N

N

Control of Autonomic Parallelism Adaptation on
Software Transactional Memory

Naweiluo Zhou, Gwenaél Delaval, Bogdan Robu, Eric Rutten, Jean-Francois
Méhaut

» To cite this version:

Naweiluo Zhou, Gwenaél Delaval, Bogdan Robu, Eric Rutten, Jean-Francois Méhaut. Control of
Autonomic Parallelism Adaptation on Software Transactional Memory. HPCS 2016 - International
Conference on High Performance Computing & Simulation, Jul 2016, Innsbruck, Austria. pp.180-187,
10.1109/HPCSim.2016.7568333 . hal-01309195

HAL Id: hal-01309195
https://hal.science/hal-01309195

Submitted on 21 Nov 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01309195
https://hal.archives-ouvertes.fr

Control of Autonomic Parallelism Adaptation on
Software Transactional Memory

Naweiluo Zhou', Gwenaél Delaval! , Bogdan Robu?

Univ. Grenoble Alpes, LIG, CNRS, INRIA!
Univ. Grenoble Alpes, GiPSA-Lab, CNRS?
Grenoble, France
naweiluo.zhou@inria.fr, gwenael.delaval @inria.fr,
bogdan.robu@gipsa-lab.grenoble-inp.fr

Abstract—Parallel programs need to manage the trade-off
between the time spent in synchronization and computation. A
high parallelism may decrease computing time while increase
synchronization cost among threads. A way to improve program
performance is to adjust parallelism to balance conflicts among
threads. However, there is no universal rule to decide the best
parallelism for a program from an offline view. Furthermore, an
offline tuning is error-prone. Hence, it becomes necessary to adopt
a dynamic tuning-configuration strategy to better manage a STM
system. Software Transactional Memory (STM) has emerged as
a promising technique, which bypasses locks, to address syn-
chronization issues through transactions. Autonomic computing
offers designers a framework of methods and techniques to build
automated systems with well-mastered behaviours. Its key idea is
to implement feedback control loops to design safe, efficient and
predictable controllers, which enable monitoring and adjusting
controlled systems dynamically while keeping overhead low. We
propose to design feedback control loops to automate the choice
of parallelism level at runtime to diminish program execution
time.

Keywords—autonomic, transactional memory, feedback control,
synchronization, parallelism adaptation

I. INTRODUCTION

Multicore processors are ubiquitous, which enhance pro-
gram performance through thread parallelism (number of si-
multaneous active threads). Although a high parallelism degree
shortens execution time, it may also potentially increase syn-
chronization time. Therefore, it is crucial to find the trade-off
between synchronization and computation. The conventional
way to address synchronization issues is via locks. However,
locks are notorious for various issues such as the likelihood
of deadlock and the vulnerability to failure and faults. Addi-
tionally it is not straightforward to analyse interactions among
concurrent operations.

Transactional memory (TM) emerges as an alternative
parallel programming technique, which addresses synchro-
nization issues through transactions. Accesses to shared data
are enclosed in transactions which are executed speculatively
without being blocked by locks. Various TM schemes have
been developed [1], [2], [3] including Hardware Transactional
Memory (HTM), Software Transactional Memory (STM) and
Hybrid Transactional Memory (HyTM). In this paper, we
present the work on runtime program parallelism adaptation
under STM systems where the synchronization time originates

Eric Rutten, Jean-Francois Méhaut
Univ. Grenoble Alpes, LIG, CNRS, INRIA
Grenoble, France
eric.rutten @inria.fr, jean-francois.mehaut@imag.fr

in transaction aborts. There are different ways to reduce aborts,
such as conflict resolutions, ways to detect conflicts, designs
of version management and the level of thread parallelism.

Online parallelism adaptation began to receive attention
recently in TM systems. The level of a suitable parallelism
in a program can significantly affect system performance.
However it is onerous to set a suitable parallelism degree for
a program offline especially for the one with online behaviour
variation. When apropos of the program with online behaviour
fluctuation, there is no unique thread number can enable its
optimum performance. Therefore, the natural solution is to
monitor a program at runtime and alter its parallelism when
necessary.

We introduce autonomic computing [4] to STM systems
to automatically regulate online program parallelism. In this
paper we argue that online adaptation is necessary and feasible
for parallelism management in STM systems. We demonstrate
that the program performance is sensitive to the parallelism.
We present two effective profiling frameworks for the paral-
lelism adaptation on TinySTM [2]. The main contributions of
our paper are as follows:

1) We present two adaptive profiling frameworks that
detect the suitable parallelism degree in order to
optimize system performance at runtime.

2) We dynamically resolve a phase detection method.

The rest of the paper is organized as follows. Section II
summaries the background and related work. Section III details
the profiling procedures and the online parallelism adaptation
methods. Section IV presents the implementation details. Sec-
tion V shows the results. Section VI discusses the pros and
cons of our adaptive framework and Section VII concludes
the paper and gives future work.

II. BACKGROUND AND RELATED WORK
A. Background on Software Transactional Memory

Transactional memory (TM) is an alternative synchroniza-
tion technique. Its accesses to shared data are enclosed in
transactions which are executed speculatively without being
blocked by locks. Each transaction makes a sequence of tenta-
tive changes to shared memory. When a transaction completes,
it can either commit making the changes permanent to memory

or abort hence discarding the previous changes [1]. Two pa-
rameters are often used in TM to indicate system performance,
namely commit ratio and throughput. Commit ratio (CR)
equals the number of commits divided by the sum of number of
commits and number of aborts; it measures the level of conflict
or contention among the current transactions. Throughput is
the number of commits in one unit of time; it directly indicates
program performance. TM can be implemented in software,
hardware or hybrid. Different mechanisms explore the trade-off
that impact on performance, programmability and flexibility. In
this paper, we focus on STM systems and utilise TinySTM [2]
as our experimental platform. TinySTM is a lightweight STM
system which adopts a shared array of locks to control the
concurrent accesses to memory and applies a shared counter
as its clock to manage transaction conflicts.

The performance of STM systems has been continuously
improved. Studies to improve STM systems mainly focus
on the design of conflict detection, version management and
conflict resolution. Conflict detection decides when to check
read/write conflicts. Version management determines whether
logging old data and writing new data to memory or vice
versa. Conflict resolution, which is also known as contention
management policy, handles the actions to be taken when a
read/write conflict happens. The goal of the above designs is to
reduce wasted work. The amount of wasted work resides in the
number of aborts and the size of aborts. The higher contention
in a program, the larger amount of wasted work. The time spent
in wasted work is the synchronization time in a STM view.
Apart from diminishing wasted work, one way to improve
STM system performance is to trim computation time. A high
parallelism may accelerate computation but resulting in high
contention thus high synchronization time. Hence parallelism
can significantly affect system performance.

B. Background on Autonomic Computing

Autonomic computing [5] is a concept that brings together
many fields of computing with the purpose of creating com-
puting systems that self-manage. A system is regarded as an
autonomic system if it supports one of the following features
[4]: (1) self-optimization, the system seeks to improve its
performance and efficiency on its own; (2) self-configuration,
when a new component is introduced into a system, the
component is able to learn the system configuration. (3) self-
healing, the system is able to recover from failures; (4) self-
protection, the system can defend against attacks.

In this paper, we concentrate on the first feature: self-
optimization. We introduce feedback control loops to achieve
autonomic parallelism management. A classic feedback control
loop is illustrated in Fig. 1 in the shape of a MAPE-K loop
[4].

In general, a feedback control loop is composed of (1)
an autonomic manager, (2) sensors (collect information), (3)
effectors (carry out changes), (4) managed elements (any
software or hardware resource). An autonomic manager is
composed of five elements: a monitor (used for sampling), an
analyser (analyse data obtained from the monitor), knowledge
(knowledge of the system), plan (utilise the knowledge of
the system to carry out computation) and execute (perform
changes). It is worth noting that an autonomic manager can
only incorporate a part of the five elements.

Autonomic Element

Autonomic Manager

Plan

Knowledge

ExecE te

T ¥

T
| sensors | | Effectors |

Managed Elements

Fig. 1. A MAPE-K control loop. It incorporates an autonomic manager,
a sensor, an effector as well as a managed element among which the
autonomic manager plays the main role.

C. Related Work

It has been been addressed in previous work [6], [7],
[8], [9] to dynamically adapt parallelism degrees via control
techniques to reduce wasted work in TM systems. Ansari et.
al. [6] proposed to adapt parallelism online by detecting the
changes of the application’s CR. The regulation action is made
to the parallelism if the CR falls out of the pre-set CR range
or is not equal to a single preset CR value. This is based on
the fact that CR falls during highly contended phases rises
with low contended phases. Ansari et. al. gave five different
algorithms which decide the profile length and the level of
parallelism. Ravichandran et. al. [7] presented a model which
adapts the thread number in two phases: exponential and linear
with a feedback control loop. Rughetti et. al. [9] utilise a neural
network to estimate performance of STM applications. The
neural network is trained to predict execution time of wasted
transactions which in turn is utilised by a control algorithm
to regulate the parallelism. Didona et. al. [8] introduces an
approach to dynamically predict the parallelism based on the
workload (duration and relative frequency, of read-only and
update transactions, abort rate, average number of writes per
transaction) and throughput, through one feedback control loop
its prediction can be continuously corrected.

Our approaches differ from the previous work as (1)
comparing with Ansari et. al., we resolve a CR range for
phase detection which is adaptive to the online program
behaviour rather than a fixed range or a single preset value; (2)
analogising with the parallelism prediction by Ravichandran
et. al., Didona et. al. and Rughetti et. al., we present a model
which predicts the optimum parallelism based on probability
theory which requires no offline training procedure or to try
different thread number to search the optimum; (3) contrasting
with the aforementioned work that either only use CR or
throughput to indicate program performance, we employ both,
i.,e. CR to indicate the program phase and throughout to
indicate correctness of the parallelism adaptation.

III. AUTONOMIC PARALLELISM ADAPTATION

In this section, we detail the design of two feedback control
loops. We present two approaches to dynamically determine
optimum parallelism. We firstly introduce a simple model
which searches optimum parallelism, then we present a more
sophisticated model (probabilistic model) based on probability
theory which predicts the optimum parallelism.

1st profilin, '
pmg'ian?/stfm A parallelism profile starts

/ decision point def}sion point
y ¥ ¥ ¥ >

decision point one profile length
—| *,"
one profile length [—>»—>—>—>—>

non- action interval (timed by Tx)

Parallelism profile interval

Fig. 2. Periodical profiling procedure. At each decision point (marked
by dashed red arrow), the actions are taken. Each decision points
corresponds to one state of an automaton as in Fig. 3(b) and Fig. 5.

We measure three parameters from the STM system,
namely the number of commits, the number of aborts and
physical time. The number of commits and the number of
aborts are addressed as commits and aborts subsequently. We
choose CR and throughput to denote program performance, as
CR and throughput are both sensitive to parallelism variation.
Either is by itself not sufficient enough to represent program
performance as:

e A high throughput shows fast program execution
whereas a low throughput indicates slow program
progress. Nevertheless a low throughput may be
caused by low parallelism or simply just a low number
of transactions taking places.

e CR indicates the conflicts among threads. A high
CR means low synchronization time whereas a low
CR mean high synchronization cost. But a low CR
can bring a high throughput when a large number
of transactions are executing concurrently, whereas
a high CR may give low throughput due to a small
number of transactions executing concurrently.

The controller observes the CR to detect contention fluctuation
and enable corresponding control actions. The correctness of
the control actions are verified by checking if the throughput
is improved after the actions for parallelism adaptation.

A. Overview of Profiling Algorithm on simple model

To describe the simple model, we firstly give an overview
of the profiling procedure and later describe the model through
the prism of control theory.

To achieve autonomic parallelism adaptation which pro-
vides a program with its optimum parallelism, we propose
to periodically profile the parallelism and select the value
that achieves the highest throughput. By observing CR, we
can obtain the contention information of an application. CR
usually fluctuates in a certain range within the same phase.
When a program enters a new phase, the current parallelism
produces a different CR which falls out of the current CR
range. The CR fluctuation triggers a new parallelism adaptation
action. Initially the two CR thresholds (upper CR and lower
CR thresholds) are both set to be 0 and are trained in the later
profile stage. The detail of the profiling procedure is illustrated
in Fig. 2.

The parallelism profiling procedure starts once the program
starts. Initially the program creates a pool of threads, among

which only 2 threads are awaken and the rest are suspended.
At each decision point, which corresponds to one state of the
automaton in Fig. 3(b), the control loop (see section III-B) is
activated to adapt the parallelism or suspend the parallelism
adaptation. A profile length is a fixed period (marked by logic
time: the number of commits) for information gathering, such
as commits, aborts and time. A parallelism profile interval
is composed of a continuous sequence of profile lengths
within which the parallelism is adjusted and the CR range is
computed. The non-action interval consists of one or a contin-
uous sequence of profile lengths, within which the parallelism
adaptation is suspended. The duration of parallelism profile
interval and non-action interval are not fixed values as shown
in Fig. 2. The above procedure continues until the program
terminates.

B. Feedback Control Loop of the Simple Model

Autonomic Element

Autonomic Manager

Analyse an
CR, th CR rang
opt tn
Knowledge

’ q
IMonitors online ‘g& offlinel Execute

ommiits, aborts, profile flag
il i tn_effector:

sensors
TinySTM
benchmarks
Multicore HW managed Elements

(a) The instantiation of MAPE-K-shape feedback
control loop for simple model.

decrease
t

(b) The structure for the autonomic manager of Fig. 3(a)
in automaton shape.

Fig. 3. The feedback control loop of the simple model. th stands for
throughput and tn means the number of thread. The boolean value true
means unconditional state transfer.

Fig. 3(a) gives the structure of the complete platform
that forms a MAPE-K feedback control loop. The autonomic
element is composed of the STM system, benchmarks, inputs,
outputs and the autonomic manager. The autonomic manager,
which can be also regarded as the controller, is described as
an automaton as shown in Fig. 3(b). The automaton consists
of four states, and the program can only reside on one state at
each decision point.

1) Control Objective: Under control theory terminology,
the control objective of the feedback control loop is to maxi-
mize the throughput and diminish the global execution time.

2) Inputs and Outputs: As shown in Fig. 3(a), the inputs
are commits, aborts, physical time and current active thread
number. The outputs are the optimum parallelism, the paral-
lelism profile flag.

global optimum point

local optimum point

throughput

10% variation

thread number

Fig. 4. Throughput fluctuation. The throughput may continuously rise
and descend before reaching its maximum point.

3) Decision Functions: Three decision functions cooperate
to make decisions: a parallelism decision function (adjusts
parallelism), a profile decision function (enable the parallelism
profile actions) and a CR range decision function (dictates the
phase variation). We describe design of the automaton as it
elucidates the relation among the decision functions, as well
as how the parallelism decision function and profile decision
function are designed. The CR range decision function is
presently lastly.

The automaton commences at the state increase tn to
increase the thread number, since the parallelism is set to be
the minimum at the starting point. In each parallelism profile
interval, the parallelism can either continuously increase or
decrease. The direction of parallelism regulation (increase or
decrease) is determined by the profile decision function. If the
current throughput is greater than the previous throughput, one
thread is awaken or suspended and the current throughput is
recorded as the maximum value. The state transfers to stop
profile when the current throughput is less than the maximum
throughput. At the final decision point of a parallelism profile
interval (the state stop profile), the parallelism is set to be
the value which yields the maximum throughput. A new CR
range may be determined at the end of a parallelism profile
interval, as we will detail later in this section. The automaton
then enters from the state stop profile to the state no tn control
which corresponds to the non-action interval in Fig. 2. At each
decision point of a non-action interval, the profile decision
function checks if it should start parallelism adaptation. More
specifically, if the CR falls into the CR range, the program
stays in the no tn control state. Otherwise a boolean value
is set indicating the direction of the parallelism regulation.
The automaton jumps into increase tn if CR is higher than
the upper CR threshold or decrease tn if CR is lower than the
lower CR threshold. It is worth noting that, in case the value of
the upper threshold is 100%, and the program CR is also 100%
(it happens when only read operations or no conflicts across
transactions), higher parallelism is assigned to the program.

It is worth noting that the throughput often fluctuates
before reaching the optimum value (shown in Fig. 4). To
prevent a parallelism profiling procedure from terminating at
a local maximum throughput, parallelism profiling procedure
continues until the throughput decreases over 10% of the
maximum value (10% is an empirical value which can be
tuned).

The parallelism decision function resides in the state in-
crease tn and decrease tn. Parallelism adaptation is activated

when a program enters a new phase. A new phase is denoted
by when CR fluctuates out of a certain range. It is onerous
to determine such a CR range offline, especially for some
programs with online performance variation. Additionally, a
constant CR range impedes programs to search its optimum
parallelism. Therefore it becomes necessary to dynamically
resolve a CR range. We add a CR range decision function.
Therefore at the end of a parallelism interval, a new CR
range is prescribed. The function is activated at the state stop
profile. The two thresholds of the CR range are the CR values
produced by running with one more or one less parallelism
degree than the optimum one.

C. Probabilistic Model

The approach to manipulate one thread number at each de-
cision point engages long profiling time. This section presents
a probabilistic model which predicts favourable parallelism
after one profile length based on the CR and current active
thread number. The profiling procedure is similar to the simple
model as shown in Fig. 2.

The probabilistic model shares the same inputs, outputs
and control objective as the simple model. It also incorporates
three decision functions. As the CR range decision function
is equivalent to that in Section III-B3, we only describe the
parallelism decision function and the profile decision function
in this section.

1) Decision Functions: We firstly present the parallelism
decision function. It is based on two assumptions:

e the same amount of transactions are executed in each
active thread during a fixed period, as every thread
shows similar behaviour in our TM benchmarks

e the probability of one commit (see Section II-A for
definition) approaches a constant, as there is a large
amount of transactions executed during the fixed pe-
riod making the probability of conflicts between two
transactions approaches a constant.

The detail of the derivation of the decision function is
presented in [10], we only provide the final equation here.
The optimum thread number is calculated by (1):

_nfl
InCR

Where n,,; represents the optimum parallelism, n represents
the number of running threads and C'R is the commit ratio.

ey

Nopt =

In this paragraph, we describe the automaton to elucidate
the relation of the three decision functions as well as the design
of the profile decision function. As illustrated in Fig. 5, the
automaton commences (with the maximum parallelism) from
the predict tn state which yields an estimation of optimum
parallelism degree. The predicted parallelism is applied for one
subsequent profile length and the automaton unconditionally
enters the verify state to verify the correctness of the predicted
parallelism. The new parallelism is only applied subsequently
when the current throughput is larger than the throughput
recorded before the new parallelism is applied. This leads to
the state transfer to the CR range state where a new CR range is
prescribed. The stop profile state only disables the parallelism

Fig. 5. The controller structure of the probabilistic model described as
an automaton.

profile action when the parallelism does not alter. Otherwise
it recovers the previous value (CR range remains unchanged
in this case). Contrary to the simple model, the probabilistic
model requires an individual state to obtain the CR range.

IV. IMPLEMENTATION

There are two methods of collecting profile information in a
parallel program. A master thread can be utilised to record the
interesting information of itself. An alternative way is to collect
the information via all threads. The first method requires little
synchronization cost to gather information but the obtained
information may not represent the global view. Also the master
thread must be active during the whole program execution
possibly making it terminate earlier than the other threads,
meaning that the fair execution time among threads can not
be guaranteed. The second method may suffer from synchro-
nization cost but the profile information gathered represent the
global view. More importantly, a strategy to enforce fair time
slides can be employed among threads. We choose the second
method. The synchronization cost of information gathering is
negligible for most of our applications.

We implement a monitor to collect the profile information,
adjust the parallelism and the race condition. The monitor is a
cross-thread lock which consists of concurrent-access variables
by threads. The main variables of the monitor are commits,
aborts, two FIFO queues recording the suspended and active
threads, the current active thread number, the optimum thread
number and the throughput. There are three entry points of
the monitor. The first entry point is upon threads initialization,
where some initial values (e.g., thread id) are set for the threads
and some threads are suspended. The second entry point is
upon transaction committing, where commits are accumulated
and where the control functions take actions. The third entry
point is upon a thread exiting, where one suspended thread is
awaken when one thread exits.

We use logic time (number of commits) to mark the
profiling length rather than the physical time. As the size of
transaction varies in various applications leading to the signif-
icant variation of execution time. The choice of the profile
length mainly depends on the total amount of transactions
of an application. The applications with the same magnitude
of transactions share the same profile length. For instance,
genome and vacation (two benchmarks from STAMP) share
the same profile length as the total number of the transactions
in the two applications are on the same magnitude (10°).

Time overhead is added to each transaction when calling
and releasing a monitor. The overhead is insignificant for the
transactions with medium or long length, however it gives non-
trivial influence to the short-length transactions. This overhead
can be reduced through diminishing the frequency of calling
the monitor, i.e. the monitor is called every 100 commits rather
than every commit.

V. PERFORMANCE EVALUATION

In this section, we present the results from 6 different
STAMP [11] benchmarks and two applications from Eigen-
Bench [12]. EigenBench and STAMP are widely used for
performance evaluation on TM systems. The data sets cover a
wide range from short-length to long-length transaction, short
to long program execution time, from low to high program
contention. Table I presents the qualitative summary of each
application’s runtime transactional characteristics: TX length
(the number of instructions per transaction), execution time,
and contention (the global contention). The classification is
based on the application with its static optimal parallelism. A
transaction with execution time between 10 us and 1000 us is
classified as medium-length. The contention between 30% and
60% 1is classified as medium. The execution time between 10
seconds and 30 seconds is classified as medium.

TABLE 1. Qualitative summary of each application’s runtime
transactional characteristics. The classification is based on the
application with its optimal parallelism applied.

Application TX length | Execution time | Contention
EigenBench stable medium long medium
EigenBench online medium long medium
intruder short medium high
genome medium short high
vacation medium medium low
ssca2 short short low
yada medium medium high
labyrinth long long low
A. Platform

We evaluate the performance on a SMP machine with 4
processors of 6 cores each. Every pair of cores share a L2
cache (3072KB) and every 6 cores share a L3 cache (16MB).
This machine holds 2.66GHz frequency and 63GB RAM. We
utilise TinySTM as our STM platform.

B. Benchmark Settings

We show two different data sets of EigenBench. One with
stable behaviour and one with diverse phases. As EigenBench
does not shows phase variation, we modify its source code to
enable diverse phases. EigenBench include 3 different arrays
which provide the shared transactional accesses (Arrayl),
private transactional accesses (Array2) and non-transactional
accesses (Array3). We vary the size of Arrayl at runtime
making the conflict rate vary at runtime. More specifically,
within the first 40% amount of the transactions, the size of
Array] keeps the value given by the input file. From 40% to
70%, the array size is shrunk to be 16% of the original value
and afterwards the size is set to be 33% of the given value.
The main inputs of both data sets are given in Fig. 6.

We have evaluated 6 different applications from STAMP,
namely intruder, ssca2, genome, vacation, yada and

loops 16667 loops 33333
Al 35536 Al 145530
A2 1048576 A2 1048576
A3 8192 A3 8192
R1 30 R1 30

Wi 30 Wi 30

R2 20 R2 20

w2 200 w2 200
R3i 10 R3i 10

W3i 30 W3i 30

R3o 10 R3o 10
W3o 10 W3o 10
NOPi 0 NOPi 0
NOPo 0 NOPo 0

Ki 1 Ki 1

Ko 1 Ko 1

LCT O LCT 0

(a) stable (b) online variation

Fig. 6. Two data sets of EigenBench inputs for 24 threads

labyrinth. Two applications namely bayes and kmeans from
STAMP are not taken into account in the paper. As bayes
exhibits non-determinism [13]: the ordering of commits among
threads at the beginning of an execution can dramatically affect
the execution time. The aforementioned applications have
represented a wide range of characteristics of TM applications,
therefore we do not present the results from kmeans due to
the page limit. The inputs of the six selected applications are
detailed in Fig. 7.

intruder -a8 -1176 -n109187

ssca2 -s20 -i1.0 -ul.0 -13 -p3

genome -s32 -g32768 -n8388608

vacation -n4 -q60 -u90 -r1048576 -t4194304
yada -al5 -i inputs/ttimeul000000.2
labyrinth -i random-x1024-y1024-27-n512.txt

Fig. 7. The inputs of STAMP

C. Results

We firstly present the results of the execution time compar-
ison of the two autonomic parallelism adaptation approaches
with static parallelism. The maximum parallelism is 24 which
is the number of the available cores. The minimum parallelism
is restricted to be 2, as we are only concerned with parallel
applications. All the applications are executed 10 times and
results are the average execution time.

Fig. 8 and Fig. 9 illustrate the execution time comparison
with different static parallelism and adaptive parallelism of
EigenBench and STAMP. The dots represent the execution
time with static parallelism. The solid black line represents
execution time with the simple model and the dashed red line
gives the execution time with the probabilistic model.

According to Fig. 8 and Fig. 9, our adaptive models
outperform the performance of the majority of the static
parallelism. The probabilistic model shows better performance
on applications: genome, vacation, labyrinth against the sim-
ple model, but it indicates performance degradation on yada
and intruder against the simple model. Both models present
similar performance on EigenBench and ssca2. Table II and
Table III detail the performance comparison. The results of
both models are compared against the static parallelism which
presents best, average and worst performance indicating that
our models can outperform the performance of static paral-
lelism if an unknown application is given. The digits in the

R % ——..simple
3 —— probabilistic
23 L "
g %3
2 o3
o ¥v3
O L3
o ¥ 3
N
2 %3 .
E 83 B . e
c 83 T———— el el Sl e e
S &1 .
5 R’
3 .3
QO o 7
& o7
3
N
° = T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24
thread number
(a) the data set with stable online behaviour

imol
imple

— — probabilistic

130
L

10

1

execution time (second)
60 70 80 90

0 10 20 30 40 50
L

2 4 6 8 10 12 14 16 18 20 22 24

thread number

(b) the data set with online variation

Fig. 8. Time comparison of EigenBench on static and adaptive
parallelisms. The dots represent the execution time with static parallelism

brackets are the static parallelism which gives the best and the
worst performance respectively. The symbol plus (+) means
performance gain against the compared value.

TABLE II. Performance comparison of simple model against static
parallelism on applications. The higher value, the better performance.

benchmarks best case average worse case
EigenBench (stable) -7% (12) +10% +50% (2)
EigenBench (online variation) +1% (12) +17% +58% (2)
genome -57% (4) +95% +99% (20)
vacation -45% (8) +79% +92% (24)
labyrinth -52% (24) | +5% +67% (2)
yada -3% (8) +66% +91% (22)
ssca2 -14% (24) | +11% +62% (2)
intruder -6% (6) +62% +71% (24)
TABLE IIIL Performance comparison of probabilistic model against

static parallelism on applications. The higher value, the better

performance
benchmarks best case: average | worse case
EigenBench (stable) -5% (12) +11% +51% (2)
EigenBench (online variation) -1% (12) +18% +57% (2)
genome +3% (4) +97% +99% (20)
vacation -18% (8) +83% +93% (24)
labyrinth +8% (24) | +42% +80% (2)
yada -17% (8) +61% +90% (22)
ssca2 -16% (24) | +10% +61% (2)
intruder -31% (6) +53% +64% (24)

Fig. 10 elucidates the runtime parallelism variation with
simple and probabilistic model of genome. genome experi-
ences three phases at runtime. The first phase is short (two
or three profile lengths) which contains both read and write
operations. During the second phase, the transactions only

I3 o
3) . g3)
54— simple > — simple © 3 —— simple
o 2 —_ s 3 i
g] —— probabilistic . N 4 —— probabilistic & 3 —— probabilistic
o 3 * S 3
s g i 23 .
T o] . T & T o]
c ©J c ® c g3
S o o N s} 3
o & 7 o O o 3
D | Q2o Qo 84
2 g3 2 2 °3
3 B o3
o] o - o 89
E 4 £ 7 E o3
= = = 83
c c oo c 3
o L o . S g3
5 5 7] ERE!
O T e o v o o1
o D oo . . o 23
x _ 7 < x 3
o = 0 [o o7
3 <4 EE
< <] i :
~] - L .
e T T T T T T T T T T T T e T T T T T T T T T T T o = T U T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
thread number thread number thread number
(a) intruder (b) ssca2 (c) genome
8
84) - . g .
= —— simple . o | — simple . =] 7 simple
g | —— probabilistic ~ | —— probabilistic g | —— probabilistic
g g g
T g4 T 8 T g4
c c c
o 1 o o o 1
o g o 3 o 9
S] 2 o 81
@ + . L o k22 4
2
] © o g8
E ~ £ s E ~
s o = < g
s ° S 81 s °
5] S ER °
o g 3 2 3 g4
o Q 1]
2 2 o 2
@ . o 8 @ o .
4 4 - .
e & 1% B el
&4 o] o e Y &
| === —=—=—=——=—=—==—===== -7 4
° T T T T T T T T T T T T b T T T T T T T T T T T ° T T T T T T T T T T T T
2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24 2 4 6 8 10 12 14 16 18 20 22 24
thread number thread number thread number
(d) vacation (e) yada (f) labyrinth

Fig. 9.

— simple |
--- probabilistic
L

|

thread number

T T T T T T T T
cocoo9og9 99999
S8BT BIRS

T
logic time (10K commits)

Fig. 10. Runtime parallelism variation by the two models of genome.

include read operations resulting in 100% of CR, hence the
maximum parallelism is applied. The third phase generates
high contention, hence low parallelism is given. As shown in
Fig. 10, the simple model spends some time before reaching
the optimum parallelism, thus some staircases reflect in the
figure. The probabilistic model reacts fast to respond the CR
and phase change, thus some abrupt parallelism changes are
shown. As less time spent to reach the optimum parallelism,
the performance of probabilistic model outperforms that of the
simple model.

The autonomic parallelism adaptation aims to regulate the
parallelism which retains throughput at the optimum level at

Time comparison for STAMP on static and adaptive parallelism. The dots represent the execution time with static parallelisms.

each phase. Ideally the throughput from the adaptive mod-
els should rival the one with the static parallelism which
achieves the maximum throughput. Due to the page limit, we
only present the online throughput change of one application
genome. Fig. 11 elucidates its online throughput change with
static and adaptive parallelism.

VI. DISCUSSION

The overhead of our approaches mainly originate in three
aspects. (1) Thread migration. This can introduce a large
overhead especially when the parallelism is adapted at runtime.
(2) The choice of the thread number to manipulate at each
decision point in the simple model. We simply choose to
manipulate one thread number each point which delays the
procedure to reach the optimum parallelism. (3) The choice
of throughput variation rate in the simple model. We keep
profiling even if the current throughput is slightly lower than
the recorded maximum value in order to avoid the parallelism
profiling to be terminated at a regional maximum point.

Performance penalty can occur when parallelism varies, yet
is trivial on shared memory. In addition, to reduce the penalty, a
thread is only suspended when its current transaction commits.
The CR range decision function shows its limitation on phase
detection for vacation. As its CR tend to fluctuate frequently
over the CR range, yet the program remains in the same phase.
Therefore both model perform insufficiently vacation.

The simple model only manipulates one thread number
at each decision point thus long time spent in searching the
optimum parallelism. However this eludes the possibility of
skipping the optimum parallelism. The application starts with

6000
—%— 2threads
4thread
8threads
5000 16threads.
—8— 24threads
—e— simple
—>— probabilistic
4000
2
F-]
x
3000
o
=
(=2
>
o
£
2000
1000
0

T T T T T T T T T T T T T T
O O O O O O O O O O O O o o
- N MO ¥ 1 © N~ 0 O O - N O™

commits (10k)

Fig. 11. Runtime throughput variation of genome. The red line with dots
is the simple model and the black line with crosses is the probabilistic
model.

two threads activated rather than the maximum value to avoid
excessive contention which may prevent the program from
progressing. However this setting brings high parallelism pro-
filing time to the applications which require a high parallelism,
this is especially true for labyrinth that requires maximum
parallelism to achieve its maximum throughput. Such an
overhead is difficult to be compensated by the performance
improvement brought by the optimum parallelism. Therefore,
the simple model gives heavy overhead against the best case to
the application with long-length transactions. genome requires
the maximum parallelism at the second phase but minimal
parallelism at the third phase leading to a high overhead orig-
inating in parallelism descending. Such overhead is especially
large when the application generates high contention.

The probabilistic model predicts the parallelism in one step
which diminishes the profiling time and often gives better per-
formance than the simple model. However it has the potential
risk of overreacting to the phase variation as intruder. Lastly,
the probabilistic model relies on two assumptions which are
based on the ideal situations, thus some errors are imposed
inevitably in reality, meaning that the predicted parallelism
may be slightly different as the optimum one. Thereby when
phase changes are trivial, the simple model can outperform the
probabilistic model (e.g., yada).

VII. CONCLUSION AND FUTURE WORK

In this paper, we investigate two autonomic parallelism
adaptation approaches on a STM system. We examine the
performance of different static parallelism and conclude that
runtime parallelism adaptation is crucial to performance of
TM applications. We introduce feedback control loops to
manipulate the parallelism. Followed the description of our

models, we compare their performance with static parallelism.
We then analyse the implementation overhead and discussed
the advantages as well as limitation of our work.

Apart from inappropriate parallelism, thread migration im-
pacts on system performance and cause performance degra-
dation. We plan to investigate the issue and design additional
control loops that cooperate with the current loops to control
thread affinity and further enhance system performance.

ACKNOWLEDGMENT

This work has been partially supported by the LabEx
PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the
French program Investissement d’avenir.

REFERENCES

[1] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural
support for lock-free data structures,” SIGARCH Comput. Archit. News,
vol. 21, pp. 289-300, May 1993.

[2] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning
of word-based software transactional memory,” in Proceedings of the
13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, PPoPP *08, (New York, NY, USA), pp. 237-246, ACM,
2008.

[3] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum, “Hybrid transactional memory,” SIGPLAN Not., vol. 41, pp. 336—
346, Oct. 2006.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, pp. 41-50, Jan. 2003.

[5] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing
— degrees, models, and applications,” ACM Comput. Surv., vol. 40,
pp. 7:1-7:28, Aug. 2008.

[6] M. Ansari, C. Kotselidis, K. Jarvis, M. Lujan, C. Kirkham, and
I. Watson, “Advanced concurrency control for transactional memory
using transaction commit rate,” in Proceedings of the 14th International
Euro-Par Conference on Parallel Processing, Euro-Par *08, (Berlin,
Heidelberg), pp. 719-728, Springer-Verlag, 2008.

[7] K. Ravichandran and S. Pande, “F2C2-STM: Flux-based feedback-
driven concurrency control for STMs,” in Parallel and Distributed
Processing Symposium, 2014 IEEE 28th International, pp. 927-938,
May 2014.

[8] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker,
“Identifying the optimal level of parallelism in transactional memory
applications,” in Networked Systems (V. Gramoli and R. Guerraoui,
eds.), vol. 7853 of Lecture Notes in Computer Science, pp. 233-247,
Springer Berlin Heidelberg, 2013.

[9] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Machine learning-
based self-adjusting concurrency in software transactional memory sys-
tems,” in Modeling, Analysis Simulation of Computer and Telecommuni-
cation Systems (MASCOTS), 2012 IEEE 20th International Symposium
on, pp. 278-285, Aug 2012.

[10] N. Zhou, G. Delaval, B. Robu, E. Rutten, and J.-F. Méhaut, “Autonomic
Parallelism Adaptation on Software Transactional Memory,” Research
Report RR-8887, Univ. Grenoble Alpes ; INRIA Grenoble, Mar. 2016.

[11] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in 2008
IEEE International Symposium on Workload Characterization (IISWC),
September 2008.

[12] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and
K. Olukotun, “EigenBench: A simple exploration tool for orthogonal
TM characteristics,” in 2010 IEEE International Symposium on Work-
load Characterization (IISWC), pp. 1-11, Dec 2010.

[13] W. Ruan, Y. Liu, and M. Spear, “STAMP need not be considered harm-
ful,” in 9th ACM SIGPLAN Workshop on Transactional Computing,
(Salt Lake City), March 2014.

