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Homogeneity of emission and timbre of musical instruments is a difficult issue. Intuitively it can be related to the

regularity of the geometry, even if this relation is another difficult issue. The present talk aims at contribute to the

discussion about the regularity of both woodwind and brass instruments. Benade published a paper in 1960 where

woodwinds were modeled as periodic media with regular toneholes. In 1974, with Jansson, he compared bells

of brass instruments and exponential horns. He had a particular interest in both the definition and the effects of

cutoff frequencies for wind instruments. Recently we discussed a definition of acoustic regularity in the context of

woodwinds. This work is first summarized, then some open questions are discussed concerning instruments with

toneholes and with bells, starting with an analogy between exponential horns and periodic lattice of toneholes.

1 Introduction
Homogeneity of emission and timbre of musical

instruments is a difficult issue. Intuitively it can be related

to the regularity of the geometry, even if this relation is

another difficult issue. The present talk aims at contribute to

the discussion about the regularity of both woodwind and

brass instruments. Regularity of the woodwind toneholes

was recently investigated, by distinguishing two possible

definitions of the (first) cutoff frequency (see Ref.[1]): the

global and the local cutoff. It has been demonstrated that

woodwinds can have a great acoustical regularity. The

question we wish to discuss here is the following: is it

possible to find similar definitions for the brass instrument

bells? For that purpose, we first summarize the previous

works on woodwind, then consider the case of an exponential

horn, and compare it to brass instrument bells.

2 Woodwind instruments

In his paper of 1960, Benade [2] proposed to use the

theory of periodic media in order to analyze the effects of a

row of tone-holes of wind instruments. He discovered the

existence of an important frequency, the cutoff frequency of

the lattice of open holes. He evidenced this frequency by

measuring the input impedance of woodwind instruments.

For a perfectly periodic lattice, the cutoff frequency is

independent of the fingering. For real instruments the

small variation (see Ref. [3]) of the cutoff with respect

to the fingering suggests a great regularity of the tonehole

lattice. However this seems to be in contradiction with

the great geometrical irregularity of the holes of a clarinet.

This apparent paradox was already noticed by Benade in a

posthumous article [4]. Comparing 2 clarinets, one with a

regular tone hole lattice and an ordinary one, he stated that

the input impedances, measured at low level, “were almost

identical. This was of course interesting and happy news,

because it helped justify the use of formal mathematical

physics for a slowly varying lattice on a geometrically quite

irregular physical structure”. How can we explain this
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Figure 1: T-shaped cell of a regular lattice.

underlying regularity? In a recent paper (Ref. [1], see also

[5]), we first remarked that for a periodic lattice, the cutoff

frequency fc is nothing else than the natural frequency of a

lattice cell (see Fig. 1), with the two extremities closed by

rigid surfaces. Symmetry reasons explain this feature. The

following formula gives this frequency:

fc =
c

2π�
√

2(a/b)2ht/� + 1/3
(1)

where c is the speed of sound, 2� the hole spacing, a and b
the radii of the tube and the hole, respectively, ht the effective

height of the hole chimney.

A logical consequence is that for an irregular lattice, it

should be possible to define a “local” cutoff frequency, if it is

possible to divide the lattice into cells of the same kind. This

should be very interesting, because it can be proved that a

succession of cells with the same cutoff has properties similar

to that of a succession of identical cells (at least at rather low

frequencies). Thus the paradox would be explained.

A difficulty appears with the division into cells, because

the solution is not unique. Several solutions were proposed

in the Ref. [1]. The simplest method avoids this difficulty:

if two adjacent, symmetrical T -shaped cells have the same
natural frequency with different lengths �1 and �2 and

different hole acoustic masses mh1and mh2, Eq. (1) leads to:

�1mh1 = �2mh2 =
ρ

2S k2
c
, (2)

therefore the spacing d = �1 + �2 between the holes satisfies:

d =
1

k2
c

ρ

2S

(
1

mh1

+
1

mh2

)
(3)

(ρ is the air density, S the cross section area of the tube), thus

fc =
c

2π

√
ρ

2S d

(
1

mh1

+
1

mh2

)
. (4)

This frequency is the natural frequency of a resonator of

length d, with two necks corresponding to the holes with

a cross section divided by 2. If it is a constant over the

length of a lattice, the lattice is acoustically regular. If it

is not constant, its variation can be regarded as a measure

of irregularity. We can define the frequency given by Eq.

(4) as a local cutoff frequency, depending in a direct way

on the dimensions (masses) of two adjacent holes and their

distance. This definition avoids any division of the lattice and

is coherent with the definition of the global cutoff for either

geometrically or acoustically perfectly regular lattices.

Fig.2 shows the results of: i) the measurements of the

global cutoffs for a modern clarinet; ii) the calculation of

the possible constant eigenfrequencies using a division into

asymmetrical cells; iii) the calculation of the local cutoff

frequencies (Eq. (4). Notice that there are two different
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Figure 2: Comparison between experimentally determined

global fc and local fc obtained using method 2 and 3 for the

corrected model. The values of fc for method 3 are plotted

between the tones, because they are based on the acoustic

mass of two subsequent equivalent tone holes. The dashed

region shows the frequency range for the local fc obtained

by the division in asymmetrical cells.

types of axes for the abscissa: for the theoretical results,

the numbers correspond to the cell numbers, while for the

experimental ones, the results depend on the noted played.

Figure 2 shows an order of magnitude of the local

cutoffs, in general 15% higher than the global measured

values, at least at the ends of the considered register. Fig. 3

shows similar results for the prototype of “logical” clarinet

[6], for which a regular increase of size and spacing is found

between the 18 holes from the top to the bottom of the

instrument. Again the local cutoffs are significantly higher

than the global ones. The relative variations of the cutoff

frequency are about 10%, while standard clarinets have

a variation of the order of 40%. Therefore the computed

clarinet has a satisfactory acoustical regularity of its tonehole

lattice. As for a real clarinet, the mean value of the local

cutoff frequencies lies around 1700 Hz. This is significantly

higher than the global cutoff frequencies measured from

the input impedance curve for the notes of the first register,

which is around 1450 Hz (see Fig. 3).

3 Analogy between a tonehole lattice
and a horn

Exponential (or catenoidal) horns are well known to have

a cutoff frequency. The definition is done from the classical

horn equation:

(pR)′′ + (k2 − R′′/R)(pR) = 0. (5)

In this differential equation which is written in the frequency

domain, p is the acoustic pressure, R(x) is the radius, and

R′′(x) is its second derivative. k is the wavenumber. The

cutoff is given by k2
c = R′′/R. For an exponential horn, it is a

constant, and when attached to a cylindrical tube, the effect

on the input impedance is the suppression of resonances
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Figure 3: The local cutoff frequencies for a set of two holes

are shown with stars (*). A star located at n + 1/2
corresponds to the cutoff frequency of the set of two holes

(n, n + 1). The star located at 18.5 is calculated for the hole

18 and the first vent-hole.

The circles and crosses represent the global cutoff

frequencies obtained from the measurement of the input

impedance, for the notes of the first register from D3 to

G#4. Circles correspond to well defined values, crosses to

more uncertain values.

above this frequency, therefore the role is similar to that

of a regular tonehole lattice. In the paper [7], Benade and

Jansson calculated what they called the “horn function” for

brass instruments, i.e. the function U(x) = R′′(x)/R(x). The

square root of this function can be viewed as a local cutoff

frequency, because it varies with the abscissa, but we can

also consider a global cutoff, by using the input impedance

curve. The investigation of the analogy with tonehole lattices

can therefore be interesting.

Let us consider Equation (5). For a particular type of

horns, R′′/R is a constant, and an evident analytical solution

can be found. If R′′ > 0, such horns are flared, of exponential

or catenoid type (the function being a hyperbolic cosine); if

R′′ < 0 the horns are of the sinusoidal type, and if R′′ = 0,

we find a conical horn.

Let us study the flared horns, with positive curvature.

A horn can be seen as a succession of small truncated

cones whose length tends to zero. Each change in taper

is equivalent to a mass in parallel, as well as an open

hole (considering the simplest model for a hole): to get

an analogy, the masses must be positive, and the conicity

changes must be flares. Now it is easily shown that an

exponential horn is the limit when the length tends to 0 for

a horn consisting in truncated cones with the same length,

and presenting taper changes with the same mass. Therefore

the exponential horn is analogous to the limit of a cylindrical

pipe drilled with identical and equidistant, open holes. This

can be shown with elementary mathematics.

Now, to compare the bell of brasses to acoustically

regular open hole lattices, we can compare these horns to an

exponential horn. Looking at the horn equation applied to

Bessel horns, defined by R(x) = b/(xa − x)ν, where b, xa and

ν are constant, we might think of determining a local cutoff
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frequency defined as:

k2 =
R′′

R
=
υ(υ + 1)

(xa − x)2
. (6)

This frequency is very low at the horn entrance, because

the denominator is large, and very high at the end. We

intuitively understand that for this medium the regularity

is qualitatively very different from that of an exponential

horn. Therefore it is difficult to define a relationship between

these local frequencies and the global cutoff frequency,

that we can measure on the input impedance curve. The

problem is further complicated by the fact that the models

that would be useful to us are necessarily very complicated,

i.e. three-dimensional. Notice that if the horn equation is

written with spherical wavefronts (see Refs. [7, 8]), the

horn function is strongly modified, and the difference with

toneholes remain important.

The comparison between tone hole lattices and horns,

that both favor the emission of higher frequencies, also

gives a basic explanation of the roles of the (short) bell of a

clarinet: without bell, the note for which all holes are closed

may have a sound quite different from that of other notes.

One way to make this note homogeneous with others is to

lengthen the cylindrical pipe, and to drill other holes that

will always be open: this solution is encountered in some

traditional instruments. Another option is to flare the pipe

termination, to form a bell which will play the same role

[9], the higher frequencies being strengthened. This idea is

interesting; however to our mind this simple explanation for

the role of the clarinet bell needs to be further investigated.

Notice that, strictly speaking, the existence of a cutoff

frequency between propagating waves and evanescent

waves is a global limit property of a medium with constant

characteristics, like an exponential, infinite, and lossless

horn (or tonehole lattice). The only result easy to show in

the case of a horn of arbitrary shape is that for the horn itself,

there will be no resonance below the lowest local cutoff,

corresponding to the horn entrance [10] . But this result is

not of great utility.

4 Conclusion

Brass instrument bells, which are in general close to

Bessel horns, have a regularity due to the property of a

power law, but this regularity is very different from that

of an exponential horn, thus of a woodwind. Acoustic

consequences on the sound produced by these instruments

remain to be investigated.
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