
On the Use of Iterative LCP Solvers for Dry Frictional Contacts in
Grasping

Gustavo Arechavaleta, Efraı́n López-Damian and José Luis Morales.

Abstract— In this paper we propose the use of new iterative
methods to solve symmetric linear complementarity problems
(SLCP) that arise in the computation of dry frictional contacts
in Multi-Rigid-Body Dynamics. Specifically, we explore the
two-stage iterative algorithm developed by Morales, Nocedal
and Smelyanskiy [1]. The underlying idea of that method is
to combine projected Gauss-Seidel iterations with subspace
minimization steps. Gauss-Seidel iterations are aimed to obtain
a high quality estimation of the active set. Subspace minimiza-
tion steps focus on the accurate computation of the inactive
components of the solution. Overall the new method is able to
compute fast and accurate solutions of severely ill-conditioned
LCPs.

We compare the performance of a modification of the
iterative method of Morales et al with Lemke’s algorithm on
robotic object grasping problems.

I. INTRODUCTION

Contact dynamics is a well-known and important topic
in physics-based animation and robotics among other dis-
ciplines. Video games, for example, are a good source of
medium to large-scale contact problems. The common issue
in these fields is the fast computation of contacts. Constraints,
however, strongly characterize the application. In computer
animation the constraints are mainly intended to produce
visually plausible motions. Thus, simple friction models
suffice to preserve realism in the animation. In robotics,
say for problems regarding stable biped locomotion and
grasping tasks, contact constraints must guarantee feasible
robot motions in the presence of friction [2].

It turns out that solving contact problems is a time-
consuming process mainly because at each time step of
the simulation, performed by numerical integration, a linear
complementarity problem has to be solved.

In this paper we address the problem of computing multi-
rigid-body dynamics with frictional contacts. Specifically,
we explore the use of the algorithm described in [1] to
determine the contact forces in the presence of friction
between colliding rigid bodies.

In addition to the frictionless contact problem, in a
wide variety of applications it is desirable to consider a
friction model (e.g. the Coulomb’s friction model). This
fact increases the difficulty of the problem since there is
coupling between the friction (tangential) and normal force
components. In practice, the most common and widely used

G. Arechavaleta. Robotics and Advanced Manufacturing Division, CIN-
VESTAV, Mexico. garechav@cinvestav.edu.mx

E. López-Damian. Department of Computer Science, INAOE, Enrique
Erro No. 1, Tonantzintla, Puebla, Mexico. eldamian@inaoep.mx

J. L. Morales. Department of Mathematics, ITAM, Rı́o Hondo No. 1,
Tizapán, Mexico. jmorales@itam.mx

model of friction is the linearized version of the Coulomb
friction law by a polyhedral approximation of the friction
cone at each contact point [3], [4]. Nevertheless, there exist
other ways for approximating the Coulomb friction model
[5].

A consistent and solvable mathematical model of dry
frictional contacts has been proposed in [3]; for variants
based on LCP formulations see for example [4], [6], [7].
Alternative strategies include spring and damper systems [8],
although they tend to be unstable.

Among the wide range of LCP contact formulations either
acceleration based models [9], [10], [11], [12], or velocity
stepping models [4], [6], [3], the most common method
to solve the LCP is still that of Lemke [13], [14]. Pivotal
methods are efficient for small problems but they do not
exploit sparsity effectively and may suffer from numerical
instability. Therefore they are not suitable for large-scale
applications, or when the LCPs are ill-conditioned; see for
example [15]. In the robotics literature, some improvements
on Lemke’s algorithm have been proposed in [16], [17] to
overcome some of its inherent deficiencies.

Iterative LCP solvers, including the projected Gauss-Seidel
(PGS) algorithm, have been utilized to compute frictional
contacts problems (e.g. [18], [19], [20]) since they are numer-
ically robust. However, they can be very slow for medium to
large-scale and ill-conditioned problems. In grasping tasks,
the contact LCPs are ill-conditioned in most of the cases.
These evidences motivated us to use a modification of the
algorithm described in [1]. In the forthcoming discussion we
will refer to this method as PGS-SM.

This paper is organized as follows. In Section II we
recall the general form of a SLCP. Section III gives a short
description of the two stages of PGS-SM. In Section IV we
review the standard mixed LCP formulation for multi-rigid-
body dynamics with dry frictional contacts. We also describe
the approximation of the friction model used to formulate
the SLCP contact problem. Section V presents a series of
numerical experiments and simulations that illustrate the
effectiveness of PGS-SM. Finally, we provide in Section VI
some concluding remarks.

II. STRUCTURE OF THE SLCP

The form of a SLCP that will be used in the paper is:

0 ≤ u ⊥ Au+ a ≥ 0 (1)

where the unknown of the problem is u, the matrix A and the
vectors a are given. We assume that A is n × n symmetric
positive definite.

1

We recall that (1) corresponds to the first-order optimality
conditions of the bound constrained quadratic program

min
u

φ(u) =
1
2
uTAu+ aTu

s.t. u ≥ 0.
(2)

The optimization literature on methods for solving bound
constrained problems is wide. Gradient projection methods
and interior-point methods are among the best techniques
to solve this kind of problems. However, the computational
experience reported in [1] indicates that if speed is a hard
constraint then PGS-SM is a strong competitor.

III. THE ITERATIVE ALGORITHM

The underlying idea of the iterative algorithm is to alter-
nate two strategies. First, a few iterations of the projected
Gauss-Seidel (PGS) method are applied to identify an esti-
mate of the optimal active set. Then, the algorithm performs
consecutive subspace minimization (SM) steps to improve
this estimate and to compute accurate values of the variables
in the inactive set. The algorithm returns to the PGS phase to
check the convergence tests, if satisfied the algorithm exits
with the solution; otherwise it continues to the SM phase.

A. Projected Gauss-Seidel Method

We briefly outline one iteration of the PGS iterative
method. The k+1-th approximation can be defined in scalar
form as follows

Algorithm PGS. Given the k-th approximation uk ≥ 0.

for i = 1, 2, ..., n

∆ui = A−1
ii (ai +

∑
j<iAiju

k+1
j)

uk+1
i = max(0, uk

i −∆ui,).
(3)

end
Observe that, since A is symmetric positive definite, the
iteration is well defined.

B. The PGS-SM Method

The algorithm can be formally described as follows.

Algorithm PGS-SM. Choose kPGS, kSM the maximum
number of PGS and subspace minimization iterations re-
spectively; choose tol > 0; choose an initial approximation
u0 ≥ 0.

Begin
• PGS-stage.

Perform kPGS iterations of PGS.
if ||uk+1 − uk||∞ ≤ tol then exit
otherwise

– Set u← uk+1

– Form the approximation to the active set

A = { i |ui = 0 }

– Form the corresponding reduced problem

Âû+ â = 0, û ≥ 0 (4)

by eliminating from the original problem (1) rows
and columns whose indices belong to A.

• SM-stage.
Set k ← 0.
while k < kSM

1) Solve the linear system Âû + â = 0 with any
method suitable for symmetric positive matrices.

2) if û ≥ 0 then return to PGS-stage.
otherwise
– Compute the projection û← max(0, û).
– Form a new reduced system Âû+ â = 0.
– Set ← k + 1.

end
Return to PGS-stage

End

Observe that, due to the equivalence between the SLCP
and the bound constrained optimization problem, all reduced
problems are well defined.

IV. THE DRY FRICTIONAL CONTACT SLCP

We apply the multi-rigid-body contact formulation de-
scribed in [3], [2], whose modeling strategy allows both
unilateral (contacts) and bilateral (joints) constraints between
rigid bodies. This is a time-stepping scheme, based on
velocity, that makes use of an approximation of the Coulomb
friction law.

A. Dynamic contact Model

We start from the Newton equation of motion

Mv̇ = Fc + Fe, (5)

where M is a block-diagonal symmetric positive definite
matrix that collects the mass and rotational inertia of each
body; v̇ represents the acceleration; Fc = fj + fl + fn + ft

is the sum of joint, joint limit, normal and friction constraint
forces. Fe represents both Coriolis and external forces.

To solve the multi-body dynamics it is common to use an
explicit Euler integration method over a time step from t to
t+ 1 for the equation of motion

M(vt+1 − vt) = h(Fc + Fe), (6)

where h is the integration step length. We consider pairwise
constraints between rigid bodies. The non-penetration con-
straints and frictional forces are expressed as inequalities that
can be used to formulate the problem with complementarity
conditions. These conditions are defined as

0 ≤ N̂T vt+1 ⊥ ĉn ≥ 0 (7)
0 ≤ D̂T vt+1 + Eλ̂ ⊥ β̂ ≥ 0 (8)

0 ≤ µ̂ĉn − ET β̂ ⊥ λ̂ ≥ 0 (9)

where ĉn = [c(1)
n ... c

(n)
n]T and β̂ = [β(1) ... β(nd)]T are the

normal and friction force components; n is the number of
contacts; d is the number of friction directions at contact
j. N̂ = [N (1) ... N (n)] and D̂ = [D(1) ... D(nd)] are
the constraint matrices for normal and friction forces. Each

2

column of N̂ denotes the contact normal; d columns of
D̂ span the tangent space of friction forces at contact j;
λ̂ = [λ(1) ... λ(n)]T is a vector of Lagrange multipliers;
µ̂ = diag[µ(1) ... µ(n)] is a diagonal matrix of friction
coefficients; E is a matrix defined as

E = diag[1], 1 = [1 ... 1]T ∈ Rd.

The condition (7) serves to avoid interpenetration. The
equations (8) and (9) are the complementary conditions of
the linearized cone of Coulomb friction law ||ft|| ≤ µ||fn||.

B. Joint Constraints

As we will show in Section V, we have integrated the
PGS-SM algorithm into the open source package, Graspit
[21]. The current representation of joints between two con-
nected rigid bodies has the form of equality constraints
on their relative velocities. Although, given that we do
not constrain the relative position of the bodies, the joint
connections occasionally break over time due to small drifts
in the system. This is corrected by applying

ĴT vt+1 = εj
εj = −ζ∆P

h ,
(10)

where Ĵ = [J (1) ... J (m)]; m is the number of joints; ∆P
represents the positional errors between connected bodies; ζ
takes values in [0, 1] for controlling the error corrections. We
then define the constraint impulses as follows

hfj = Ĵ ĉj , (11)

where ĉj = [c(1)
j ... c

(m)
j]T is the vector of magnitudes of

joint constraint impulses. In addition, we should consider that
joints have mechanical limits, thus we can formulate another
inequality constraint similar to the contact normal constraint
as:

L̂T vt+1 ≥ 0 ⊥ ĉl ≥ 0, (12)

where L̂ = [L(1) ... L(q)], ĉl = [c(1)
l ... c

(q)
l]T are the required

impulses to keep the joints within their bounds and q is the
number of reached joint limits.

C. Constructing the SLCP

Considering the constraints (7)-(12) mentioned above and
adding the equation of motion (6) to the complementarity
conditions, we obtain the following mixed LCP [3]:M −Ĵ −H

ĴT 0 0
HT 0 N

 vt+1

ĉj
z

 +

−a−εj
b

 =

0
0
w

 (13)

0 ≤ z ⊥ w ≥ 0,

where H = [L̂ N̂ D̂ 0], z = [ĉl ĉn β̂ λ̂]T ; a = Mvt + hk;
b = [0 0 0 0]T ; w = [ε ρ σ γ]T ; N has the form

N =

 0 0 0
0 0 E
µ̂ −ET 0

 . (14)

Solving for vt+1 and ĉj in (13) we obtain a LCP of the form

(G+N)z + g = w,

G = HTM−1H−
HTM−1Ĵ(ĴTM−1Ĵ)−1ĴTM−1H

g = b+HTM−1a−
HTM−1Ĵ(ĴTM−1Ĵ)−1ĴTM−1a.

(15)

The LCP can be solved using Lemke pivot-based algo-
rithm [13]-[17], [22]. However, using this formulation, it is
not possible to directly apply the PGS-SM algorithm since
the matrix G+N is not positive definite. Only when N = 0,
G is positive semi-definite and symmetric. To force the
positive definiteness of G, and without losing the physical
meaning of the formulation, we add to it a square diagonal
matrix CFM (called constraint force mixing). The positive
diagonal elements of CFM allow soft constraints.

To avoid N 6= 0, we replace the friction constraints (8)
and (9) by the following complementarity conditions [5]:

D̂v − ṽ+ + ṽ− = 0
0 ≤ β̂ − β̂− ⊥ ṽ+ ≥ 0, 0 ≤ β̂+ − β̂ ⊥ ṽ− ≥ 0

(16)

where ṽ+ and ṽ− are the positive and negative components
of the tangential velocity; β̂+, β̂− are the lower and upper
bounds of β̂ respectively. In this case, the matrix D̂ is
composed by two perpendicular directions, Dj1, Dj2. Thus,
D̂ is on the tangent plane at contact j and perpendicular
to fn. With these parameters, we can define the size of a
friction box by imposing a fixed bound on the tangential
forces −µc̃n ≤ βji ≤ µc̃n for i = 1, 2, c̃n is an estimate of
cn (e.g. the last LCP solution before the current integration
step).

According to the above considerations, the system still
has the form (13) but now H = [L̂ N̂ D̂], z = [ĉl ĉn β̂]T ,
a = Mvt + hk, b = [0 0 0]T , w = [ε ρ σ]T and N is the
null matrix. Finally, we solve for vt+1 and ĉj to get (15)
with the complementarity conditions in (16) such that:

0 ≤ ĉl ⊥ ε ≥ 0, 0 ≤ ĉn ⊥ ρ ≥ 0,
0 ≤ β − β− ⊥ σ ≥ 0, 0 ≤ β+ − β ⊥ σ ≥ 0. (17)

Finding the LCP solution vector z, we then obtain

vt+1 = M−1(Ĵ ĉj +Hz + a)
ĉj = −(ĴTM−1Ĵ)−1ĴM−1(Hz + a)+

(ĴTM−1Ĵ)−1εj .

V. SIMULATION EXPERIMENTS

In our experiments we compare three LCP methods to
solve robotic object grasping with frictional contacts: the
standard PGS method (III-A), the adapted PGS-SM method
(III-B), and the standard Lemke method provided by Graspit
[21].

The experiments have been performed on a AMD Turion
64 X2 dual-core 3.0 GHz. Graspit was compiled using
GNU C++. It includes a collision detection library called
PQP [23] and performs basic linear algebra operations with
BLAS [24]. The PGS and PGS-SM algorithms have been

3

implemented in Fortran 77 package using double precision
and sparse linear algebra. The subspace minimization is
carried out with preconditioned GMRES for nonsymmetric
linear systems [25]. Both algorithms were compiled using
GNU f77.

The PGS and PGS-SM methods have been adapted for
frictional contact problems by adding lower and upper
bounds on the variables. We have integrated both methods in
Graspit and calling them via a standard Fortran to C library.

A. Grasping Scenarios

The implementations of PGS and PGS-SM were tested
using some scenarios provided by Graspit.

In the 3D grasping simulator, we defined an initial con-
figuration of a robotic hand that can be attached to a Puma
arm or not, and with the fingers opened. We also defined the
initial configuration of a movable object on a static table and
close to the robotic hand (see Fig. 1.(a), Fig. 2.(a)). We can
see that objects are already in contact with the table surface,
generating friction cones at these contacts.

We then activated the multi-rigid-body dynamics process
considering both the robot and the object. At this stage, the
hand started to close their fingers. After some iterations of
the numerical integration process the fingers collide with the
object producing some contacts between any part of the hand
(fingers’ phalanges and/or the palm), the object and the table.
Depending on the pre-shape of the hand, the fingers do not
always touch the object at the same time, causing the object
to slip unless the grasp can balance the forces to finally
carrying the object to a stable pose, see Figs. 1.(b)-(d)). The
simulation is stopped by the user.

In object manipulation and more precisely, in grasp analy-
sis and planning, a fundamental problem is the computation
of stable grasps. This allows the robot to perform a series
of tasks (e.g. pick and place) in human environments. Most
of the planners only solve the problem from a geometric
and kinematic point of view giving good results. However,
it is necessary to incorporate dynamics in the analysis of
grasping for practical applications in robotics. One of the
most important elements of this analysis is the frictional
contact model between the object and hand.

A grasp could seem to be stable but when dynamic effects
are considered, we notice that it is not. We show in Fig. 2
four instances of a grasping task. We have a plastic hand
while the object is made of glass, thus, the coefficient of
friction between these materials is µ = 0.2. We observe that
contact points appear with their respective frictional cones
when the fingers touch the object (see Fig. 2.(b)). These
contact points change in time due to the applied forces of
the hand (see Fig. 2.(c)). In this example, the solutions of
the multi-rigid-body dynamics in contact have been solved
by the PGS-SM algorithm at every iteration. At the end of
the simulation, we notice that even if the initial grasp seems
to be good and the finger velocities are not so large, the
hand cannot grasp the object (see Fig. 2(d)). This behavior
frequently occurs for small coefficients of friction allowing
slippage, which is a logic physical consequence.

(a) Inital grasp

(b) Final grasp

(c) After few iterations

(d) Final grasp side view

Fig. 1. The figures show the results for one of the experiments. We used a
five-fingered metal hand and a rubber ball object, after some iterations the
robot picked the object up stably.

4

We perform the same experiment but changing only the
hand material to rubber. In this case, the coefficient of friction
is µ = 1.0. We see in Fig. 3.(a) the frictional cones with
µ = 0.2 corresponding to wood table and glass cup while
Fig. 3.(b) illustrates when the frictional cones between the
hand (rubber) and the object. After some iterations the robot
is capable to grasp the object stably.

(a) First contacts with object (b) Contacts with fingertips and
distal phalanges

(c) Contact with palm (d) Final result

Fig. 2. The figure shows a three-fingered Barrett hand (plastic) and a glass
object with µ = 0.2. The fingers make contact with the object applying
forces at the contact points. Due to the small friction between materials, the
grasp cannot resist and the object slips.

B. Comparing Performances

To illustrate the behavior of the PGS-SM algorithm, we
have conducted several comparisons between Lemke, PGS
and PGS-SM in terms of computation time and number of
contacts (size of the problem). We tested different examples
of grasping tasks and we executed 3 times the same task
invoking different LCP solver each trial.

At each time step throughout the simulation, we measured
the CPU time required to find a solution of the frictional
contact LCP.

In these experiments, before calling the PGS-SM method,
we should specify the input parameters kPGS and kSM. After
some tunning phase, we identified that kPGS ∈ [3, 6] and
kSM ∈ [1, 3] are the adequate ranges. We set the stopping
tolerance to 1.0e − 8 and the matrix CFM = diag[1.0e −
11]. The reason for these values are only for the numerical
precision problem in computing operations when exact zero
value is considered, this does not modify the algorithms or
affect their performance.

We observed that the performance of the Lemke method
was inefficient with respect to PGS and PGS-SM methods
when the number of contacts increase. Note that the size of

(a) Initial grasp (b) Intermediate grasp (front
view)

(c) Intermediate grasp (side
view)

(d) Final grasp

Fig. 3. The figure shows the experiment with the same three-fingered hand
but now it is made of rubber and the object is made of glass, with µ = 1.0.
We see that the final grasp is stable unlike the previous case.

the problems depends on the number of contacts and joint
limits reached. From 1 to 3 contacts, there are not significant
difference between the 3 methods. From 4 to 12 contacts, the
CPU time varied from 79 to 11820 microseconds. Table I
shows the minimum, the maximum and the mean CPU time
for Lemke, PGS and PGS-SM respectively. These quantities
show the advantage of the adapted PGS-SM.

TABLE I
CPU TIME COMPLEXITY (IN MICROSECONDS).

Min Max Mean
3-fingered hand
- Lemke 146 7050 672

- PGS 97 1332 207
- PGS-SM 84 355 145
5-fingered hand
- Lemke 220 11820 1885

- PGS 95 3348 238
- PGS-SM 79 452 155

We noted that the PGS method was able to identify
the active set in few iterations as it is pointed out in [1].
The adapted PGS-SM method is quite efficient due to the
right balance between identifying the active set (PGS itera-
tions) and moving toward optimality (subspace minimization
cycles). In our experiments the PGS-SM algorithm only
did from 3 to 6 PGS iterations and used one subspace
minimization cycle to get the solution. The PGS-SM is also
significantly faster than Lemke in most cases.

The frictional contact problems in our experiments can
be classified as small but ill-conditioned problems. Because
the size of the problems was small, the performance of
Lemke algorithm was acceptable. The PGS-SM method, on

5

the other hand, continue to be efficient for solving large-scale
and ill-conditioned LCPs. It has been tested with large-scale
frictionless contact problems extracted from the open source
package Open Dynamic Engine (see [1] for details).

These preliminary results indicate that robotic frictional
contact problems would be gained computation time by
using PGS-SM method without regarding the size of ill-
conditioned LCPs.

Simulation sequences of the examples presented in this
work can be found at:

http://www.cinvestav.edu.mx/saltillo/robotica/garechav/grasping/

VI. CONCLUSIONS

In this paper we used an adaptation of the two-stage iterative
algorithm proposed in [1] to deal with ill-conditioned dry frictional
contact problems in grasping tasks. We formulate contact dynamics
in a similar manner as [3].

The PGS-SM method allows us to solve constrained motions for
robotic hands that have complex dynamics by applying appropriate
iterative methods. Bounds in frictional variables are utilized to
guarantee convergence to the grasping problems. We compute the
frictional bounds by using the information of the previous iteration.
As a result, the grasp motion has been successfully verified by
simulations. We tested our approach with different friction coeffi-
cients and we compared the resulting behaviors with the solutions
computed using Lemke algorithm. We are still working to find dif-
ferent ways to estimate the bounds. Nevertheless, our preliminarily
results show that the PGS-SM method can be successfully applied
in practice.

Other challenging problems arising in Humanoid robotics and
motion planning for several and highly articulated mechanisms can
be viewed as complex contact problems. For instance, the problem
of computing whole-body stable object manipulation [26], [27].
Our current work is focusing on validating the use of the PGS-
SM method in these classes of robotic problems.

VII. ACKNOWLEDGMENTS
The first two authors acknowledge the financial support of the

National Council of Science and Technology (CONACyT) within
the project No. 84855. J.L. Morales was supported by Asociación
Mexicana de Cultura A.C.

REFERENCES

[1] J. L. Morales, J. Nocedal, and M. Smelyanskiy, “An algorithm for
the fast solution of symmetric linear complementarity problems,”
Numerische Mathematik, vol. 111, no. 2, pp. 251–266, 2008.

[2] A. Miller and H. Christensen, “Implementation of multi-rigid-body
dynamics within a robotic grasping simulator,” in IEEE International
Conference on Robotics and Automation, Taipei, Taiwan, September
2003, pp. 2262–2268.

[3] M. Anitescu and F. Potra, Formulating Dynamic Multi-Rigid-Body
Contact Problems with Friction as Solvable Linear Complementary
Problems, ser. Nonlinear Dynamics. Netherlands: Kluwer Academic
Publishers, 1997, vol. 14, pp. 321–247.

[4] D. Stewart and J. Trinkle, “An implicit time-stepping scheme for
rigid body dynamics with inelastic collisions and coulomb friction,”
International Journal for Numerical Methods in Engineering, vol. 39,
pp. 2673–2691, 1996.

[5] C. Lacoursiere, “Splitting methods for dry frictional contact problems
in rigid multibody systems: preliminary performance results,” in
SIGRAD, 2003.

[6] M. Anitescu, F. Potra, and D. Stewart, “Time-stepping for three-
dimensional rigid body dynamics,” Computer Methods in Applied
Mechanics and Engineering, vol. 177, pp. 183–197, 1999.

[7] A. Al-Fahed, G. Stravroulakis, and P. Panagiotopoulos, “Hard and soft
fingered robot grippers, the linear complementary approach,” Z. angew.
Math. u. Mech., vol. 71, no. 7-8, pp. 257–265, 1991.

[8] B. Mirtich and J. Canny, “Impulse based simulation of rigid bodies,”
in Symposium on Interactive 3D Graphics, New York, 1995, pp. 181–
188.

[9] J. Trinkle et al., “On dynamic multi-rigid-body contact problems with
coulomb friction,” Z. angew. Math. u. Mech., vol. 77, no. 4, pp. 267–
279, 1991.

[10] J. Pang and J. Trinkle, “Complementary formulations and existence
of solutions of dynamics multi-rigid-body contact problems with
coulomb friction,” Journal of Mathematical Computing, vol. 73, no. 2,
1996.

[11] F. Pfeiffer and C. Glocker, Multibody Dynamics with Unilateral
Contacts, ser. Wiley Series in Nonlinear Science. New York: John
Wiley and Sons, 1996.

[12] D. Baraff, “Issues in computing contact forces for non-penetrating
rigid bodies,” Algorithmica, vol. 10, pp. 292–352, 1993.

[13] C. Lemke, “Bimatrix equilibrium points and mathematical program-
ming,” Managment Science, vol. 11, pp. 681–689, 1965.

[14] R. W. H. Sargent, “An efficient implementation of the lemke algorithm
and its extension to deal with upper and lower bounds,” Mathematical
Programming Study, vol. 7, pp. 36–54, 1978.

[15] J. L. Morales and R. W. H. Sargent, “Computational experience
with several methods for large-scale convex quadratic programming,”
Aportaciones Matemáticas. Comunicaciones, vol. 14, pp. 141–158,
1994.

[16] J. Lloyd, “Fast implementation of lemke’s algorithm for rigid body
contact simulation,” in IEEE International Conference on Robotics
and Automation, Barcelona, Spain, April 2005, pp. 4538–4543.

[17] K. Yamane and Y. Nakamura, “A numerically robust lcp solver for
simulating articulated rigid bodies in contact,” in Robotics:Science and
Systems, Zurich, June 2008.

[18] E. Catto, “Iterative dynamics with temporal coherence,” in Technical
report, Crystal Dynamics, Menlo Park, CA, 2005.

[19] M. J. F. Jourdan, P. Alart, “A gauss-seidel like algorithm to solve
frictional contact problems,” Computer Methods in Applied Mechanics
and Engineering, vol. 155, pp. 31–47, 1998.

[20] T. Liu and M. Wang, “Computation of three-dimensional rigid-body
dynamics with multiple unilateral contacts using time-stepping and
gauss-seidel methods,” IEEE Transactions on Automation Science and
Engineering, vol. 2, no. 1, pp. 19–31, January 2005.

[21] A. Miller and P. Allen, “Graspit!: A versatile simulator for grasp
analysis,” in ASME Dynamic Systems and Control Division, Orlando,
FL, November 2000, pp. 1251–1258.

[22] R. Cottle and G. Dantzig, “Complementary pivot theory of mathemat-
ical programming,” Journal of Linear Algebra Applications, vol. 1,
pp. 103–125, 1968.

[23] U. G. Group, “Pqp - a proximity query package,” in
http://www.cs.unc.edu/ geom/SSV/.

[24] L. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling,
G. Henry, M. Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo,
K. Remington, and R. C. Whaley, “An updated set of basic linear
algebra subprograms (blas),” ACM Transactions on Mathematical
Software, vol. 28, pp. 135–151, 2002.

[25] Y. Saad and M. Schultz, “Gmres: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM Journal on
Scientific and Statistical Computing, vol. 7, pp. 856–869, July 1986.

[26] K. Hsiao and T. Lozano-Perez, “Imitation learning of whole-body
grasps,” in IEEE International Conference on Intelligent Robots and
Systems, Beijing, China, October 2006, pp. 5657–5662.

[27] E. Yoshida, M. Poirier, J.-P. Laumond, O. Kanoun, F. Lamiraux,
R. Alami, and K. Yokoi, “Whole-body motion planning for pivoting
based manipulation by humanoids,” in IEEE International Conference
on Robotics and Automation, Pasadena, CA, May 2008, pp. 3181–
3186.

6

