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This paper addresses the motion planning problem for
a robot in presence of movable objects. Motion plan-
ning in this context appears as a consirained instance
of the coordinated motion planning problem for multi-
ple movable bodies.

Indeed, a solution path (in the configuration space
of the robot and all movable objects} is a sequence
of transit-paths, where the robot moves alone, and
transfer-paths where a movable object "follows” the
robot. A major problem is to find the set of config-
urations where the robot has to “grasp” or "release”
objects.

Based on [1, §], the paper gives an overview of a
general approach which consists in building a manip-
ulation graph whose connected components character-
ize the ezistence of solutions. Two planners developed
at LAAS/CNRS illustrate how the general formulation
can be instantiated in specific cases.

1 The manipulation planning problem

Robot motion planning usually consists in planning
collision-free paths for robots moving amidst fixed ob-
stacles. Nevertheless a robot may have to perform
tasks which are more difficult than planning motions
only for itself. In some situations, a robot may be able
to move objects and to change the structure of its en-
vironment. In such a context, the robot moves amidst
obstacles but also movable objects. A movable object
cannot move by itself; it can move only if it is grasped
by the robot. According to the standard terminology,
considering movable objects appears as a constrained
instance of the coordinated motion planning problem,
that we call the manipulation planning problem 1.

!Note that this problem is related to Pick&Place and
re-Grasping tasks and not to the dextrous manipulation of
an object by a multi-fingered robot hand.

As stated in [1] (see also Latombe’s book [10]), a
general geometric formulation of the problem can be
defined as follows.

1.1 Manipulation task and

space(s)

configuration

The environment is a 3D (resp. 2D) workspace which
consists of three types of bodies: (1) static obstacles,
(2) movable objects and (3) a robot.

For the robot and for each object we consider its
associated configuration space. Object configuration
spaces are 6D (resp. 3D); the robot configuration space
is m-dimensional, where 7 is its number of degrees of
freedom. Let CS denote the cartesian product of all
objects and robot configuration spaces.

In the following, we will say that c is an incompletely
specified configuration when some parameters in ¢ are
left unspecified; besides, we will say that a configura-
tion ¢’ “verifies” ¢ when it is included in the subspace
defined by ¢. Such a terminology will be used in order
to denote partially specified goals.

Furthermore, we introduce a function Free which
gives, for each domain of CS, the set of its free config-
urations (i.e. configurations where the bodies do not
overlap).

A manipulation task is clearly a particular path in
Free(C'S). The converse does not hold: all paths in
Free(CS) do not necessarily correspond to a manipula-
tion task. Indeed a manipulation path is a constrained
path in Free(CS). We have now to define geometrically
these constraints. There are two types of constraints:

o constraints on the placements of objects; these
constraints model the physics of the manipulation
context (any object must be in a stable position
in the environment),



e constraints on object motions; any object motion
is a motion induced by a robot motion.

1.2 Placement constraints

All configurations in Free(C'S) do not necessarily cor-
respond to a physically valid environment configura-
tion. For example an object can not ”levitate”, and
must be in a stable position. Geometrically speaking,
we have to reduce the space of free configurations to a
subspace which contains all valid configurations. These
constraints concern only the objects. For example, if
we constrain a polyhedron to be placed only on top
of horizontal faces of polyhedral obstacles or of other
objects (which are already in a stable position); its
placement constraints will then define a finite number
of 3-dimensional manifolds in its configuration space,

We call PLACEMENT the subspace of Free(CS)
containing all valid placements for all objects, i.e.
placements which respect the physical constraints of
the manipulation context. With this definition, all the
objects have a fixed and known geometrical relations
with the obstacles or with other objects.

PLACEMENT is not more precisely defined; the
definition depends on the context, and appears clearly
for each context. For a mobile robot in a 2-
dimensional euclidean space, amidst movable objects,

PLACEMENT = Free(CS).

For the planner presented in Section 2, we assume
that each object has a finite number of placements in
the environment; then PLACEMENT appears as a
finite union of n-dimensional manifolds, where #n is the
number of degrees of freedom of the robot.

For the planner presented in Section 3, the movable
object can be placed anywhere in the environment.

1.3 Motion constraints

We define a grasp mapping G'-Or as a mapping from the
configuration space of the robot (noted C'SR) into the
configuration space of a given object O (noted CSO),

which verifies G’g(cr) = co, where cr € CSR and
co € CSO. This mapping models the geometrical
relation which is defined by a grasping operation (T
denotes a homogeneous transform between the robot
gripper frame and the object reference frame). Such
mappings define geometrically the semantics of grasp-
ing for a particular manipulation context. They can be
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in finite or infinite number, and can be given explicitly
(as in Section 2) or implicitly (they are defined for ex-
ample by a contact relation between the robot or the
object as in Section 3).

1.4 Problem statement

Definition A transfer-path is a path in Free(CS)
such that there is one object O and one grasp map-

ping GE verifying:

o the configuration parameters of any object O’ # O
are constant along the path

o for any configuration of the path, G-(I)-(cr) = co,
where cr and co designate respectively the config-
uration parameters of the robot and O.

Two configurations of Free(CS) connected by a
transfer-path are said to be g-connected.

We call GRASP the subspace of Free(CS) contain-
ing the configurations which are g-connected with a
configuration of PLACEMENT.

Definition: A transit-path is a path in Free(CS)
such that the configuration parameters of the objects
are constant along the path. Two configurations in
Free(C'S) connected by a transit-path are said to be
t-connected.

Remark: a transit-path is included in PLACE-
MENT (but every path in PLACEMENT is not nec-
essary a transit-path).

‘We are now in position for defining any manipulation
task as a manipulation path in Free(CS):

Definition: A manipulation-path is a path in
Free(C'S) which is a finite sequence of transit-paths
and transfer-paths. Two configurations in Free(CS)
connected by a manipulation-path are said to be m-
connected.

A manipulation planning problem can then be de-
fined as:

Manipulation planning problem: An ini-
tial configuration ¢ and a final (completely or
incompletely specified) configuration f being
given, does there exists a configuration veri-
fying f which is m-connected with 7 7 If the
answer is yes, give a manipulation path be-
tween ¢ and some configuration verifying f.
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1.5 Manipulation graph

The previous definitions lead to a property which mod-
els the structure of the solution space:

Lemma: A transit-path and a transfer-path are
connected iff both have a common extremity in
PLACEMENTNGRASP.

The manipulation planning problem then appears as
a constrained path finding problem inside the various
connected components of PLACEMENT N GRASP

and between them.

In the case of a discrete number of placements and
grasps, PLACEMENT N GRASP consists of a finite
set of configurations.

When the environment contains only one movable
object, even if there is an infinite number of place-
ments and grasps, we can prove that two configura-
tions which are in a same connected component of
GRASPNPLACEMENT are m-connected (see Ap-
pendix). This property leads to reduce the problem.

In both cases, it is sufficient to study the connectiv-
ity of the various connected components of GRASP N
PLACEMENT by transit-paths and transfer-paths.

We then define a graph whose nodes are the con-
nected components of GRASP N PLACEMENT.
There are two types of edges. A transit (resp. frans-
fer) edge between two nodes indicates that there exists
a transit-path (resp. transfer-path) path linking two
configurations of the associated connected components.

This graph is called a manipulation graph (MG). It
verifies the fundamental property:

Property: An initial configuration ¢ and a goal
(completely or incompletely specified) configuration g
being given, there exists a configuration f verifying g
and m-connected with ¢ iff:

e there exist a node N; in MG and a configura-
tion ¢; in the associated connected component of
GRASPNPLACEMENT, such that 7 and ¢; are
t-connected or g-connected;

e there exist a node N; in MG and a configura-
tion ¢y in the associated connected component of
GRASPNPLACEMENT such that:

— c; and f are t-connected or g-connected,;

~ N; and Ny are in the same connected compo-
nent of MG

In order to use this method for particular instances
of the problem, one needs:

1. to compute the connected components of

GRASPNPLACEMENT;

2. to determine the connectivity of these connected
components using transit-paths and transfer-
paths;

3. and to provide a method for planning a path
in a given connected component of GRASP N
PLACEMENT.

We present, in the sequel, two manipulation planners
working respectively when PLACEMENTNGRASP
is reduced to a finite set of points (Section 2) and
when the environment contains only one movable ob-
ject (Section 3).

2 The case of discrete placements and
grasps for several movable objects

In this section, we present a description of a manipu-
lation task planner for the case of discrete placements
and grasps for objects?. It is directly derived from the
general scheme above. It is based on the fact that the
connected components of GRASP N PLACEMENT
are given a priori by some discretization and that the
construction of transit-paths and transfer-paths can be
obtained using a collision-free path planner for a robot
amidst stationary obstacles.

It leads to an effective construction of the manipu-
lation graph.

For simplicity reasons, we give a presentation con-
sidering only two objects. The extension to a finite
number of objects is straightforward. The presenta-
tion will be illustrated using the example of Figure 1,
i.e. a 2D world where all bodies are polygonal and
where the robot is allowed to move only in translation.
However, the solution we propose is general.

2.1 Notations

We designate the robot by R and the objects by A
and B. Let ¢r, ca and cb be the configuration pa-

*This planner has been first introduced in [1]. In
this current presentation we have added new experimental
results.
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Figure 1: A manipulation task generated automatically

rameter vectors and CSR, CSA and CSB the associ-
ated configuration spaces. Let n be the dimension of
CSR. The configuration space of all movable bodies
is: CS=CSRx CSA x CSB.

Object placements: We assume that each object
has a finite number of possible placements in the envi-
ronment that will physically correspond to stable posi-
tions when the robot does not hold the object.

We designate by p4,...pY... € CSA and by
Ph,...Pg ... € CSB the authorized placements for A
and B respectively (Figure 2).

Remark: we may also give explicitly - or give means
to compute - all authorized placements combinations
(P4, p%5) € CSA x CSB, in order to take into account,
for example, the possibility of stacking an object on
another object.

Object grasps: We assume that each object has a
finite number of possible grasps. A given grasp for
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object A is specified by providing a mapping G, :
CSR — CSA.

Let G4, G4 G and G}, G% be the authorized grasps
for A and B (Figure 2).

robot

7

1
Gy G

Q

Grasps for objects A and B
Figure 2: Placements and grasps for objects A and B

2.2 Building the manipulation graph
2.2.1 Building the nodes

Intuitively, GRASPNPLACEMENT is simply the
set of all configurations where the robot is authorized
to grasp or un-grasp an object in a given placement,
taken into account all possible placement combinations
for the other objects.

Let I(grasp ; placementA ; placementB) designate
the set of all free configurations where the robot can
grasp one object using grasp while objects are placed
in placement A and placementB.

Thus, GRASPNPLACEMENT is the union of all
I(GY ; Pl s Plfa) and (G ; Py ; Pg)-
By definition, I(G, ; P/, ; p%) equals
Free({cr € CSR | Giy(er) = Py} x {p}s} x {ph})

The computation of {cr € CSR | Gy(cr) = pi,} is
done using the robot inverse geometric model. If we
assume that the robot is not redundant and that the
solution does not include a robot singular configura-
tion, then I(G% ; p’, ; p%) consists of a finite (and
small) number of configurations.
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Each node of MG corresponds to a configuration
which can be computed easily; it represents a con-
nected component of GRASP N PLACEMENT re-
duced to a single configuration.

2.2.2 Building the edges

The second step in building MG consists of establish-
ing edges between nodes. Two nodes N3 and N; are
linked by a transit (resp. transfer) edge if there exists
a transit-path (resp. transfer-path) between two con-
figurations of their associated connected components.

All paths involving a node have an extremity in com-
mon: the single configuration represented by the node.
For a node in I(G, ; 74 ; p%), all transit-paths will
correspond to paths where the robot moves alone while
A and B are in p’, and in p’fg, and all transfer-paths
will correspond to paths where the robot holds A us-
ing grasp G’ while B is in p%. This is why we define
the concept of task state which denotes the fact that
the robot is in a situation where it moves alone, or it
is holding a given object.

Task states and CS slices: We define a task
state by giving for each object its current place-
ment and, for at most one object, its current grasp:
(grasp ; placementA ; placementB).

»

When no object is grasped, grasp will be noted “_”,
for example ( - ; pY ; p%). We call such a state a
transit state.

When object X is held by the robot, placementX
will be noted “, for example (G% ; _; p%). We call
such a state an transfer state.

Let C(grasp ; placementA ; placementB) denote
the set of configurations in CS$ associated to a given
task state. C(-; p% ; pp) and C(GY ; -; p)) corre-
spond to n-dimensional “slices” of CS where n is the
dimension of CSR.

For a transit state:
C(-; Pl ; P) = Free(CSR x {pls} x {p}})

i.e. all configurations such that the robot does not
overlap‘object A in placement p’, nor object B in place-
ment p’; nor the obstacles.

For a transfer state:

C(GY ; -; Ply) = Free(CSR x G4 (CSR) x {rz})

i.e. all configurations such that the robot holding ob-
ject A in grasp GY does not overlap object B in place-
ment ply nor the obstacles.

Remark: When C(GY, ; _; pJB) = ( the correspond-
ing state is invalid.

A node models a transition between a transit state
and a transfer state. We say that the node “belongs”
to these states. For example, a node in I(G, ; p, ; pk)
“belongs” to the transit state ( - ; p]A ; p5) and to the
transfer state (G ; _; p%).

Transit edges: A transit edge can be built be-
tween a node N and any node N’ which belongs to
the same transit state and which is “directly” reach-
able. This simply means that N and N’ represent con-
figurations that are in a same connected component of

C(-; Py ; PB)-

Transfer edges: A transfer edge can be built be-
tween a node N and any node N’ that belongs to the
same transfer state and that is “directly” reachable.
This simply means that N and N’ represent config-
urations that are in a same connected component of

C(G, ; -5 pl) or C(Gl 5 7y 5-)

We have then to construct two CS slices for any given
node. However, a given CS will be used for a great
number of nodes.

Figure 3 represents several nodes in the manipu-
lation graph that corresponds to the example. The
drawing at the center of the figure represents the node
I(G% ; p% ; p%). Transit and transfer edges are built

using C(-; p% ; p}) and C(GY ; -; p%).

Figure 4 illustrates the “links” between several con-
figuration space slices that are traversed by the system
when it executes the sequence represented in Figure 1.
Several states are represented; for each state, the re-
gions in white represent the projection of the connected
components of its CS slice onto the robot configuration
space. In the initial state of Figure 1, the robot is in the
“left” connected component of C( - ; p% ; ph). The
only possible transition (arc 11) is to move the robot
until it is able to grasp object A in G%. The transitions
sequence is 11-10-7-9-6-5...Note that the solution in-
volves state ( -; p ; ph) twice, but it traverses only
once a given connected component of C( -; p% ; ph).



transit edge

transfer edge

CS transit slice

CS transfer slice

Figure 3: A partial representation of a manipulation graph

2.3 Search Strategies in the Manipulation
Graph

The size of the graph grows rapidly depending on
the number of grasps and placements. The num-
ber of nodes corresponds to number of grasps x
number of placements (in our simple example, there
are (3 +2) x (4 x 4) = 80 nodes). The number of tran-
sit slices is equal to the number of legal placements
((4 x 4) — 4 = 12 in the example). The number of
transfer slices is equal to the number of combinations
of grasps for an object and placements for the other
objects (3 x 4+ 2 x 4 = 20 in the example).

The cost of building an edge is expensive and de-
pends mainly on the cost of computing a n-dimensional
CS slice (where n is the number of degrees of freedom
of the robot). However, a CS slice is used several times;
for example C( _; p); ; p%) will be used for all nodes
in I( G¥\ ; p’, ; p%) and in I( Gi ; p/, ; p%). The first
time, it has to be computed; and then, it will only be
used in order to find a path.

MG has not to be built completely before execution.
It can be explored and built incrementally. Powerful
heuristics remain to be explored in order to “drive” the
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Figure 4: Links between Configuration Space slices

system towards the goal. However, even simple heuris-
tics based only on the distance between the positions
of objects allow to limit substantially the construction
of the graph.

Note that, if several objects have the same shape and
the same grasps and placements, the number of differ-
ent CS slices to build can be considerably reduced. In
the case, similar to the example, of two identical ob-
Jects with 3 different grasps and 4 placements, we have
only 12 transfer slices and 6 transit slices. Then, an-
other way to limit the complexity, when exploring the
graph edges, is to consider only a gross approximation
of objects shape (by classifying them into a limited
number of classes: small, elongated, big...) in order to
use a same CS slice for a great number of nodes.

2.4 Implementation

We have implemented a system based on the method
described above. It is composed of two modules: a
Manipulation Task Planner and a Motion Planner.

The Manipulation Task Plannerbuilds incrementally
the manipulation graph and searches solution paths in
it. It makes use of the Motion Planner in order to
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build the different CS slices corresponding to transfer
and transit states, to structure them into connected

components and to find paths between two robot con-
figurations.

The search in the manipulation graph is performed

manipulation task.

using a A* algorithm. The cost functions currently
used are based on the length of the movable bodies
trajectory. The incremental graph construction allows
a nice feature: for the first plans, the system is quite
slow but it becomes more efficient progressively as it




re-uses parts of the graph already developed.

The Manipulation Task Planner is implemented in
order to be used for an arbitrary number of objects and
does not depend on a specific motion planner module.

For the Motion Planner, we have first implemented
a method working for a polygonal body in translation
amidst polygonal obstacles (the obstacles are grown
using Minkowsky sum and the trajectory is built using
a visibility graph). This has been done mainly in order
to demonstrate the feasibility of the approach. Figure
1 shows the plan produced for the example.

A second implementation is based on a general mo-
tion planner [17] which works for manipulators is a 3-
dimensional workspace. It allows to solve manipula-
tion planning problems as complicated as the example
of Figure 5. Note that the sub-sequences 14-15-16 and
24-25-26 correspond to re-grasping operations of an ob-
ject.

3 The polygonal case for one movable
object with an infinite set of grasps

This section describes a method for solving the manip-
ulation problem in the case of a polygonal robot and a
polygonal object moving in translation amidst polyg-
onal obstacles. It has been implemented in the case
where both polygons are convex. In order to illustrate
the different steps, we will rely on the simple example
of Figure 6.

Let us consider CS = CSR x C'SO the configuration
space of the robot and the object together. In order to
simplify the notations, we denote by :

e ACS the admissible (i.e. without any collision be-
tween the bodies) configurations space (ACS =
Free(CS)),

o ACSR(co) the admissible configuration space of
the robot when the movable object is placed at
co € CSO, and

e ACSO(cr) the admissible configuration space of
the movable object when the robot lies at cr €

CSR.

We assume that the robot has to avoid any con-
tact with the obstacles (hypothesis H, see Appendix).
We define GRASP as the subset of all the config-
urations verifying hypothesis H and such that the
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C : The five stages manipulation path.

Figure 6: An sllustration of manipulation constraints.

robot touches the object. Finally, the movable ob-
ject may be placed anywhere in the environment, as
long as the bodies do not collide. As a consequence,
GRASPNPLACEMENT = GRASP.

Let C be the set of connected components of
GRASP. Let us consider the graph whose nodes are
the elements of C and whose edges correspond to the
existence of a transit-path between two configurations
of the associated nodes. Thanks to the reduction prop-
erty (see Appendix), two configurations in GRASP are
connected by a manipulation path if and only if they
belong to two elements of C which are in the same con-
nected component of the graph.

Therefore, according to the resolution scheme stated
in Section 1, a manipulation graph can be built by :

1. computing the connected components of GRASP,

2. and linking them by transit-paths.

In a first step, we compute a cell decomposition of
ACS (which solves the coordinated motion problem);
then a retraction on the boundary of ACS gives a cell
decomposition of GRASP. Finally, the connectivity
by transit-paths between the various connected com-
ponents of GRASP is given by a study of the connec-
tivity of ACSR, whose structure can be extracted from

ACS cells.
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3.1 ACS cell decomposition and coordinated
motions

To compute the cell decomposition of ACS, we have
chosen to use an adaptation of the projection method
developed by Schwartz and Sharir in [15] for the case of
two discs. Any other, and perhaps better ([7, 14, 16])
method could have been used. However, the purpose of
this paper is not to give some optimal algorithm, but
to demonstrate the feasibility of our approach.

Let us consider an object position co. ACSR(co) is
obtained by removing, from ACSR (robot admissible
configurations without the object), the set COL(co)
of all configurations where the robot and the object
collide 3.

Figure 7: The hatched areas represent the connected com-

ponents of ACSR(co).

Let us observe now the evolution of AC'SR(co) with
respect to co. In a neighborhood of most object po-
sitions, ACSR(co) varies only quantitatively, keeping
the same structure. However, at some object posi-
tions, some ACSR(co) connected components may ap-
pear, disappear, be split or merged. More precisely,
"the geometrical structure of the connected components
of ACSR(co) are modified when some vertices appear
or disappear. These changes correspond to specific
values of co which constitute a set of critical curves
(see [15] for a proof). Figure 8 gives an example of a
critical curve along which a connected component of
ACSR(co) is divided into two separate components.

3COL(co) is the polygon obtained by Minkowski differ-
ence between the robot and the object, and placed in co.

The critical curves provide a decomposition of ACSO
into non-critical regions.

Critical curve

One or two ACSR(co)
components according
to the position of co
with respect to the
critical curve.

Figure 8: A critical curve

Figure 9: Cell decomposition of ACSO and the associated
graph

Let us consider a non-critical region R. {{co} x
ACSR(co) | co € R} constitutes cells of ACS (there
are as many cells as the number of connected compo-
nents of ACSR(co)). The set of all such cells is the

20
7~
N /24
g
~ 14—
10 B B
/4\ ™~ u-12 / 19
8
~ ~ 18



expected cell decomposition.

In order to compute the critical curves, we introduce
a symbolic description of ACSR(co). Let us recall that
the boundary of ACSR(co) is constituted by ACSR
edges and COL(co) edges. We assign a numerical label
to all the vertices of ACSR and a literal symbol to the
edges of COL(co). We denote by b[8, 9] the intersection
between the edge b of COL(co) and the segment [8, 9] of
ACSR. Therefore, the bottom connected component
in the example of Figure 10 is labeled by the sequence
(3,4,[4,5]b,5(8,9],9,[9, 105,81, 2], 2).

ACSR(co)

Figure 10: An illustration of the labels used to characterize
the connected components of ACSR(co).

To compute the critical curves, we do not consider
all the possible changes in this sequence. We just need
to consider the changes on the letters (i.e. the changes
induced by COL(co) and not by ACSR vertices). In
Figure 10 for instance, when co moves to the bottom,
the disappearance of vertex 2 in the sequence above
does not induce a critical curve, while the fusion of the
two b labels (when edge b meets vertex 3) does.

The critical curves of our example are shown in Fig-

ure 9, together with the graph of non-critical regions
of ACSO.

Let us recall that each non-critical region induces as
many cells in ACS as the number of connected com-
ponents in ACSR(co) when co belongs to the region.
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Now we structure all these cells into a coordinated mo-
tion graph. Two cells are adjacent in this graph if and
only if :

o the associated non-critical regions are adjacent in
ACSO,

e and the symbolic descriptions of the associated
ACSR(co) components just differ by a letter.

Figure 11: The coordinated motion graph.

Figure 11 shows the coordinated motion graph of our
example. In Figure 10, co belongs to the non-critical
region 10 (Figure 9). This region gives rise to three
ACS cells numbered 104, 10B and 10C in Figure 11.
10C is the node corresponding to the label mentioned
above.

The fundamental property is : there exists a coor-
dinated motion between two configurations in ACS if
and only if they belong to nodes of a same connected
component of the coordinated motion graph. The proof
is exactly the same as in [15].

3.2 GRASP cell decomposition and contact
motion

Let us consider the above ACSR(co) component la-
beled by (3,4, [4,5]b,5[8,9],9,[9,101b,5[1,2],2). There
are two edges labeled by & in it. This means
that there are two connected sets of configurations
where the robot is in contact with the object. It
is not possible to go from one set to the other
one without leaving the contact. These connected
sets are easily extractable from the symbolic descrip-
tion of the ACSR(co) components. In our example,



Motion planning in presence of movable objects

([4, 5]b, b[8,9]) and ([9, 10]b, b[1,2]) are the symbolical
descriptions of the two classes of contact. By defini-
tion, they always contain two terms.

Now, let us consider a non-critical region R. The
set {{co} x COL(co) N ACSR(co) | co € R} consti-
tutes cells of GRASP (there are as many cells as the
number of connected components of COL(co) along the
ACSR(co) boundary).

We follow the same method as for the coordinated
motion problem. We structure the GRASP cells into
a contact graph. Two cells are adjacent in this graph if
and only if :

o the associated non-critical regions are adjacent in
ACSO,

e and their symbolic descriptions just differ by one
term.

2

AN
I, \ N\
iy Q!
N N PR —
AN s

/S_A/ ® \1
1
/ NS

18.A
wA—"""

2B— 23

/3_3 — 7& 3BB 14A 16,8
2CB
104 124 19.B
11CB
/‘”B / \ /'M/ / \
HA 18_8
-2 \ o e
~ / -
6B~—18

Figure 12: The contact graph.

Figure 12 shows the contact graph of our example.
Region 10 gives rise to three ACS cells. The fron-
tier of two of them (104 and 10B) contain one con-
nected component in GRASP. They then give rise
to two GRASP cells (which keep the same name in
the contact graph). The frontier of 10C contains two
connected components in GRASP; they give rise to
GRASP cells 10CA and 10CB.

This graph verifies the following property : there
exists a motion keeping the contact between the robot

and the object, between two configurations in GRASP,
if and only if both configurations belong to nodes of a
same connected component of the contact graph. The
proof is exactly of the same kind as for the coordinated
motion graph.

3.3 The manipulation graph

Let us come back to our manipulation planning prob-
lem. At this time we have captured the connectivity
of GRASP. We know that two configurations in the
same connected component of GRASP may be linked
by a manipulation path (Reduction Property).

Now we have to study the existence of transit-paths
between GRASP components. This study is very
easy from the above labeling. Indeed let us consider
ACSR(co) in Figure 10. There are two grasp classes in
the bottom component. Nevertheless, it is possible for
the robot to move alone in this component; that means
that the robot can go from a position in the first grasp
class to any other one in the second grasp class. Then,
these two classes are linked by transit-paths.

The existence of such transit-paths is very easy to
compute from the labeling of ACSR(co). Indeed, two
GRASP cells are connected by a transit-path if and
only if they belong to the frontier of the same ACS
cell. In our current example, only the cells 10C A and
10C B (which come from the same ACS cell 10C) are
linkable by a transit path.

Computing the connectivity of GRASP components
by transit-path is equivalent to adding to the contact
graph edges between nodes defined from a same ACS
cell. These additional edges are referred as “transit
edges” in Figure 13. With our notations, two nodes
in the contact graph whose “names” contain the same
number and the same first letter are ,inked by a transit
edge. The resulting graph is the manipulation graph.

3.4 Manipulation path finding

Let us consider an initial configuration ¢; and a final
one cj, defining the initial and final positions of the
robot and the object. According to the property of the
manipulation graph, we use a three-steps procedure :

1. First, we compute the ACS cells C; and Cy con-
taining ¢; and c¢;. Then, we compute the set G;
(resp. G5) of GRASP cells reachable from c; (resp.
¢y). This computation is a 2-dimensional problem
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Figure 18: The manipulation graph, where dotted lines
describe transit edges.

since the transit-paths have to lie in ACSR(co;)
(resp. ACSR(coy).

2. The second step consists in searching a path in
the manipulation graph between a cell in G; and
a cell in G;. If no such path exists, the procedure
stops. There is no solution. Otherwise, we obtain
a sequence Path of GRASP cells.

3. Finally the complete path is built from elemen-
tary manipulation paths lying in the GRASP cells
of Path and from transit-paths associated to the
transit edges contained in Path.

Comments on Step 1: The computation of C; (resp.
C}) is a 2-dimensional location problem performed in
ACSR(co;) (resp. ACSR(cos)) : we have to deter-
mine the connected component of ACSR(co;) (resp.
ACSR(coy) containing cr; (resp. cry). This fully char-
acterizes C; (resp. C}). Then the computation of G;
(resp. Gy) is very easy, since these GRASP cells belong
to the frontier of C; (resp. Cy) : with our notations, a
GRASP cell belonging to the frontier of some ACS cell
appears in the contact graph with the same numerical
label and the same first letter as the ACS cell appears
in the coordinated motion graph.

Comments on Step 2: The second step is performed
using a A* algorithm. Several cost criteria can be intro-
duced : the length of the complete path, the number of
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grasping changes. .. The experimental results will give
an illustration of the influence of the cost definition.

Comments on Step 3 : Step 3 consists in computing
the complete manipulation path. Path is a sequence of
GRASP cells. Two consecutive cells in this sequence
are linked either by an edge already appearing in the
contact graph, or by a transit edge. Moving inside
a GRASP cell needs a specific procedure : we have
implemented the method presented in the proof of the
reduction property . Finally, there remains to compute
the transit-path associated to a transit edge : this is a
2-dimensional problem solved in some AC'SR(co) slice
by a visibility graph method for instance (which is the
method we have implemented).

Remark : The algorithm can be adapted in order
to take into account partial goals : in this case the goal
configuration describes only a goal position for the ob-
ject (resp. the robot) without specifying a goal position
for the robot (resp. the object). Such an extension is
easy when the robot goal is unspecified and the object
goal is known (the identification of the goal node is
given by the non-critical region containing the object).
The case of an unspecified object goal is also tractable,
but would require some tedious algorithmic details.

3.5 Complexity

In order to evaluate the complexity of the algorithm,
we have to distinguish the decision part of the manipu-
lation problem (i.e. proving the existence of a solution)
from the complete problem (i.e. the computation of a
solution if any).

In our algorithm, the decision problem is solved by
building and searching the graph. The complexity of
this part is clearly dominated by the construction of the
non-critical regions. Let us denote by n., n, and n, the
number of vertices of the environment, the robot and
the object respectively. We assume that both object
and robot are convex.

All the critical curves lie in AC'SO (Figure 9), whose
computation can be done in O(n.n,log(n.n,)); more-
over, the complexity of the admissible configuration
space of the object is in Q(n.n,) (see for instance [6]).
Similarly the complexity of the admissible robot config-
urations subset ACSR is in Q(n.n,) and can be com-
puted in O(n.n, log(n.n,)).
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The critical curves are defined by the coincidence
between an edge (resp. a vertex) of ACSR and a vertex
(resp. an edge) of COL(co) boundary (i.e. the set of
contacts between the object and the robot). The edge
number of COL(co) is exactly (n, + n,). Then, the
number of critical curves is in Q(n.n.(n, + n,)).

The cell decomposition of ACSO is given by
the computation of the intersections between the
Q(nenr(no + ny)) critical curves, and the Q(n.n,)
edges of ACSO boundary. This can be done in
O((nenr(no + ny) + neno)? log(nens(no + ny) + neno))
and gives Q((nenr(no + ny) + neno)?) non-critical re-
gions.

Finally, in each non-critical region, the number of
connected components of ACSR(co) is in O(n.n,).
They are computed by intersection of the (n, + n,)
edges of COL(co), and the Q(nen,) edges of ACSR,
for each non-critical region, each time placing the ob-
Jject on some point of the region. Such an intersection is
computed in O((n,+n,)n.n, log(n,+n,+nen,)) . The
manipulation graph is then obtained in O((nen,(n, +
nr) + neno)2(nr + no)nenr log(nr + n, + nenr))-

The number of robot and object edges may be con-
sidered to be small comparing with n.. Then, defining
n as the environment complexity, previously called n,,
our algorithm runs in O(n®log(n)) time. We did not
try to optimize it at this time. Perhaps more sophis-
ticated cell-decomposition (like [16]) could be used in
the same framework.

Finally, the complexity of the complete problem (i.e.
the computation of a solution path), is dominated in
the worst case by the number of elementary manipula-
tion paths (see Appendix). Therefore the complexity
of the complete problem not only depends on the com-
plexity of the environment but also on the “clearance”
of the robot in the environment.

3.6 Experimental results

Figures 14 to 17 show results obtained with the above
described implementation.

The solution given by the planner to our illustrative
example is shown in Figure 6C. The initial and final
object positions are respectively in the non-critical re-
gions 6 and 19 (Figure 9). The initial and final config-
urations of the manipulation problem are respectively
in the ACS cells 5 and 18 (Figure 11).

Let us consider now the solution path (5_B, 4_B,
3_B, 2AB, 9AB, 23AB, 22.B, 22_A, 25BA, 13BA,
14BA, 15_A, 16_A, 19_4, 18_A). Figure 6Ca shows
the transit-path along which the robot first reaches the
object. In Figure 6Cb, the object is moved with a se-
quence of transit and transfer paths along the same
connected component of GRASP. If we refer to the
manipulation graph (Figure 13), the manipulation path
is built, at this time, from the sequence (5_B, 4_B, 3_B,
2AB, 9AB, 23AB, 22_B) of GRASP cells. A transit
edge appears between vertices 22_B and 22_A4; the as-
sociated transit path is shown in Figure 6Cc. Figure
6Cd describes the subsequence (22_A, 25BA, 13BA,
14BA, 15_A, 16_A, 19_A, 18_A). A last transit-path
allows to reach the robot goal configuration.

Figure 15: Solution using a cost function that minimizes
the number of grasps.

Figures 16 to 15 illustrate the influence of heuristics
used to find a path through the manipulation graph.

In Figure 16, the weights of transit and transfer links
of manipulation graph are nearly equivalents, each re-
ferring to the straight line distance between reference
points of the GRASP cells. Then the path found by
the search algorithm involves numerous transit-paths
and re-grasps.

On the contrary, Figure 15 describes the obtained



Figure 16: Solution using a cost function that minimizes
the length of the object path.

solution when transit-paths are heavier, due to a sim-
ple multiplying coefficient. A path is then found that
allows to keep the same grasp along the whole path.

Finally, Figures 17 and 19 show the solution given
to a more intricate situation, involving numerous re-
grasps. The second and third images detail a transit
and a transfer path at the beginning of a contact mo-
tion. The heuristic used there takes into account the
average length of available grasp frontier for each grasp
cell. Then it avoids narrow grasps which could involve
numerous re-graspings.

Ah A A

Figure 17: A more intricate situation.
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Figure 18: Non-critical regions.

The algorithm has been implemented in C on a Sun
SPARC Station 2. The computation of the manipula-
tion graph of Figure 13 (including the computation of
the non-critical regions) takes 3.4 seconds. The search
for a path takes 0.25 seconds for the example in Figure
6. In this simple case, the cell decomposition of the
admissible configurations of the object gives 25 non-
critical regions, and the manipulation graph consists of
69 nodes and 126 edges. In the example of Figure 14,
we obtain 146 non-critical regions, 257 nodes and 475
edges. The case of Figure 17 gives 288 non-critical re-
gions (shown in Figure 18) and its manipulation graph
consists of 619 nodes and 1115 edges.

4 Related work and open problems

The first paper that attacks motion planning in pres-
ence of movable obstacles is [18]; in this paper, Wilfong
gave the first results on the complexity of the problem :
he proved that the problem is PSPACE-hard (resp.
N P-hard) in two dimensional environments where only
translations are allowed and when the final configura-
tion specifies (resp. does not specify) the final positions
of all the movable objects. In the same reference, Wil-
fong gives a solution in O(n®log?n) (where n is the
number of vertices of a polygonal environment) for the
case of a convex polygonal robot moving in translation
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Figure 19: 4 manipulation path.

amidst one polygonal object (with a finite grasp set)
and obstacles.

In [12] we presented a general algorithm for the case
of one robot and one movable object. We showed ¢ how
to decompose the space of grasping configurations into
a finite number of cells in order to make the problem
tractable. However the method makes use of general
tools from algebraic geometry, leading to an inefficient
algorithm in practice.

More recently, several authors attacked the manipu-
lation planning problem in various contexts.

Koga and Latombe [8, 9] addressed the case of multi-
arm manipulation planning where several robots have
to cooperate to carry a single movable object amidst
obstacles. In this context, re-grasps of the object are
often required along the path to avoid collisions and

*The principles are similar to those presented in Section
3, but they are established for general robot systems.

may involve changing the arms grasping the object. In
(8] they propose several implemented planners to deal
with problems of increasing difficulty for two identical
arms in a 2D workspace. For problems involving many
degrees of freedom, which is usually the case in multi-
arm manipulation, they use an adapted version of the
randomized potential field planner {2]. An extension
to a robot system made of three 6 DOF arms in a
3D workspace is also presented in [9]. In this work,
the number of legal grasps of the object is finite and
the algorithms require the object to be held at least
by one robot at any time during a re-grasp operation.
The approach relies on several simplifications, but it
yields to impressive results for complex and realistic
problems.

The approach developed by Barraquand and Ferbach
[3] consists in translating the manipulation planning
problem into convergent series of less constrained sub-
problems increasingly penalizing the motions that do
not satisfy the constraints. Each subproblem is solved
using variational dynamic programming.

[4] describes a heuristic algorithm for a circular robot
and where all the obstacles can be moved by the robot
in order to find its way to its goal.

Finally, let us pinpoint the interesting extension of
the manipulation planning problem attacked by Lynch
and Mason [13]. In their context, grasping is replaced
by pushing. The space of stable pushing directions
imposes a set of nonholonomic constraints on the robot
motions, which opens issues of controllability.

All the above mentioned studies contribute to es-
tablish the manipulation planning problem as a spe-
cific and challenging instance of the motion planning
problem with constraints. However, several open ques-
tions remain, ranging from a theoretical analysis of the
problem to the investigation of new practical instances.
One key theoretical aspect concerns the conditions un-
der which the reduction property can be extended to
the case of several objects and robots. On a practical
point of view, the problem represents also a challenge
to motion planning techniques because of its additional
complexity.
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B. Dacre-Wright who implemented the algorithm de-
scribed in Section 3.



Appendix : Reduction property

In this appendix, we consider only one movable object.
In this case, two configurations belonging to a same
connected component of GRASP N PLACEMENT are
m-connected. In fact, this property holds up to a pre-
cise definition of what is a grasping configuration.

Let us consider CS = CSR x CSO the configura-
tion space of the robot and the object together. Let
us denote by CONTACT the domain of the configu-
rations where the robot and the object are in contact.

CONTACT is a subset of Free(C'S) boundary.

Hypothesis H: We assume that the robot has to
avoid any contact with the obstacles.

We then define GRASP as the subset of CONTACT
of all the configurations verifying hypothesis H.

Property 1 Two configurations of a same connected
component of GRASP N PLACEMENT are connected
by a manipulation path.

Proof: Let a and b be two configurations in a con-
nected component of GRASP N PLACEMENT. There
exists a path p : [0,1] — GRASP N PLACEMENT
linking these two configurations® (p(0) = a , p(1) = b).
We define p, and p, as the projections of p onto CSR
and C'SO respectively.

Let ¢ = p(¢) be any configuration on the path.
Thanks to the hypothesis H, p.(t) lies in an open
set of Free(CSR). We then can find an open disc
D, C Free(CSR) centered on p,r(t) and with a radius
e>0.

Since p is continuous, there exists 3 > 0 such that :
vr E]t —n,t+ ﬂl[,Pr(T) € De/Z'

Similarly, p, — p, is a continuous function. Then there
exists gz > 0 such that, for any 7 €]t — 0o, t + 92|,

| (r(7) — po(7)) — (P () — Po(8)) llR=< €/2.

This last assertion means that the relative grasp con-
figuration does not vary more than ¢/2 along the path
p between p(t — 12) and p(t + 72).

Let us consider n = min{ny, 2} :
vr,o €lt—n,t+nl, po(0)+(pr (1) —po(7)) € De. (1)

5p designates a path as well as the associated function.
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Object
Robot

Figure 20: A case with finite (but great) number of transit
and transfer paths.

Let ¢; = p(71) and ¢a = p(73) be any two configura-
tions on p, with 7 and 73 in Jt—n, t+7[ (we assume that
71 < T2). We prove now that ¢; and ¢y can be linked
by one transfer path followed by one transit path.

Let us consider the path (p,(7),po(7) + (pr(m1) —
Po(71))), with 7 € [71, 73). This path is clearly a trans-
fer path with constant grasp (p,(71) —p,(71)), between
p(11) and (po(72), po(72) + (pr(71) — Po(71))). Accord-
ing to relation 1, this path is admissible. Let us con-
sider the path (po(72),po(T2) + (pr(7) — Po(7))), with
T € [11, 72]. This path is clearly a transit path between
(Po(72), Po(72) + (Pr(T1) — Po(71))) and p(72). Again,
according to relation (1), this path is admissible. The
concatenation of both paths constitute a manipulation
between p(7) and p(r2).

As path p, is a compact set included in an open set of
Free(CSR), we can apply this local transformation on
a finite covering of [0, 1]. We have then a finite number
of elementary manipulation paths which constitutes a
manipulation path linking @ and b. O

Remark : the number of elementary manipulation
paths used in the proof of the reduction property de-
pends on the clearance of p, in Free(CSR). The worst
case is reached in the example Figure 20 where the
number of elementary paths is clearly in O(%)

Object
Robot = r1 Loonel

A: Hypothesis H unsatisfied B: Hypothesis H satisfied

Figure 21: [llustration of hypothesis H.
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Note that the reduction property does not hold when
hypothesis H is not satisfied. Figure 21 illustrates this
fact. Figure 21A shows an example where both the
robot and the object touch the environment. There
exists a coordinated path, but no feasible manipula-
tion path (the robot cannot move the object with a
constant grasp). Figure 21B shows how the robot can
“manipulate” the object even when this one is in con-
tact.
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