB〉+ 〈DAA,B〉)

+ 2sh
(〈
DAB

2
〉

+ 2 〈DABDA,B〉+
〈
DA,B

2
〉)

+ 2s (1− 2h) (〈DABDAB,B〉+ 〈DA,BDAB,B〉)

− 2s (1− h) (〈DAAB,B〉 − 〈DAADB,B〉)
]
− 1

N
〈DAB,A〉 .

(B11)

It is sufficient to express the moment 〈DAB,A〉 that appears in equations B10 and B11952

in the limit as N tends to infinity. To the first order in s, we have:953

〈
D′AB,A

〉
=
α

2
[〈DAB,A〉 − s (1− h) (〈DAB,AB〉 − 〈DA,ADB,B〉)] (B12)

giving at quasi-equilibrium:954

〈DAB,A〉 = −s (1− h)F GAB p̃B 〈DAA〉 (B13)

(see also Roze, 2015), where GAB = φAB − F 2 is the identity disequilibrium between955

loci A and B. Finally, a recursion for 〈DAAB,B〉− 〈DAADB,B〉 (second line of equation956
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12) to the first order in s, p̃B and 1/N is given by:957

〈
D′AAB,B

〉
−
〈
D′AAD

′
B,B

〉
=
α

2

[
[1− s (2− h)] (〈DAAB,B〉 − 〈DAADB,B〉)

+ (1− sh) [(1− r) 〈DAAB〉+ r 〈DAA,B〉]

+ 2sh
[
(1− r)

〈
DAB

2
〉

+ 〈DABDA,B〉+ r
〈
DA,B

2
〉]

+ 2s (1− 2h) [(1− r) 〈DABDAB,B〉+ r 〈DA,BDAB,B〉]

+ 2sh (〈DABDAB,B〉+ 〈DA,BDAB,B〉)

+ 2s (1− 2h)
〈
DAB,B

2
〉]
− 1

2N
GAB p̃B 〈DAA〉 .

(B14)

Equations B10, B11 and B14 can be solved to obtain expressions for 〈DAAB〉, 〈DAA,B〉958

and 〈DAAB,B〉 − 〈DAADB,B〉 at quasi-equilibrium (using the expressions for 〈DAB
2〉,959

〈DABDA,B〉, 〈DA,B
2〉, 〈DABDAB,B〉, 〈DA,BDAB,B〉 and 〈DAB,B

2〉 obtained from equa-960

tions B4 to B9); again, Mathematica commands to obtain numerical solutions can961

be found in Supplementary File 2. Approximations for high selfing are obtained by962

assuming that s and o = 1 − α are of order ε and expressing equations B4 – B14 to963

the first order in ε. Similarly, tight linkage approximations are obtained by assuming964

that s and r are of order ε (see Supplementary File 1).965
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APPENDIX C: PARTIAL ASEXUALITY966

Background selection under partial asexuality in diploids has been explored967

recently by Agrawal and Hartfield (2016) using coalescence models. The method pre-968

sented in Appendix A can also be used for the case of a population in which a propor-969

tion σ of offspring are produced by sexual reproduction each generation (with random970

gamete fusion) and a proportion 1− σ by asexual reproduction (mitosis), as shown in971

Roze and Michod (2010). In particular, one obtains for the change in neutral diversity972

over one generation (to the second order in s, and assuming that h is significantly973

different from zero):974

〈∆DAA〉 = −〈DAA〉
2N

− sh (〈DAAB〉+ 〈DAA,B〉)

− (sh)2
(〈
DAB

2
〉

+ 2 〈DABDA,B〉+
〈
DA,B

2
〉)
.

(C1)

Recursions for the different moments that appear in equation C1 are given by (to the975

first order in 1/N and p̃B ≈ u/ (sh)):976 〈
D′AB

2
〉

= (1− sh)2
[
(1− rσ)2

〈
DAB

2
〉

+ 2rσ (1− rσ) 〈DABDA,B〉

+ (rσ)2
〈
DA,B

2
〉]

+
1

2N
p̃B 〈DAA〉

(C2)

977 〈
D′ABD

′
A,B

〉
= (1− sh)2 (1− σ)

[
(1− rσ) 〈DABDA,B〉+ rσ

〈
DA,B

2
〉]

(C3)
978 〈

D′A,B
2
〉

= (1− sh)2 (1− σ)2
〈
DA,B

2
〉

+
1

2N
p̃B 〈DAA〉 (C4)

979

〈D′AAB〉 = (1− sh) [(1− rσ) 〈DAAB〉+ rσ 〈DAA,B〉]

+ 2sh
[
(1− rσ)

〈
DAB

2
〉

+ 2 〈DABDA,B〉+ rσ
〈
DA,B

2
〉] (C5)

980 〈
D′AA,B

〉
= (1− σ)

[
(1− sh) 〈DAA,B〉+ 2sh

(
〈DABDA,B〉+

〈
DA,B

2
〉]]

. (C6)

Expressions for 〈DAB
2〉, 〈DABDA,B〉, 〈DA,B

2〉, 〈DAAB〉 and 〈DAA,B〉 at quasi-equilibrium981

can be obtained from equations C2 – C6, and plugged into equation C1. When the982

rate of sex σ is small, this yields equations 5 and 6 in Agrawal and Hartfield, 2016.983
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Table 1: Parameters and variables.984

985

N Population size

α Selfing rate

s Strength of selection against the deleterious allele

h Dominance coefficient of the deleterious allele

u Mutation rate towards the deleterious allele

r Recombination rate between the neutral locus and selected locus

U Genomic deleterious mutation rate (per haploid genome)

R Genome map length

pA Frequency of allele 1 at locus A (neutral locus)

pB Frequency of allele 1 (deleterious allele) at locus B

p̃B Deleterious allele frequency at mutation-selection balance

DS,T

Genetic association between the sets S and T of loci present on

different haplotypes of an individual (see equation 4)

DAA Genetic diversity at the neutral locus

F
Inbreeding coefficient (probability of identity-by-descent between

the maternal and paternal copies of a gene, due to selfing)

φAB Joint probability of identity-by-descent at loci A and B

GAB = φAB−F 2 Identity disequilibrium between loci A and B

E [X] Average of the quantity X over all individuals

〈M〉 Expected value of the moment M over the stochastic process

986
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987

Figure 1. Background selection effect generated by a single deleterious allele (Bsel,988

see equation 17) on Ne at the neutral locus, as a function of the recombination rate989

r between the two loci (A, B), and of the position of the deleterious allele along a990

linear chromosome of total map length 10 Morgans (C, D, the neutral locus is located991

at position 0). Different colors correspond to different values of the selfing rate as992

indicated in A. Solid curves correspond to the results obtained from the equations in993

Appendix B, dashed-curves in A, C to the tight linkage approximation (equation 26,994

replacing h by h (1− F )+F and r by r (1− F )), while dotted curves in B, D correspond995

to the high selfing approximation (equation 34). Parameter values: s = 0.05, h = 0.3,996

u = 10−5.997
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998

Figure 2. Effective population size Ne as a function of the selfing rate α, for different999

values of the dominance coefficient of deleterious alleles h. Dots: simulation results (in1000

this and the following figures, error bars are smaller than the size of dots); solid curves:1001

analytical predictions from the complete model (see Supplementary File 2); dashed1002

curves: tight linkage approximation (equation 26, replacing h by h (1− F ) + F and1003

r by r (1− F )); dotted curves: high selfing approximation (equation 34). Parameter1004

values: N = 20000, s = 0.05, U = 0.1, R = 10.1005
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Figure 3. Effective population size Ne as a function of the selfing rate α, for different1007

values of genome map length R: 0.1 (red), 1 (orange), 10 (green) and 100 (blue).1008

Dots: simulation results; solid curves: analytical predictions from the complete model;1009

dashed curves (left): tight linkage approximation; dotted curves (right): high selfing1010

approximation. Parameter values: N = 20000, s = 0.05, h = 0.3, U = 0.1.1011
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Figure 4. Effective population size Ne as a function of the selfing rate s, for different1013

values of the strength of selection against deleterious alleles s: 0.005 (blue), 0.051014

(green) and 0.5 (red). Dots: simulation results; solid curves: analytical predictions1015

from the complete model; dashed curves (left): tight linkage approximation; dotted1016

curves (right): high selfing approximation. Parameter values: N = 20000, h = 0.3,1017

U = 0.1, R = 10.1018
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Figure 5. Effective population size Ne as a function of the selfing rate α, for different1020

values of the dominance coefficient of deleterious alleles h: same as Figure 2 with1021

U = 0.5.1022
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Figure 6. Left: Effective population size Ne as a function of the standard deviation1024

σ of ln s across loci, assuming a log-normal distribution of s and setting the average1025

of ln s so that s = 0.05 for all values of σ. Curve: prediction obtained by integrating1026

equation 34 over the distribution of s and over the genetic map; dots: simulation1027

results. Parameter values: N = 20000, α = 0.9, U = 0.1, R = 10. In the simulations1028

the heterozygous fitness effect hs is the same for all mutations, and adjusted so that1029

h = 0.25 for all values of σ. The right figure shows the distribution of s for σ = 0.11030

(solid), 0.5 (dashed) and 1 (dotted).1031
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1032

Figure 7. Average coalescence time between two randomly sampled sequences at a1033

neutral locus located at the mid-point of the chromosome, as a function of time. The1034

population is monomorphic at time zero (all lineages coalesce), N = 20000 during1035

the first 105 generations while N = 40000 during the last 105 generations. Parameter1036

values: α = 0.9, s = 0.05, h = 0.3, U = 0.1, R = 10. Dashed curve: prediction1037

from equation 36, where the inbreeding effective size is obtained from equation 35,1038

and assumed to reach instantaneously its equilibrium value for a given N . Continuous1039

curve: simulation results (average over 4000 replicate simulations), where E [T ] is1040

estimated from the diversity of a neutral sequence with an infinite number of sites (see1041

text) and mutation rate µ = 10−4 per generation.1042
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