N

N

Designing optimal-and fast-on-average pattern matching
algorithms
Gilles Didier, Laurent Tichit

» To cite this version:

Gilles Didier, Laurent Tichit. Designing optimal-and fast-on-average pattern matching algorithms.
Journal of Discrete Algorithms, 2017, 42, pp.45-60. hal-01310165

HAL Id: hal-01310165
https://hal.science/hal-01310165

Submitted on 2 May 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01310165
https://hal.archives-ouvertes.fr

Designing optimal- and fast-on-average pattern
matching algorithms

Gilles Didier and Laurent Tichit

Aix-Marseille Université, CNRS, Centrale Marseille, I2M UMR7373, Marseille, France

E-mail: {gilles.didier,laurent.tichit}@univ-amu.fr

May 2, 2016

Abstract

Given a pattern w and a text t, the speed of a pattern matching
algorithm over ¢ with regard to w, is the ratio of the length of ¢ to the
number of text accesses performed to search w into . We first propose a
general method for computing the limit of the expected speed of pattern
matching algorithms, with regard to w, over iid texts. Next, we show how
to determine the greatest speed which can be achieved among a large class
of algorithms, altogether with an algorithm running this speed. Since the
complexity of this determination make it impossible to deal with patterns
of length greater than 4, we propose a polynomial heuristic. Finally, our
approaches are compared with 9 pre-existing pattern matching algorithms
from both a theoretical and a practical point of view, i.e. both in terms of
limit expected speed on iid texts, and in terms of observed average speed
on real data. In all cases, the pre-existing algorithms are outperformed.

1 Introduction

We focus on algorithms solving the online string matching problem, which con-
sists in reporting all, and only the occurrence positions of a pattern w in a text
t (online meaning that no pre-processing of the text is allowed). As one of the
oldest problems addressed in computer science, it has been extensively studied.
We refer to [I0] for a comprehensive list and an evaluation of all the pattern
matching algorithms developed so far. By the authors’ count, more than 80
algorithms have already been proposed, among which more than a half were
published during the last ten years. This fact sounds quite paradoxical, since
the Morris-Pratt algorithm, which is optimal in terms of worst case analysis,
dates back to 1970.

A possible explanation is that there is wide gap between the worst case com-
plexity of algorithms and their computation times on real data. For instance,
there are pattern matching algorithms with non-linear worst case complexities,
which perform much better than Morris-Pratt on English texts. Basically, the

{gilles.didier, laurent.tichit}@univ-amu.fr

average case analysis is way more suited to assess the relevance of a pattern
matching algorithm from a practical point of view. The average case analy-
sis of some pattern matching algorithms, notably Boyer-Moore-Horspool and
Knuth-Morris-Pratt, has already been carried out from various points of view
[27, 121 [, B, 16} 21, 22] 25]. We provide here a general method for studying
the limit average behavior of a pattern algorithm over iid texts. More precisely,
following [I8], we consider the limit expectation of the ratio of the text length to
the number of text accesses performed by an algorithm for searching a pattern
w in iid texts. This limit expectation is called the asymptotic speed of the algo-
rithm with regard to w under the iid model. The computation of the asymptotic
speed is based on w-matching machines which are automata-like structures able
to simulate the behavior of a pattern matching algorithm while searching the
pattern w. The underlying idea is the same as in [I8] [19] 20, 17] and can be
seen as a generalization of the string matching automaton [7].

In the companion paper, G. Didier provided a theoretical analysis of the
asymptotic speed of pattern matching algorithms over iid texts [8]. In particular,
he showed that, for a given pattern w, the greatest asymptotic speed among a
large class of pattern matching algorithms, is achieved by a w-matching machine
in which the states are essentially subsets of positions of w. Such machines are
called strategies below.

We provide here a brute force algorithm computing the Fastest strategy for a
given pattern w and the frequencies of an iid model. The algorithm is based on
an original structure associated to the pattern w and called its position lattice,
which gives a full representation of the overlap relations between the subsets of
positions of w.

Since the brute force algorithm cannot be applied on patterns of length
greater than 4, because of its (very high) time-complexity, we propose a poly-
nomial K-Heuristic, in which the polynomial order K may be chosen by the
user.

The Fastest and K-Heuristic approaches are finally compared with 9 several
pre-existing pattern matching algorithms:

e from a theoretical point of view, by computing their limit expected speeds
with regard to various patterns and iid models,

e from a practical point of view, by computing their average speeds over
two sources (an English text and a DNA sequence).

In both cases, the Fastest and K-Heuristic (with K large enough) approaches
outperform the pre-existing algorithms.

The software and the data used to perform the tests are available at https:
//github.com/gilles-didier/Matchines.git.

The rest of the paper is organized as follows. Section[2] presents the notations
and recalls some concepts and results from [§]. It is followed by two sections
which introduce the central objects of this work: the strategies and the position
lattice of a pattern. In particular, we provide an algorithm computing the
position lattice of a given pattern. Section [b| shows how to use the position

https://github.com/gilles-didier/Matchines.git
https://github.com/gilles-didier/Matchines.git

lattice of a pattern to obtain the Fastest strategy with regard to this pattern
and an iid model. In Section [6] we provide a polynomial heuristic allowing to
compute fast strategies. Section [7] presents the results of various comparisons
between 9 pre-existing pattern matching algorithms, the K-Heuristic and, each
time it is possible, the Fastest strategy. The results are discussed in the last
section.

2 Notations and definitions

2.1 Notations and general definition

For all finite sets S, P(S) is the power set of S and |S| is its cardinal. An
alphabet is a finite set A of elements called letters or symbols.

A word, a text or a pattern on A is a finite sequence of symbols of .A. We put
|v] for the length of a word v. Words are indexed from 0, i.e. v = vgvy ... Vjy|—1-
We write vy; j for the subword of v starting at its position ¢ and ending at its
position j, i.e. v j = viVit1...v;. The concatenate of two words v and v is
the word wv = uguy . .. Ujy|—1V0V1 - - - Vpy|—1-

For any length n > 0, we note A" the set of words of length n on A, and
A*, the set of finite words on A, i.e. A* =)~ , A"

Unless otherwise specified, all the texts and patterns considered below are
on a fixed alphabet A.

A pattern matching algorithm takes a pattern w and a text t as inputs an
reports all, and only the occurrence positions of w in ¢. For all patterns w, we
say that two pattern matching algorithms are w-equivalent if, for all texts t,
they access exactly the same positions of ¢ on the input (w,t).

2.2 Matching machines and the generic algorithm [§]

For all patterns w, a w-matching machine is 6-uple (Q, o, F, ¢, 8, 7) where

e () is a finite set of states,

0 € (@ is the initial state,

e I C @ is the subset of pre-match states,

a : Q — N is the next-position-to-check function, which is such that for
all g € F, a(q) < |wl,

d:Q x A— @ is the transition state function,

e v:(@Q x A— N is the shift function.

By convention, the set of states of a matching machine always contains a sink
state @, which is such that, for all symbols z € A, §(®,2) = © and v(®,z) = 0.

The order Or of a matching machine I' = (Q, 0, F, «,d,) is defined as
Or = maxgzeg{a(q)}.

b/1

%0 a/0 > 511 b/0 > 5;2
b/1
a/l

Figure 1: abb-matching machine of the naive algorithm. The next-position-to
check are displayed below all states S0, S1 and S2. Edges from states Si are
labelled with “z/v(S%,x)” for all symbols x. The transition associated to a
match is blue-colored.

The w-matching machines carry the same information as the Deterministic
Arithmetic Automatons defined in [19] 20].

The generic algorithm takes a w-machine machine and a text ¢ as inputs and
outputs positions of ¢ (Algorithm .

input : a w-matching machine (Q, o0, F, a, d,) and a text ¢
output: all the occurrence positions of w in ¢ (hopefully)

1 (g,p) < (0,0)

2 while p < |t| — |w| do

3 if g€ F and 1y () = Wa(q) then

‘ print “ occurrence at position p ”

(Qap) <~ (5(Q7 tp+a(q))7p + '7(Q7 tp+a(q)))

[SL "

Algorithm 1: The generic algorithm

A w-matching machine I' is valid if, for all texts ¢, the execution of the generic
algorithm on the input (T',¢) outputs all, and only the occurrence positions of
w in t.

We claim that for all the pattern matching algorithms developed so far and
all patterns w, there exists a w-matching machine I' which is such that, for
all texts t, the generic algorithm and the pattern matching algorithm access
exactly the same positions of ¢ on the inputs (I',¢) and (w,?) respectively [§].
For instance, Figure [I] displays a abb-matching machine which is abb-equivalent
to the naive algorithm.

2.3 Full-memory expansion — standard matching machines
[8]

For all n € N, R,, is the set of subsets H of {0,...,n} x A verifying that, for
all i € {0,...,n}, there exists at most one pair in H with ¢ as first entry.

(50, {(()O,b)}) (50-,{(0-8)7(1-,1))})

l«— b/1 —

1
A b/l/ b/1
O e |

(5%;@) a/0 (Sla{(lUﬁa)}) L b0 — (52’{«)’3)’(1’1))})
PR |
a/l a/l a/l
_J v
(50,{(0,a)}) (50,{(0,0),(1,a)})
0 l«— b/1 — 0

Figure 2: Full memory expansion of the abb-matching machine of Figure

For all H € R,,, we put f(H) for the set comprising all the first entries of
the pairs in H, namely

f(H) = {i| 3z € A with (i,z) € H}.

For all k € N and H € R, the k-shifted of H is

k

H={(u—k,y) | (uy) € H with u > k},

i.e. the subset of R,, obtained by subtracting k from the first entries of the pairs
in H and by keeping only the pairs with non-negative first entries.

The full memory expansion of a w-matching machine I' = (Q, 0, F, a, 8, 7)
is the w-matching machine I'* obtained by removing the unreachable states of
I"=(Q',o,F' aé&,4"), defined as:

e Q'=Q x Roy
e o = (0,0)
o &((¢, H)) = a(q)

¥ (¢, H),) = v(q,2)
e ' =F X Ro,.

8 ((q,H),x)
v(a,x)
(0(q,z), HU{(ex(q),z)}) ifVa € A, (alq),a) ¢ H
=4 O if 3a # z s.t. (a(q),a) € H
vy(a,z)
x),) if (a(q),z) € H

By construction, at all iterations of the generic algorithm on the input (T'™*, ¢),
if the current state and position are (¢, H) and p, respectively, then the positions
of {j+p|je€f(H)} are exactly the positions of ¢ greater than p accessed so far
(the second entries of the corresponding elements of H give the symbols read).

For all texts t, the generic algorithm access the same positions of ¢ on the
inputs (T, t) and (T'*,t) [§].

A w-matching machine I is standard if each state g of I' appears in a unique
pair/state of its full memory expansion. For all states ¢ of a standard matching
machine I'; we put hr(g) for the second entry of the unique pair/state of IT'* in
which ¢ appears.

We implemented a basic algorithm computing the full-memory expansion
I = (Q*, o*, F*,a*,8",v*) of a w-matching machine I' = (Q, 0, F, @, d,7) in
O(|w|.|Q*]) time. We have |Q*| < (A + 1)I*l|Q| but the size of Q* may vary a
lot with regard to the matching machine/algorithm considered.

2.4 iid and Markov models

An independent identically distributed (iid) model (aka Bernoulli model) is fully
specified by a probability distribution 7 on the alphabet (i.e. 7, is the proba-
bility of the symbol z in the model). Such a model will be simply referred to as
“m” below. Under 7, the probability of a text ¢ is

[t|—1

px(t) = H m(ti).

A Markov model M over a given set of states @ is a 2-uple (mwr, dpr), where
7w is a probability distribution on @ (the initial distribution) and d,; asso-
ciates a pair of states (¢, ¢’) with the probability for ¢ to be followed by ¢’ (the
transition probability). Under a Markov model M = (mas,0ps), the probability
of a sequence s of states is

ls|]—1

pM(S) :7TM(80) H 5M(So,81).
=0

Theorem 1 ([§]). Let T = (Q, 0, F, e, 8,7) be a w-matching machine. If a text
t follows an iid model and T" is standard then the sequence of states parsed by
the generic algorithm on the input (T',t) follows a Markov model (mwpr,dpr).

Proof. Whatever the text model and the machine, the sequence of states always
starts with o with probability 1. We have mp(0) = 1 and mas(g) = 0 for all

q#o.
The probability dpr(g,q’) that the state ¢’ follows the state ¢ during an

execution of the generic algorithm, is equal to:

e 1, if there exists a symbol z such that §(¢,z) = ¢’ and (a(q),) € hr(q)),

. Z 7(x), otherwise,
xst. 8(qg,x)=¢

independently of the previous states. O

2.5 Asymptotic speed

Let M be a text model and A be an algorithm. The w-asymptotic speed of
A under M is the limit expectation, under M, of the ratio of the text length
to the number of text accesses performed by A []]. Namely, by putting aa (¢)
for the number of text accesses performed by A to parse ¢t and paq(t) for the
probability of ¢ with regard to M, the asymptotic speed of A under M is

ASu(4) = fim 3 Moo
teAn

aa

The asymptotic speed ASp((T") of a w-matching machines T' is that the
generic algorithm with T' as first input. From Theorem 5 of [§], the asymp-
totic speed of a standard w-matching machine I' = (Q, 0, F, ¢, 8,~) under an
iid model 7 exists and is given by

ASH(D) =) agE(g), (1)

q€Q

where (ag)qeq are the limit frequencies of the states of the Markov model as-
sociated to I and 7 in Theorem [I] and

_{ 1gx) if (ae(q), x) € hr(q)),
Eg) = { > . Y(q,)Ty otherwise.

Computing the asymptotic speed of a pattern matching algorithm, with
regard to a pattern w and an iid model 7 is performed by following the stages
below.

1. We get a w-matching machine I" which simulates the behavior of the al-
gorithm while looking for w (Figure . The transformation of the 9 algo-
rithms presented in Sectionm (and a few others, see our GitHub repository)
into w-matching machines, given w, has been implemented.

2. We obtain the full-memory extension I'* of I" (Figure [2| Section .

3. We compute the limit frequencies of the Markov model associated to I'*
and 7 in Theorem [1} This mainly needs to solve a system of linear equa-
tions of dimension |Q*|.

4. We finally obtain the asymptotic speed of the algorithm from these limit
frequencies, m and I'* by using Equation

The most time-consuming stage is the computation of the limit frequencies,
which has O(|Q*|?) time complexity, where |Q*|, the number of states of the
full memory expansion, is smaller than (A 4 1)*/|Q)].

3 Strategies
For all sets Z C N and k € N, we define the k-left-shifted of Z as
AZ,k)={i—k|Fi €T and i > k}.
A w-strategy S = (Q, 0, F, a, 8,) is a w-matching machine such that
QCPHO,...,Jw—1H\{{O0,...,|w]—1}} and 0 € Q,
e 0=10,
F={seQlls| = |w| -1},

a:Q — {0,1,...,Jw| — 1} is such that for all s € Q, a(s) € s and
Is|] < |w|—1=sU{a(s)} € Q,

¥:Q x A—{0,1,...,|w|} is such that for all states s and all symbols z,

v(q,)
) min{k > 1 [was)—r = if a(s) > k and w; = wjyy for all j € A(s,k)} if g € F,
min{k > 0 | wa(s)—r = if a(s) > k and w; = wjy for all j € A(s,k)} otherwise,

e §:0Q x A— Q is such that for all ¢ €) and all symbols z,
0(s,x) = A(s U {i}, (s, z)).

Proposition 1. A w-strategy is a standard, valid and non-redundant w-matching
machine.

Proof. By construction, a w-strategy is both standard and non redundant. The
validity of a w-strategy follows from Theorem 1 of [§]. O

Proposition 2. There is a w-strategy which achieves the greatest asymptotic
speed among all the w-matching machines of order |w| — 1.

Proof. The Corollary 2 of [8] implies that there exists a w-matching machine
which achieves the greatest asymptotic speed among those of order of order
|w| — 1 and which is

1. standard,
2. compact,
3. valid,

4. in which all the states are relevant (i.e. such that they may lead to a
match without any positive shift [g]),

5. such that there is no pair of states (¢, ¢") with ¢ # ¢’ and hr_(¢) = hr_(¢’).

Let us verify that a w-matching machine T' = (Q, 0, F, e, 8,) of order |w| — 1
satisfying the properties above is (isomorphic to) a w-strategy. Since it verifies
in particular the properties 4 and 5, its set of states @ is in bijection with a
subset of P({0,...,|w| — 1}). Let us identify all states ¢ of @ with f(hr(g)),
its corresponding element of P({0, ..., |w| — 1}). Since I is standard, compact
and of order |w| — 1, we don’t have {0,...,|w| — 1} € Q. Moreover, since I is
standard, we have d(s,z) = A(sU{i},~y(s,z)). Last, by construction, if

v(g,x)
min{k > 1 | wa(s)—r = = if a(s) > k and w; = wjiy for all j € A(s, k)} ifge F,
min{k > 0 | wa(s)—r = if a(s) > k and w; = wj;y for all j € A(s,k)} otherwise,

then I' is not valid, and if

¥(g,)
min{k > 1| wa(s)—r = = if a(s) > k and w; = wjy for all j € A(s, k)} ifge F,
min{k > 0 | wa(s)—r = if a(s) > k and w; = wj;y for all j € A(s,k)} otherwise,

then (g, x) is not relevant. O

4 Position lattices

The position lattice of a pattern w is the 3-uple LI*! = (Q[*], ((SLW])SeQ[w]) (’)’Lw])seQ[wl)

where, by putting 3 for {0, ..., |w| —1}\ s,

o QMW =Pyo0,...,|Jw|— 1)\ {{0,...,|w] —1}}, i.e. the set made of all the
subsets of positions of w but {0,..., |w| — 1},

o for all s € QM), 41"} is a map from 5 x A to {0,...,|wl|},
o for all s € QI 5?"} is a map from 5 x A to QI

where, for all s € Q*!, all i € 5 and all z € A, we have

W (i,)

_f min{k > 1| was)—r =z if a(s) > k and w; = wjy for all j € A(s, &)} if |s| = |w| — 1,
| min{k >0 | wa(s—r =z if a(s) > k and w; = wjy for all j € A(s,k)} otherwise,

and
oll(i, z) = A(s U {i}, 41 (i,).

In particular, if z = w; and |s| < |w| — 1 then we have L] (i,2) = 0 and
50, 2) = s U {i}.

Let us remark that, since max(s) < |w| — 1 for all s € Q[*!, we have, for all
i€sandallz € A A(sU {i}, |lw]) = 0, thus ,qu] (4,2) < |w| which is consistent
with the definition of 'yﬁw].

The edges of LI*! are the pairs (s, ol (i,2)) for all s € QI], all i € 5 and all
x € A (see Figure [3).

Figure 3: Position lattice of the pattern abb. Vertices represent the states
of LI#%l For all states s, there is an outgoing edge for all pairs (i,x) with

i € {0,...,]abbl — 1} \ s and € A. This outgoing edge is labeled with
bl

“, x|fy£abb] (i,2)”, is colored according to i, and goes to slabtl).

10

Remark 1. The position lattice of w contains 21! — 1 states and |A|.|w|.21*I~1
edges.

Remark 2. Let s be a state of QM!, i and j be two positions in 5 such that
i # 7 and x and y be two symbols of A. We have

[w] [w]

(G =G, 2),y) 9, 2) = (i =G, y))+, y), and

7ol) 51 i)
Byt gy — W), y) = 810 (=G y),).

By considering the particular case where x = w;, we get

[w]

Let prec,, be the table indexed on {0, ..., |w| —1} x A and in which, for all
positions ¢ of w and all symbols z of A, the entry prec,,[i, z] is defined as

o fmax{j<ilw—a} if{j<ilw =g},
prec,[i, 2] = { NULL otherwise.
Lemma 1. Let s be a state of QI), i a position in'5 and x a symbol of A.
1. If x = w; then

o if|s| = |w|—1 then 5£w](i7x) ={0,...,B—1} and'ygw](i,x) = |w|—-B,
where B is the length of the longest proper suffiz of w which is a prefiz
of w;

o otherwise 51" (i,2) = sU{i} and L] (i,2) = 0.
2. If x # w;,
(a) if s =10 then

6[“’] (.) _ {precw [Zv I]} Zf pI‘eCw [Zv l’} 7é NULLa
o TE g otherwise,
[w],. ~_ | ©—precyli,x] if prec,li,z] # NULL,
Y ()= { i+1 otherwise,

(b) if s # 0 then for all £ € s, we have

Sl (i) = ol (0=l (i), w),
6[8\]{2}(171') s\{¢}
Y 2) =4l (=l) we) + A8,).

s\{¢} (Z1x)

Proof. The only case which does not immediately follow from the definition of
L") is when 2 # w; and s #) which is given by Remark O

11

The relation < on Q™! is defined as follows. For all sets s and s” in Q[*!, we
have s < s’ if one of the following properties holds:

o |s| <Is'],
o |s] = |s'|, s # s’ and min(s©s’) € s, where s© s’ is the symmetric
difference of s and s/,

o s=¢.

The relation < defines a total order on QI*!. We write “ s <s’” for “ s< s’ and

S#S/ 77.

Lemma 2. Let s be a state of Q! with |s| > 1, @ a position in's and x a symbol
of A. If x # w; then 55@{maxs}(i, x)<s.

Proof. Under the assumption that |s| > 1, we have mins = min(s \ {maxs}).
By construction, the fact that # w; implies that 'y[w] (i,2) > 0.

s\{max s}
If we have

min((s \ {maxs}) U {i}) <9} (05 7)

then |61} oy (6, 2)] < [s], thus 61 (i, @) <5,
Otherwise, we have |5£ﬂmaxs}(i, x)| = |s| but since necessarily
min 6£1<]{maxs}(i,x) < min|s| — Wiﬂmaxs}(i, r) < minls|,

we get again sl (i,2) <s. O

s\{max s}

Theorem 2. Algorithm (9 computes the position lattice of the pattern w in
O(|w|2!™1) time by using the same amount of memory.

Proof. Let us first show that Algorithm [2] determines the shifts and the transi-
tions of the state s before those of the state s’ if and only if s <s’. The loop
at Lines computes the shifts and the transitions of . Next, the loop at
Lines computes the shifts and the transitions of the singletons from {0}
to {|w| — 1}. The last loop (Lines [25{43]) determines the shifts and the transi-
tions of the states corresponding to the subsets of increasing cardinals ¢ from 2
to |w| — 1. Inside the last loop, the way in which the next subset s’ is computed
from the current subset s, both of cardinal ¢, ensures that s < s’ (Lines .

For all iterations i of the loop at Lines and all symbols z, we have
last[z] = prec,,[i, 2] at the beginning of the inner loop (Line [5). From Lemma
(Cases 1 and 2a), the transitions 65”] (i,x) and the shifts 'yq[)w] (i,x) for all
positions ¢ of w and all symbols x, are correctly computed at the end of the
loop.

The loop at Lines computes the shifts and the transitions from the
singleton states. For all pairs of positions (¢, j) and all symbols z, determining

[w]

6%1:}! (j,x) and 7{i}(j, x) is performed by distinguishing between two cases.

12

© 00N O A W N

I
w N = O

14

15
16
17
18
19
20
21
22
23

24

25
26
27
28
29
30
31
32
33
34
35
36
37

38

39
40
41
42
43
44

B <« length of the longest proper suffix of w which is also a prefix;
for © € A do last[z] « NULL ;
for i =0 to |w| — 1 do

J

last[w;] + 4;
for x € A do
if last[z] # NULL then

| A 2) i = lastla]; 08 (0, @) {last[x]};
else

‘ ’yé)w] (i,2) < i+ 1; 6&“]] (i,2) + 0;
for i =0 to |w| — 1 do

for j=0toi—1do
for z € A do
Vi Goa) — 9 Gha) +] = A G, w);
5y~ (4rz)
B0) = Sy, (= %76), o)
for j=i+1to|w|—1do
for z € A do

if x = w; then
if |w| =2 then

| G, 2) Jw| - B; 6, 2) < {0,...,B - 1};
else

| G2 <05 506) < (i gk

else
ViU, z) ’y;}ll(i—l,wi)('j — % = 1w, @);
S0 o L == L) o);

for £ =2 to |w| — 1 do

for j=0to¢—1do S[j]«j;
repeat
s« {S[0],...,S[¢ —1]}; s" « {S[0],...,S[¢—2]};

for i € {0,...,|lw| —1}\ s do

for x € A do
if £ = w; then
if £ = |w|—1 then
| G, 2) w] =By 60, 2) + {0,...,B—1};
else
| G 2) 05 86, x) - s U {i)s

else
W) G+, B1E=11 =706 2), wsie-n);
80 i, x) 8t (S[0—1] — A4, @), wse—)
65, (,z)
— -1,

while j >0 and S[j] > |w|—£¢+jdo j+ j—1;
if 5 > 0 then

S[j] < Sl + 1;
fork=j+1tofl—1do S[k]+ Slk—1]+1;

until j < 0;

Algorithm 2: Computation of the position lattice.

13

o If 4 > j, then 65“1 (j,z) <{i} and its shifts and transitions were already
computed. Formula of Remark |2 gives us those of {i} (Lines [13{14]).

e If i < j, we distinguish between two subcases according to the symbol x
considered. If z = w; then the shift and the transition state are given in

Lemma— Case 1. Otherwise, we remark that, since *y%ﬁ (J, x) is positive,

we have that 75}](3', z) =min{k > 1| wj_p =z if j > k and w;— = w;}.
This implies that ’y?ﬁ (Jyx) = 7([;[[:‘],](4 .)(j7 x). We have 5(%1”] (i—1,w;) < s,
0 11— L, w;

thus both the shifts and the transitions of the state 65”1 (i — 1,w;) are
computed before s (Lines [23}24)).

The last loop, lines [25H43] computes the shifts and the transitions of the
states corresponding to the subsets of cardinals 2 to £ — 1. For all states s with
2 <|s|] < |w| — 1, all positions ¢ € § and all symbols z # w;, the corresponding

shift and transition 'yLw] (i,2) and sl (i,x) are computed from the shifts and

transitions of the state 55<}{maxs}

(i,z) following Lemma [1f- Cases 2b (in Algo-
rithm we put s’ for s\ {maxs}). Lemma [2] ensures that 63@{“1“ o (x) <8,

thus that the shifts and transitions of §£<)]{maxs}(i7 x) are computed before those
of s. For all states s with 2 < |s| < |w| — 1, all positions ¢ € 5, the shift and

transition 71! (4, w;) and 65*)(4, w;) are given in Lemma— Case 1.

The time complexity is O(‘ku;lo_l(k + |w| — k) (‘Z’l)) (loop Lines , ie.
O(Jw|2!*!). We do not use more memory than needed to store the lattice, which
is, from Remark O(|w|2!™1). O

5 The Fastest w-strategy

Determining the fastest w-strategy, which, from Proposition [2] has the greatest
asymptotic speed among all the w-matching machines of order |w| — 1, may be
performed by computing the asymptotic speed of all the w-strategies and by
returning the fastest one.

In order to enumerate all the w-strategies, let us remark that they are all
contained in the position lattice of w in the sense that:

e the set of states of a w-strategy is included in that of the position lattice;
e all the w-strategies I' = (Q, 0, F, e, 8,) verify §(s,x) = de](a(s),x) and
y(s,z) = VL“’] (a(s),) for all s € @ and all symbols z.

Reciprocally, to any map ¢ from Q] to {0, ..., |w|—1} such that ¢(s) € 5 for
all states s € Q! there corresponds the unique w-strategy S = (Q,0,F,a,8,7)
for which the next-position-to-check function a coincides with ¢ on Q.

Finally, our brute force algorithm

1. takes as input a pattern w and an iid model 7,

14

2. computes the position lattice of w,
3. enumerates all the maps ¢ such that ¢(s) € 5 for all states s € QM

4. for each ¢, gets the corresponding w-strategy by keeping only the states
of Q! reachable from @, with the next-position-to-check function ¢,

5. computes the asymptotic speed of all the w-strategies under T,
6. returns the w-strategy with the greatest speed.
The time complexity of the brute force algorithm is

lw|-1

o IT &) |23
k=1

where the first factor stands for the number of functions ¢ and the second one
for the computation of the asymptotic speed of a w-strategy, which needs to
solve a linear system of size equal to the number of states, which is O(2/*!). Tts
memory space complexity is \w|2‘w|_17 i.e. what is needed to store the position
lattice of w.

Under its current implementation, the brute force determination of the
fastest w-strategy is unfeasible for patterns of length greater than 4.

6 A polynomial heuristic

There are two points which make the complexity of the brute force algorithm
that high:

1. the size of the position lattice, which is exponential with the length of the
pattern,

2. determining the fastest strategy in the position lattice, which needs a time
exponential with its size.

Our heuristic is based on two independent stages, each one aiming to over-
come one of these two points. Both of them start from the general idea that,
since, for any current position of the text, the probability that no mismatch
occurs until the n'™ text access decreases geometrically with n, the first relative
positions accessed by a strategy (or more generally by a pattern algorithm) are
those which have the greatest influence on its asymptotic speed.

6.1 n-sets sublattices

A sufficient condition for a sublattice 4 C Q! to contain a w-strategy is that,
for all s € U, there exists at least a position ¢ € 5 with 5L (t,z) € U for all
x € A. A sublattice U verifying this condition will be said to be complete.

15

Let us introduce some additional notations here. For all sets S of positions,
the prefiz of S is defined as P(S) = max{i € § | j € Sforall 0 < j < i} and
its rest is R(S) =S\ {0,...,P(S)}

For all positive integers n, the n-sets sublattice of w is the sublattice U of
Q™! which contains all and only the subsets of Q*! with a rest containing less
than n positions, i.e. the subsets of the form {0,...,p} UX with p < |w|—1
and |X| < n.

By construction, the n-sets sublattice of w is complete. It contains O(|w|™)
states and O(|w|"™!) transitions.

We adapted Algorithm [2to compute the n-sets sublattice of w in O(Jw|"*1)
time with the same amount of memory space.

6.2 /(-shift expectation

We are now interested in a fast way for finding an efficient w-strategy in a given
complete sublattice.

For all integers ¢ and all states s of a sublattice U, the ¢-shift expectation of
s is defined as the greatest shift expectation one could possibly get in ¢ steps
in U by starting from s. Namely, the ¢-shift expectation is computed following
the recursive formula:

o ESI[s] =0,
e for all k£ > 0,

S = mas 3 (306,2) + B 5176)
1€Tr(s) =y

where Tr(s) = {i € 5 | st (i,z) €U for all x € A}.

The ¢-shift expectation of a complete sublattice U is well defined and can be
computed in O(¢T) time, where T is the number of transitions of the sublattice
U and by using O(|4|) memory space.

We finally extract a w-strategy from U by setting the next-position-to-check
of all states s € U to

arg max Z (vgw] (i,2) + ESLU_)]l [(5£w] (%@]) .
i€Tr(s) ;ca

6.3 K-Heuristic

The K-Heuristic combines the two approaches above in order to compute a
w-strategy in a time polynomial with the length of the pattern.

Being given an order K > 1, we start by computing the K-sets sublattice
of w, thus in O(Jw|X¥*1) time. In order to select a w-strategy from the K-sets
sublattice, we next compute the (K -+ 1)-shift expectation of all its states and
extract a w-strategy as described just above. This computation is performed in

16

O(K |w|5+1) time, since the number of transition of the sublattice is O(|w|¥*1),
by using O(Jw|®) memory space.

Let us remark that the order £ of the /-shift expectation does not have, a
priori, to be strongly related to the order K of the K-sets sublattice on which it
is computed. By experimenting various situations, we observed that considering
an order greater than K + 1 generally does not improve much the performances,
whereas the strategies obtained from f-expectations with ¢ smaller than K may
be significantly slower.

The K-Heuristic returns a w-strategy in O(K |w|%*1) time by using O(|w|¥)
memory space. We insist on the fact that the K-Heuristic generally does not
return the fastest strategy, even if K > |w|. However, we will see in the next
section that it performs quite well in practice.

7 Evaluation

We shall compare the approaches introduced in Sections [f] and [6] with selected
pattern matching algorithms. The comparison is performed, first, from a theo-
retical point of view, by computing their asymptotic speeds under iid models,
and second, in practical situations, by measuring their average speed over real
data. The average speed with regard to a pattern w, of an algorithm or a
matching machine on a text ¢ is the ratio of || to the number of text accesses
performed by the algorithm to search w in t.

We are also interested in to what extent taking into account the frequencies
of the letters of an iid model or a text, for determining the Fastest and the K-
Heuristic strategies, actually improves their asymptotic or their average speeds.
To this purpose, we compute the Fastest and the K-Heuristic strategies from
the uniform iid model. Next, we test their efficiency in terms of asymptotic
speed under a non-uniform iid model and in terms of average speeds on data
with non-uniform frequencies of letters.

7.1 Pre-existing pattern matching algorithms

More than forty years of research have already led to the development of dozens
algorithms. We selected the 9 ones below for our evaluation:

1. Naive [6],
. Morris-Pratt [6],
. Knuth-Morris-Pratt [15],

2
3
4. Quicksearch [23],
5. Boyer-Moore-Horspool [13],
6

. TVSBS [24], a“right-to-left” algorithm in which shifts are given by a bad-
character rule [5 23] taking into account the two letters at distances |w|—1
and |w| from the current position of the text,

17

7. EBOM [9], a version of the Backward Oracle Matching algorithm [I] which
also uses a “bad two-characters” rule,

8. HASHq [26], which implements the Boyer-Moore algorithm on blocks of
length ¢ by using efficient hashing techniques [I4] (our tests are performed
with ¢ = 3),

9. FJS [11], which combines the ideas of Knuth-Morris-Pratt [15] and Sunday
[23] algorithms.

Algorithms 1 to 5 are classics. The last four ones were chosen for being
known to be efficient on short patterns and small alphabets [10], a situation in
which the determination of the fastest strategy is feasible.

Let us remark that the order of the w-matching machine associated to
TVSBS is equal to |w|, thus greater than that of the Fastest strategy that
we compute.

The transformation into matching machines was implemented for a few other
pattern matching approaches, for instance the SA algorithm (the Baeza-Yates-
Gonnet algorithm) based on bitwise operations [2], or the string-matching au-
tomaton [7]. Since the asymptotic and average speeds of these two algorithms
are exactly 1, whatever the pattern, the model and the text, there is no point
in displaying them.

7.2 Results

We shall evaluate:
e the pre-existing pattern matching algorithms presented in Section |7.1
e the 1- 2- and 3-Heuristics and

e the Fastest strategy (each time it is possible).

7.2.1 Asymptotic speed

The asymptotic speeds are computed for texts and patterns on the binary al-
phabet {a,b}.

Table [1| displays the asymptotic speeds for all the patterns of length 4 on iid
texts drawn from the uniform distribution. As expected, the strategy computed
with the brute force algorithm (last column) is actually the fastest, but the
speeds of the 1-,2- and 3-Heuristics are very close. The pre-existing algorithms
are outperformed by all our approaches (even by the 1-Heuristic) for all the
patterns. We observe that the Naive, Morris-Pratt and Knuth-Morris-Pratt
algorithms have asymptotic speeds always smaller than 1. One cannot expect
them to be faster since, by construction, they access all the positions of a text
at least once. In the following, we will not display their speeds, nor that of
Quicksearch, for they are always smaller than at least one of the other pre-
existing algorithms. The full tables can easily be re-computed by using our
software.

18

,(,‘D‘
&
I o o 0
SN &9 RN IO C N
¢ & TS e 8 & «z@° «2@0 «2@0 o8
<~ SR R DR SR U R I A R

aaaa 0.53 070 1.00 098 1.18 0.78 0.72 093 0.52 150 169 1.80 1.83
aaab 0.53 0.76 094 051 118 069 039 073 052 1.37 152 1.60 1.60
aaba 0.53 0.76 089 0.51 0.73 059 054 062 053 1.19 1.33 135 1.37
aabb 0.53 0.76 0.84 0.69 0.73 0.71 050 0.69 053 1.30 143 154 1.56
abaa 0.53 0.73 080 0.63 0.73 066 061 062 054 123 134 1.38 1.38
abab 0.53 0.70 0.80 0.50 0.73 0.56 0.50 0.73 054 1.22 1.33 136 1.43
abba 0.53 0.70 0.73 0.55 094 0.56 039 0.67 053 1.27 1.31 1.34 1.34
abbb 0.53 0.70 0.70 0.75 0.94 0.76 062 0.73 0.53 147 159 1.64 1.69
baaa 0.53 0.70 0.70 0.75 094 0.76 0.62 0.73 0.53 147 1.59 1.64 1.69
baab 0.53 0.70 0.73 0.55 094 0.56 039 067 053 127 131 1.34 1.34
baba 0.53 0.70 0.80 0.50 0.73 0.56 0.50 0.73 054 122 133 136 1.43
babb 0.53 0.73 080 0.63 0.73 0.66 0.61 062 054 123 134 1.38 1.38
bbaa 0.53 0.76 0.84 0.69 0.73 0.71 050 0.69 053 130 143 154 1.56
bbab 0.53 0.76 0.89 0.51 0.73 059 054 062 053 1.19 133 1.35 1.37
bbba 0.53 0.76 094 0.51 1.18 0.69 039 073 052 137 152 1.60 1.60
bbbb 0.53 0.70 1.00 098 1.18 0.78 0.72 093 0.52 150 1.69 1.80 1.83

Table 1: Asymptotic speeds for the patterns of length 4 on {a,b} under the
uniform model.

$ $ & &
(2 (2 Q) x® Y oo X9
A .
& & o K& K‘fé K"»’Qy S $F & & o
& S 2 S K 9 9 Q& x§
R R N R G RO AP PO e S G g

aaaa 3.30 1.97 1.68 149 0.67 3.02 346 3.50 3.50 3.02 3.47 3.50 3.50
aaab 1.77 0.53 0.27 1.37 0.66 243 255 255 255 243 260 2.60 2.61
aaba 091 0.87 1.55 124 066 177 214 214 214 177 219 219 2.19
aabb 0.38 0.53 029 0.70 0.63 134 171 177 177 174 179 1.80 1.80
abaa 1.67 1.24 163 124 066 180 214 217 216 180 215 2.18 2.18
abab 0.85 0.54 028 1.17 063 129 178 168 164 142 180 1.80 1.81
abba 093 087 082 063 061 1.06 131 151 154 130 173 1.80 1.80
abbb 033 0.57 031 031 046 1.08 112 114 1.15 1.08 110 1.14 1.15
baaa 2.50 1.49 133 137 0.66 244 2.60 2.61 2.61 244 2.60 2.61 2.61
baab 1.34 0.37 0.22 1.18 065 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75
baba 091 0.80 1.16 1.17 063 109 135 144 174 109 178 1.84 1.84
babb 0.38 0.39 021 055 054 1.03 091 1.04 1.05 1.04 104 1.04 1.05
bbaa 1.67 1.10 1.06 0.70 063 1.09 1.72 1.84 183 1.09 172 1.84 1.84
bbab 0.85 0.31 0.23 055 054 100 0.83 1.06 1.08 1.01 1.08 1.08 1.08
bbba 1.00 090 0.73 031 036 1.02 1.09 1.17 1.17 1.08 1.16 1.24 1.24
bbbb 0.35 0.27 024 027 019 103 1.03 1.05 1.05 1.03 1.03 1.05 1.05

Table 2: Asymptotic speeds for the patterns of length 4 on {a,b} under the iid
model (m,,) = (0.1,0.9).

19

babbbaabab 0.85 0.42 0.22 142 1.57 1.09 198 154 1.22 238 2.71
ababbbbbab 0.70 0.55 0.29 0.77 0.85 1.19 134 147 143 187 2.34
aaabaaaaba 091 0.87 3.01 3.93 261 3.04 478 492 3.04 479 5.27
bbbabbabab 0.84 0.27 0.24 145 1.77 1.02 1.05 172 1.02 1.29 2.30
bbabaabbab 0.80 0.31 0.22 221 192 1.15 141 1.69 1.15 214 3.02
baabbaaaaa 4.10 2.17 1.86 240 245 1.99 4.03 472 199 4.06 4.78
abbbababbb 0.31 0.58 0.32 132 1.20 1.08 1.33 152 1.35 190 2.29
baabbbabba 090 0.81 0.68 1.39 1.14 1.61 1.12 1.63 1.73 244 2.78
baabbaabab 0.85 0.37 0.22 222 229 1.77 221 226 177 3.15 3.54
bbbbababbb 0.31 0.26 0.20 095 0.84 1.03 1.05 1.10 1.03 1.20 1.50

Table 3: Asymptotic speeds for some patterns of length 10 on {a,b} (drawn
from the uniform distribution) under the iid model (m,, m) = (0.1,0.9).

Table [2| displays the asymptotic speeds with regard to the same patterns
as Table [I} but under the iid model (m,,m) = (0.1,0.9). This table shows the
asymptotic speeds of the K-Heuristics and the Fastest strategies computed with
regard to an uniform iid model (the columns starting with “Unif.”). The strate-
gies such obtained are not optimized according to the letter probabilities of the
model. They may be used as general purpose approaches, while the strategies
obtained from the model probabilities will be called adapted below. Overall,
our methods are faster than the pre-existing algorithms, with a few exceptions:
Horspool is faster than the 1-Heuristic for two patterns ending with the rare
letter a: aaaa and baaa. And EBOM is faster than the 1-Heuristic for search-
ing baba. The K-Heuristics and the Fastest strategies computed with regard to
an uniform iid model have asymptotic speeds smaller than their counterparts
obtained from the actual probabilities of the text model (here highly unbal-
anced). Nevertheless, the uniform approaches still perform quite well, notably
better than the pre-existing algorithms, except for the uniform 1-Heuristic and
the same patterns as above.

Considering longer patterns leads to similar observations. Table |3[shows the
asymptotic speeds obtained for random patterns of length 10. The 3-Heuristic
outperforms all the others approaches (the Fastest strategy cannot be computed
for this length). The (uniform) 1-Heuristic is slower than algorithms such EBOM
or Hashq. But both the uniform 2- and 3-Heuristic overall perform better than
the pre-existing algorithms, though they are slightly slower for a few patterns.

7.3 Average speed

Our data benchmark consists in the Wigglesworthia glossinidia genome, known
for its bias in nucleotide composition (78% of {a,t}), and the Bible in English

20

-0 -0 - O
@*‘5‘} Qf;&‘} &é‘x X
(i < Q) x¥ o < oo
R S S T T
Q N o N & N 2
S e Oy SEESIN ORI ¢
RPN $ & S S0 By o5 <&

atat 1.17 0.77 0.74 104 060 146 1.70 174 180 146 1.73 173 1.81
tatg 1.69 1.11 1.28 1.10 0.63 164 216 216 216 1.64 216 216 2.17
aaat 1.58 0.85 0.66 0.92 058 157 1.76 1.84 184 157 1.80 1.90 1.90
tccc 282 1.70 1.50 143 063 272 3.03 3.08 3.09 272 303 3.08 3.09
caat 1.53 0.77 0.71 1.05 0.63 1.74 187 183 1.87 174 194 1.97 1.97
aacc 247 156 145 123 0.63 212 267 2.77 2.77 212 269 2.77 2.77
acta 1.36 0.70 0.76 1.26 0.65 1.67 1.77 181 1.85 1.67 185 1.88 1.88
tatc 1.67 1.12 1.27 1.09 0.63 164 2.15 214 214 164 2.15 214 2.15
gtga 192 082 093 134 065 197 211 209 211 197 217 218 2.19
gatt 1.07 087 089 1.06 063 175 204 187 204 175 204 204 2.05

hem 3.16 2.02 1.8 1.39 066 288 323 323 3.24 2838 3.24 3.24 3.24
, to 320 191 178 142 066 3.01 328 325 328 3.01 3.29 3.29 3.29
usal 3.53 218 1.87 148 066 350 3.60 3.60 3.62 3.50 3.62 3.62 3.62
let 284 1.78 170 142 066 289 299 3.03 3.06 289 3.07 3.07 3.07
hem 3.04 159 148 145 066 289 3.05 3.06 3.01 289 3.05 3.06 3.06
are 3.13 17 160 145 0.67 3.01 3.16 3.16 3.11 3.01 3.16 3.16 3.16
at d 3.15 202 185 146 066 296 3.22 3.22 3.22 296 3.22 3.22 3.22
fth 272 181 169 135 065 294 3.03 287 305 294 3.10 3.10 3.10
rth 273 180 169 136 066 294 3.04 287 306 294 3.12 3.12 3.12
fede 3.35 197 1.73 149 066 3.23 3.53 3.53 3.53 3.23 3.53 3.53 3.53

Table 4: Average speeds for some patterns of length 4 picked from the bench-
mark data (the Wigglesworthia glossinidia complete genome and the Bible in
English).

from [10].

Table [4] displays the average speeds of patterns randomly picked from the
data. Let us remark that we are now dealing with real texts, which are not
iid. In particular, the Fastest strategy could possibly be outperformed (this is
not observed on the benchmark data). The 2- and 3-Heuristics, uniform and
adapted, are faster than the pre-existing algorithms for all the patterns, whereas
the 1-Heuristic is sometimes slightly outperformed by Horspool. Horspool is al-
most as fast as our approaches on the Bible while being sometimes significantly
outperformed on the Wigglesworthia glossinidia genome. The average speeds
are overall greater on the Bible than on the DNA sequence. In both cases, we
do not observe a wide performance gap between the uniform and the adapted
approaches, though our benchmark data are far from following an uniform iid
model. Let us remark that the 2- and 3-Heuristics have almost the same per-
formances both in the uniform and the adapted cases.

Table [5| shows the averages speeds with regard to patterns of length 30.
The average speeds on the Bible are about twice those on the Wigglesworthia
glossinidia genome. One actually expects the speed to be greater in average on
texts with large alphabets, since the less likely the match between two symbols,
the greater the shift expectation per iteration. Again the 3-Heuristic, uniform or

21

X9 X9 O
Q Q' < - % %
QO\ Q)% @ N \tz\/ ﬂ;z\/ ;,;2» Q@“\ é\f}’x &{o\}
FTSF TV G
tggataaaaatttgttattaccatatctat 1.8 1.0 22 6.1 47 23 46 7.5 2.3 5.5 8.9
cttctttaattatgttttctatttcttttt 2.8 1.8 33 72 5.2 2.5 5.0 79 26 53 8.5
ghtctatttgtigzag taatta 3.0 1.7 20 62 44 26 53 80 27 61 9.1
tcctactttaacctctasatgteccttatt 14 10 21 7.0 44 2.5 5.5 8.4 2.6 6.5 9.9
tecttatgtansatatasatgtageaatss. 1.4 1.0 1.7 6.1 50 22 47 75 23 55 85
aaaagaaccccggegaggggagtgaaatag 2.7 1.6 3.7 8.3 5.4 3.4 6.9 11.3 3.5 9.3 12.5
aattttcaactaatattaaaccacgttctg 3.0 1.7 2.8 6.3 4.7 2.0 4.8 8.1 2.2 5.6 9.7
aaaggtccattaagtattactatcacagea 2.7 1.1 2.3 7.4 5.5 2.3 5.1 8.1 2.5 6.6 10.2
agatttgegtgatttaaaataatcatctaa 19 11 19 6.4 4.9 2.4 4.9 7.5 2.5 5.8 9.1
ataggaaaagattggattaaactagatatg 2.1 1.3 2.9 6.8 4.7 2.2 5.1 8.3 2.3 5.9 9.7
at the mount called the mount 11.9 5.9 8.0 11.7 8.6 8.0 172 18.0 8.0 176 18.4
ith Isreel, to wit, withall t 133 7.2 84 126 87 89 171 180 9.1 18.0 18.8
esus going up to Jerusalem too 11.9 6.0 8.9 13.2 8.8 9.5 18.0 18.5 9.4 18.1 18.7
them, as they were able to hea 12.4 6.1 8.1 11.7 8.6 7.8 16.5 17.9 7.8 16.6 18.0
0 in Osee, I will call themmy 14.8 7.5 9.0 12.0 8.5 9.0 185 19.3 89 188 19.3
things are come upon thee, the 10.1 5.8 7.6 11.7 8.6 8.5 16.3 17.7 8.5 16.8 18.1
Syria, that dwelt at Damascus, 16.2 84 9.6 128 8.8 104 193 20.0 104 19.6 20.1
full of darkness. If therefor 12.8 6.8 8.6 11.9 8.5 94 185 189 94 187 19.1
e it: for there is no other sa 12.4 5.5 8.0 11.7 &8 7.7 164 17.6 7.7 169 17.9
g, Syria is confederate with E 12.1 6.3 94 128 86 9.8 186 18.9 98 18.6 18.9

Table 5: Average speeds for some patterns of length 30 picked from the bench-
mark data (the Wigglesworthia glossinidia complete genome and the Bible in

English).

22

adapted, outperforms the pre-existing algorithms. The speeds of the 3-Heuristic
and of the 2-Heuristic differ in a greater amount than with patterns of length
4 for the Wigglesworthia glossinidia genome, and, to a smaller extent, for the
Bible.

8 Discussion

In practical situations and though they don’t take into account the letter fre-
quencies, the uniform K-Heuristics and the uniform Fastest strategy perform
generally almost as well as their adapted counterparts. The greatest differ-
ence observed is for the patterns of length 30 on the Wigglesworthia glossinidia
genome (Table |5) and is relatively small. We do observe a notable amount
of difference for the quite extreme case of the asymptotic speed under the iid
model (m,,m) = (0.1,0.9). But even for these frequencies, the uniform ap-
proaches show greater asymptotic speeds than any of the selected pre-existing
algorithms.

The 3-Heuristic has very good results whatever the pattern or the text.
There is no situation for which the performances of the 2-heuristic are far from
the best. On the contrary, the performance ranking of the pre-existing algo-
rithms depends heavily on the patterns and on the texts or the model. For
instance, Horspool may perform very well, even almost optimally, for some pat-
terns and texts or models while its speed may completely plummet in other
situations.

The question of selecting the most efficient order of K-Heuristic still de-
serves further investigations. A basic answer could be “the greater, the better”
but we should take into consideration that an higher order of heuristic comes
with an increased computational cost. After some experiments, we observed
that the asymptotic speed the K-Heuristic tends to stop improving beyond a
certain rank. For instance, the difference in average speed between the 2- and
3-Heuristics for patterns of length 4, both on the genome and on the Bible,
probably does not justify the computational cost of the 3-Heuristic, while it is
worth to use the 3-Heuristic rather than the 2-Heuristic for searching patterns
of length 30 in the Bible (not that much for the Wigglesworthia glossinidia
genome). The best trade-off for the order of the K-Heuristic depends on the
pattern (notably its length) and on the text features (in particular the alphabet
size and the letter frequencies).

It is certainly possible to obtain efficient heuristic with a lower computational
cost than for the K-Heuristic. Since in standard situation, the length of the text
is much greater thna that of the pattern, there is no real reason for considering
only pattern matching algorithms with linear pre-processings of the pattern. In
the extreme case where the texts are arbitrary long with regard to the patterns,
any pre-processing, i.e. whatever its computation time, would be beneficial as
soon as it improves the overall speed.

23

Authors’ contributions

Gilles Didier provided the initial idea, led the software development and wrote
all the manuscript but the section Fvaluation. Laurent Tichit collaborated on
the software development, ran the tests and wrote the section Fuvaluation. Both
authors read, edited and approved the final manuscript.

References

1]

[10]

[11]

[12]

C. Allauzen, M. Crochemore, and M. Raffinot. Efficient experimental string
matching by weak factor recognition. In Combinatorial Pattern Matching,
pages 51-72. Springer, 2001.

R. Baeza-Yates and G. H. Gonnet. A new approach to text searching.
Communications of the ACM, 35(10):74-82, 1992.

R. A. Baeza-Yates and M. Régnier. Average running time of the Boyer-
Moore-Horspool algorithm. Theoretical Computer Science, 92(1):19 — 31,
1992.

G. Barth. An analytical comparison of two string searching algorithms.
Information Processing Letters, 18(5):249 — 256, 1984.

R. S. Boyer and J. S. Moore. A fast string searching algorithm. Commu-
nications of the ACM, 20(10):762-772, 1977.

C. Charras and T. Lecroq. Handbook of Ezxact String Matching Algorithms.
King’s College Publications, 2004.

T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. MIT
Press, 1990.

G. Didier. Optimal pattern matching algorithms. http://arxiv.org/abs/
1604.08437, 2016.

S. Faro and T. Lecroq. Efficient variants of the backward-oracle-matching

algorithm. International Journal of Foundations of Computer Science,
20(06):967-984, 2009.

S. Faro and T. Lecroq. The Exact Online String Matching Problem: A
Review of the Most Recent Results. ACM Comput. Surv., 45(2):13:1-13:42,
Mar. 2013.

F. Franek, C. G. Jennings, and W. F. Smyth. A simple fast hybrid pattern-
matching algorithm. In Combinatorial Pattern Matching, pages 288-297.
Springer, 2005.

L. Guibas and A. Odlyzko. String overlaps, pattern matching, and non-
transitive games. Journal of Combinatorial Theory, Series A, 30(2):183 —
208, 1981.

24

http://arxiv.org/abs/1604.08437
http://arxiv.org/abs/1604.08437

[13]

[14]

[15]

[16]

[17]

[18]

[20]

[21]

[22]

[23]

R. N. Horspool. Practical fast searching in strings. Software: Practice and
Ezperience, 10(6):501-506, 1980.

R. M. Karp and M. O. Rabin. Efficient randomized pattern-matching algo-
rithms. IBM Journal of Research and Development, 31(2):249-260, 1987.

D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern matching in
strings. SIAM journal on computing, 6(2):323-350, 1977.

H. M. Mahmoud, R. T. Smythe, and M. Régnier. Analysis of Boyer-
Moore-Horspool string-matching heuristic. Random Struct. Algorithms,
10(1-2):169-186, 1997.

T. Marschall, I. Herms, H. Kaltenbach, and S. Rahmann. Probabilistic
Arithmetic Automata and Their Applications. IEEE/ACM Trans. Comput.
Biol. Bioinformatics, 9(6):1737-1750, Nov. 2012.

T. Marschall and S. Rahmann. Probabilistic Arithmetic Automata and
Their Application to Pattern Matching Statistics. In P. Ferragina and
G. M. Landau, editors, Combinatorial Pattern Matching, volume 5029 of
Lecture Notes in Computer Science, pages 95-106. Springer Berlin Heidel-
berg, 2008.

T. Marschall and S. Rahmann. Exact Analysis of Horspools and Sundays
Pattern Matching Algorithms with Probabilistic Arithmetic Automata. In
A.-H. Dediu, H. Fernau, and C. Martin-Vide, editors, Language and Au-
tomata Theory and Applications, volume 6031 of Lecture Notes in Computer
Science, pages 439-450. Springer Berlin Heidelberg, 2010.

T. Marschall and S. Rahmann. An Algorithm to Compute the Character
Access Count Distribution for Pattern Matching Algorithms. Algorithms,
4(4):285, 2011.

M. Régnier and W. Szpankowski. Complexity of Sequential Pattern Match-
ing Algorithms. In M. Luby, J. D. Rolim, and M. Serna, editors, Random-
ization and Approzimation Techniques in Computer Science, volume 1518
of Lecture Notes in Computer Science, pages 187-199. Springer Berlin Hei-
delberg, 1998.

R. T. Smythe. The Boyer-Moore-Horspool heuristic with Markovian input.
Random Struct. Algorithms, 18(2):153-163, 2001.

D. M. Sunday. A very fast substring search algorithm. Communications of
the ACM, 33(8):132-142, 1990.

R. Thathoo, A. Virmani, S. Sai Lakshmi, N. Balakrishnan, and K. Sekar.
TVSBS: A fast exact pattern matching algorithm for biological sequences.
Current Science, 91(1):47-53, 2006.

25

[25] T.-H. Tsai. Average Case Analysis of the Boyer-Moore Algorithm. Random
Struct. Algorithms, 28(4):481-498, July 2006.

[26] S. Wu, U. Manber, et al. A fast algorithm for multi-pattern searching.
Tech. Report TR-94-17, CS Dept., University of Arizona, 1994.

[27] A. C.-C. Yao. The complexity of pattern matching for a random string.
SIAM Journal on Computing, 8(3):368-387, 1979.

26

	Introduction
	Notations and definitions
	Notations and general definition
	Matching machines and the generic algorithm DidierX
	Full-memory expansion – standard matching machines DidierX
	iid and Markov models
	Asymptotic speed

	Strategies
	Position lattices
	The Fastest w-strategy
	A polynomial heuristic
	n-sets sublattices
	-shift expectation
	K-Heuristic

	Evaluation
	Pre-existing pattern matching algorithms
	Results
	Asymptotic speed

	Average speed

	Discussion

