
HAL Id: hal-01309166
https://hal.science/hal-01309166v2

Submitted on 17 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relative controllability of linear difference equations
Guilherme Mazanti

To cite this version:
Guilherme Mazanti. Relative controllability of linear difference equations. SIAM Journal on Control
and Optimization, 2017, 55 (5), pp.3132-3153. �10.1137/16M1073157�. �hal-01309166v2�

https://hal.science/hal-01309166v2
https://hal.archives-ouvertes.fr


Relative controllability of linear difference equations

Guilherme Mazanti∗

February 17, 2017

Abstract

In this paper, we study the relative controllability of linear difference equations with multiple
delays in the state by using a suitable formula for the solutions of such systems in terms of their
initial conditions, their control inputs, and some matrix-valued coefficients obtained recursively
from the matrices defining the system. Thanks to such formula, we characterize relative controlla-
bility in time T in terms of an algebraic property of the matrix-valued coefficients, which reduces
to the usual Kalman controllability criterion in the case of a single delay. Relative controllability
is studied for solutions in the set of all functions and in the function spaces Lp and Ck. We also
compare the relative controllability of the system for different delays in terms of their rational
dependence structure, proving that relative controllability for some delays implies relative con-
trollability for all delays that are “less rationally dependent” than the original ones, in a sense that
we make precise. Finally, we provide an upper bound on the minimal controllability time for a
system depending only on its dimension and on its largest delay.

Notations In this paper, we denote by N and N∗ the sets of nonnegative and positive integers, re-
spectively. For a,b ∈R, we write the set of all integers between a and b as Ja,bK = [a,b]∩Z, with the
convention that [a,b] = /0 if a> b. The cardinality of a set N is denoted by #N. For ξ ∈RN , we use ξmin
and ξmax to denote the smallest and the largest components of ξ , respectively. For ξ ∈ R, the symbol
bξc is used to the denote the integer part of ξ , i.e., the unique integer such that ξ −1 < bξc ≤ ξ .

The set of d×m matrices with coefficients in K ⊂C is denoted by Md,m(K), or simply by Md(K)
when m = d. The identity matrix in Md(C) is denoted by Idd and the zero matrix in Md,m(C) is
denoted by 0d,m, or simply by 0 when its dimensions are clear from the context. We use e1, . . . ,ed
to denote the canonical basis of Cd . For p ∈ [1,+∞], |·|p indicates both the `p-norm in Cd and the
corresponding induced matrix norm in Md,m(C). The range of a matrix M ∈Md,m(C) is denoted by
RanM, and rkM denotes the dimension of RanM.
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1 Introduction
This paper characterizes the relative controllability of the controlled difference equation

Σ(A,B,Λ) : x(t) =
N

∑
j=1

A jx(t−Λ j)+Bu(t), (1.1)

where x(t)∈Cd is the state, u(t)∈Cm is the control input, N,d,m∈N∗, Λ= (Λ1, . . . ,ΛN)∈ (0,+∞)N

is the vector of positive delays, A = (A1, . . . ,AN) ∈Md(C)N is a N-tuple of d× d complex-valued
matrices, and B ∈Md,m(C) is a d×m complex-valued matrix.

An important motivation for the study of (1.1) is that several hyperbolic PDEs can be transformed
into such system thanks to classical transformations based mainly on the method of characteristics
[6, 7, 14, 21, 32]. In particular, stability criteria for transport and wave equations on networks have
been obtained in [4] through the stability analysis of (1.1) with no control input, and a similar method
has been used in [7] to characterize the stability of nonlinear hyperbolic systems with respect to the
C1 and W 1,p norms.

Another motivation comes from the study of more general neutral functional differential equations
of the form

d
dt

(
x(t)−

N

∑
j=1

A jx(t−Λ j)

)
= f (xt)+Bu(t), (1.2)

where xt : [−r,0]→Cd is given by xt(s) = x(t + s), r≥max j∈J1,NK Λ j, and f is some function defined
on a certain space (typically Ck([−r,0],Cd) or W k,p((−r,0),Cd)) [8, 9, 15, 24], [16, Section 9.7]. It
has been proved in [18] that, under no control, there is a deep link between the dynamic properties of
(1.1) and (1.2), due to the fact that the essential spectra of the associated semigroups coincide. Such
link has been exploited, for instance, in [17] to obtain criteria for the stabilizability of (1.1) and (1.2)
under linear state feedbacks. Other works have also considered control and stabilization properties
for (1.2), such as [25, 26, 28, 30].

The stability analysis of (1.1) with no control input has a long history [1, 8–10, 15, 18, 22] (see
also [16, Chapter 9] and references therein). In particular, it has been shown that the stability of (1.1)
is not preserved under perturbations of the delays [8, 16, 18, 22], and that the rational dependence of
the delays plays an important role in the stability analysis [1, 4, 18, 23, 31]. Such interplay between
rational dependence of the delays and properties of (1.1) is also present when one considers relative
controllability, as we show in Section 4.

Concerning the controllability problem, due to the infinite-dimensional nature of the dynamics of
neutral functional differential equations and difference equations, several different notions of control-
lability can be used, such as exact, approximate, spectral, or relative controllability [5, 30]. Relative
controllability has been originally introduced in the study of control systems with delays in the control
input [5, 20, 27], but this notion has later been extended and used to study also systems with delays
in the state [13, 29] and in more general frameworks, such as for stochastic control systems [19] or
fractional integro-differential systems [2]. The main idea of relative controllability is that, instead of
controlling the state xt : [−r,0]→ Cd of (1.1), defined by xt(s) = x(t + s), in a certain function space
such as Ck([−r,0],Cd) or Lp((−r,0),Cd), where r ≥ max j∈J1,NK Λ j, one controls only the final state
x(t) = xt(0). We defer the precise definition of relative controllability used in this paper to Defini-
tion 3.4, after having proved in Theorems 3.1 and 3.2 criteria for several equivalent or closely related
notions of relative controllability.

The relative controllability of systems related to (1.1) has been addressed in [11, 13, 29], where,
motivated by the analysis of the relative controllability of the continuous-time delayed control system
ẋ(t) = A0x(t− τ)+B0u(t), the authors consider a discrete-time system under the form

∆x(t) = Ax(t− k)+Bu(t), t ∈ N, (1.3)
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where ∆x(t) = x(t +1)−x(t) and k ∈N∗. Such system corresponds to an explicit Euler discretization
of the continuous-time system ẋ(t) = A0x(t − τ)+B0u(t) with time step h = τ

k and A = hA0, B =
hB0. Using an explicit representation of solutions based on discrete delayed matrix exponentials,
the authors characterize the relative controllability of (1.3) and the minimal controllability time, and
provide expressions for the control input steering the system from a prescribed initial condition to a
desired final state. A comparison between the results of this paper and those from [13] is provided in
Example 5.6.

In this paper, the relative controllability of (1.1) is analyzed through a suitable representation for-
mula for its solutions, describing a solution in time t in terms of its initial condition, the control input,
and some matrix-valued coefficients computed recursively (see Proposition 2.7). Such coefficients
generalize the discrete delayed matrix exponentials introduced in [12] for (1.3) to the case of several
delays and matrices. A similar formula has been used in [3] to analyze the stability of a system of
transport equations on a network under intermittent damping and in [4] to obtain stability criteria for
(1.1) under no control and with time-varying matrices A j, which in particular provide generalizations
of classical stability results for difference equations such as the Hale–Silkowski criterion from [31]
(cf. also [1], [16, Section 9.6]).

The plan of the paper is as follows. After some general discussion on the well-posedness of (1.1)
and the derivation of the explicit representation formula for its solutions in Section 2, we characterize
relative controllability for some fixed final time T > 0 in Section 3 in the set of all functions and in
the function spaces Lp and Ck. For given A = (A1, . . . ,AN) ∈Md(C)N and B ∈Md,m(C), Section 4
compares the relative controllability of (1.1) for different delays Λ1, . . . ,ΛN and L1, . . . ,LN in terms of
their rational dependence structure. Finally, Section 5 provides a uniform upper bound on the minimal
time for the relative controllability of (1.1).

Notice that all the results in this paper also hold, with the same proofs, if one assumes A =
(A1, . . . ,AN) ∈Md(R)N and B ∈Md,m(R) with the state x(t) ∈ Rd and the control u(t) ∈ Rm. We
choose complex-valued matrices, states, and controls for (1.1) in this paper following the approach
of [4], which is mainly motivated by the fact that classical spectral conditions for difference equations
are more naturally written down in such framework.

2 Well-posedness and explicit representation of solutions
This sections establishes the well-posedness of (1.1) and provides an explicit representation formula
for its solutions. The proofs of the main results of this section, Propositions 2.2 and 2.7, are very
similar to the ones given in [4] for the corresponding uncontrolled system, and for such reason are
omitted here. We start by providing the definition of solution used in this paper.

Definition 2.1. Let A = (A1, . . . ,AN)∈Md(C)N , B ∈Md,m(C), Λ = (Λ1, . . . ,ΛN)∈ (0,+∞)N , T > 0,
x0 : [−Λmax,0)→Cd , and u : [0,T ]→Cm. We say that x : [−Λmax,T ]→Cd is a solution of Σ(A,B,Λ)
with initial condition x0 and control u if it satisfies (1.1) for every t ∈ [0,T ] and x(t) = x0(t) for
t ∈ [−Λmax,0).

For t ∈ [0,T ] and x : [−Λmax,T ]→Cd a solution of Σ(A,B,Λ), we define xt : [−Λmax,0)→Cd by
xt = x(t + ·)|[−Λmax,0).

Notice that this definition of solution contains no regularity assumptions on x0, u, or x. Nonethe-
less, this weak framework is enough to guarantee existence and uniqueness of solutions, as stated in
the next proposition, whose proof is very similar to that of [4, Proposition 3.2].

Proposition 2.2. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , T >
0, x0 : [−Λmax,0)→Cd , and u : [0,T ]→Cm. Then Σ(A,B,Λ) admits a unique solution x : [−Λmax,T ]
→ Cd with initial condition x0 and control u.
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Remark 2.3. Let T > 0. If x0, x̃0 : [−Λmax,0)→ Cd and u, ũ : [0,T ]→ Cm are such that x0 = x̃0
and u = ũ almost everywhere on their respective domains, then the solutions x, x̃ : [−Λmax,T ]→Cd of
Σ(A,B,Λ) associated respectively with x0, u, and x̃0, ũ, satisfy x= x̃ almost everywhere on [−Λmax,T ].
In particular, one still obtains existence and uniqueness of solutions of Σ(A,B,Λ) (in the sense of
functions defined almost everywhere) for initial conditions in Lp((−Λmax,0),Cd) and controls in
Lp((0,T ),Cm) for some p ∈ [1,+∞], any such solution x satisfies x ∈ Lp((−Λmax,T ) ,Cd), and hence
xt ∈ Lp((−Λmax,0),Cd) for every t ∈ [0,T ].

Remark 2.4. If x0 ∈Ck([−Λmax,0),Cd) and u∈Ck([0,T ],Cm) for some k∈N, then the corresponding
solution x of Σ(A,B,Λ) belongs to Ck([−Λmax,T ],Cd) if and only if

lim
t→0

x(r)0 (t) =
N

∑
j=1

A jx
(r)
0 (−Λ j)+Bu(r)(0), ∀r ∈ J0,kK, (2.1)

where x(r)0 and u(r) denote the r-th derivatives of x0 and u, respectively.

Due to the compatibility condition (2.1) required for obtaining solutions x in the space Ck([−Λmax,
T ],Cd), we find it useful to introduce the following definition.

Definition 2.5. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , x0 :
[−Λmax,0)→Cd , and k ∈N. We say that x0 is Ck-admissible for system Σ(A,B,Λ) if x0 ∈ Ck([−Λmax,

0),Cd) and, for every r ∈ J0,kK, limt→0 x(r)0 (t) exists and

lim
t→0

x(r)0 (t)−
N

∑
j=1

A jx
(r)
0 (−Λ j) ∈ RanB.

In order to provide an explicit representation for the solutions of Σ(A,B,Λ), we first provide a
recursive definition of the matrix coefficients Ξn appearing in such representation.

Definition 2.6. For A = (A1, . . . ,AN) ∈ Md(C)N and n ∈ ZN , we define the matrix Ξn ∈ Md(C)
inductively by

Ξn =


0, if n ∈ ZN \NN ,
Idd, if n = 0,

N

∑
k=1

AkΞn−ek , if n ∈ NN \{0}.
(2.2)

We now provide an explicit representation for the solutions of Σ(A,B,Λ), which is a generalization
of [4, Lemma 3.13] to the case of the controlled difference equation (1.1).

Proposition 2.7. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , T >
0, x0 : [−Λmax,0)→ Cd , and u : [0,T ]→ Cm. The corresponding solution x : [−Λmax,T ]→ Cd of
Σ(A,B,Λ) is given for t ∈ [0,T ] by

x(t) = ∑
(n, j)∈NN×J1,NK
−Λ j≤t−Λ·n<0

Ξn−e jA jx0(t−Λ ·n)+ ∑
n∈NN

Λ·n≤t

ΞnBu(t−Λ ·n). (2.3)

Proposition 2.7 can be proved by verifying that the function x : [−Λmax,T ]→ Cd defined in (2.3)
satisfies indeed (1.1) for every t ∈ [0,T ] and is equal to the initial condition for negative time, which
can be done by straightforward computations similar to the ones in [4, Lemma 3.13].
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The controllability results we establish in Section 3 are based on the explicit representation for
the solutions from Proposition 2.7. Notice that the control u only affects the second term of (2.3).
Since, in this term, u is evaluated only at times t −Λ · n, one should pack together coefficients Ξn
corresponding to different n,n′ ∈ N for which Λ ·n = Λ ·n′, in the same manner as in [4, Definition
3.10].

Definition 2.8. Let Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N . We partition NN according to the equivalence
relation ∼ defined by writing n∼ n′ if Λ ·n = Λ ·n′. We use [·]Λ to denote the equivalence classes of
∼ and we set NΛ = NN/∼. The index Λ is omitted from the notation of [·]Λ when the delay vector Λ

is clear from the context. We define
Ξ̂

Λ

[n] = ∑
n′∈[n]

Ξn′. (2.4)

Thanks to Definition 2.8, the representation formula (2.3) for the solutions of Σ(A,B,Λ) can be
written as

x(t) = ∑
(n, j)∈NN×J1,NK
−Λ j≤t−Λ·n<0

Ξn−e jA jx0(t−Λ ·n)+ ∑
[n]∈NΛ

Λ·n≤t

Ξ̂
Λ

[n]Bu(t−Λ ·n). (2.5)

3 Relative controllability criteria
This section presents the main relative controllability criteria from the paper, Theorems 3.1 and 3.2
below. Theorem 3.1 provides a criterion for relative controllability in the set of all functions and in the
Lp spaces, whereas the criterion in Theorem 3.2 characterizes relative controllability in the Ck spaces.
Both algebraic criteria we obtain are expressed in terms of the coefficients Ξ̂Λ

[n] and the matrix B and
are generalizations of the usual Kalman condition for the controllability of a discrete-time system.
Their proofs are based on the explicit representation for solutions (2.5).

Theorem 3.1. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , T > 0,
and p ∈ [1,+∞]. Define Ξ̂Λ

[n] as in (2.4). Then the following assertions are equivalent.

(a) One has
Span

{
Ξ̂

Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ T, w ∈ Cm

}
= Cd. (3.1)

(b) For every x0 : [−Λmax,0)→ Cd and x1 ∈ Cd , there exists u : [0,T ]→ Cm such that the solution
x of Σ(A,B,Λ) with initial condition x0 and control u satisfies x(T ) = x1.

(c) There exists ε0 > 0 such that, for every ε ∈ (0,ε0), x0 : [−Λmax,0)→ Cd , and x1 : [0,ε]→ Cd ,
there exists u : [0,T + ε]→ Cm such that the solution x of Σ(A,B,Λ) with initial condition x0
and control u satisfies x(T + ·)|[0,ε] = x1.

(d) There exists ε0 > 0 such that, for every ε ∈ (0,ε0), x0 ∈ Lp((−Λmax,0),Cd), and x1 ∈ Lp((0,ε),
Cd), there exists u ∈ Lp((0,T +ε),Cm) such that the solution x of Σ(A,B,Λ) with initial condi-
tion x0 and control u satisfies x ∈ Lp((−Λmax,T + ε),Cd) and x(T + ·)|[0,ε] = x1.

Proof. For T > 0, let NT = {[n] ∈NΛ |Λ ·n≤ T} and nT = #NT . The proof is carried out as follows.
Clearly, (c) =⇒ (b). We will show the equivalences by proving that (b) =⇒ (a), (a) =⇒ (c) and
(d), and (d) =⇒ (a).

Assume that (b) is satisfied, which shows, using (2.5) and considering a zero initial condition, that,
for every x1 ∈ Cd , there exists u : [0,T ]→ Cm such that(

Ξ̂Λ

[n]B
)
[n]∈NT

(
u(T −Λ ·n)

)
[n]∈NT = ∑

[n]∈NT

Ξ̂
Λ

[n]Bu(T −Λ ·n) = x1, (3.2)
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where
(

Ξ̂Λ

[n]B
)
[n]∈NT

denotes the d×mnT matrix composed of the nT blocks Ξ̂Λ

[n]B of size d×m and(
u(T −Λ ·n)

)
[n]∈NT denotes the mnT ×1 matrix composed of the nT blocks u(T −Λ ·n) of size m×1.

This means that the map CmnT 3U 7→
(

Ξ̂Λ

[n]B
)
[n]∈NT

U ∈ Cd is surjective, and thus (a) is satisfied.

Assume now that (a) is satisfied and let

ε0 = min

 min
[n′],[n]∈NT

[n′]6=[n]

∣∣Λ ·n−Λ ·n′
∣∣ , min

n∈NN

Λ·n>T

(Λ ·n−T )

> 0.

Let ε ∈ (0,ε0), x0 : [−Λmax,0)→ Cd , and x1 : [0,ε]→ Cd . Thanks to (a), the map CmnT 3 U 7→(
Ξ̂Λ

[n]B
)
[n]∈NT

U ∈Cd is surjective, and hence the d×mnT matrix
(

Ξ̂Λ

[n]B
)
[n]∈NT

admits a right inverse

M ∈MmnT ,d(C). Let U =
(
U[n]
)
[n]∈NT : [0,ε]→ CmnT = (Cm)N

T
be given by

U(t) = M

x1(t)− ∑
(n, j)∈NN×J1,NK
−Λ j≤T+t−Λ·n<0

Ξn−e jA jx0(T + t−Λ ·n)

 . (3.3)

Define u : [0,T + ε]→ Cm by

u(t) =

{
U[n](Λ ·n+ t−T ), if t ∈ [T −Λ ·n,T −Λ ·n+ ε] for some [n] ∈NT ,

0, otherwise.
(3.4)

Thanks to the definition of ε0, u is well-defined, and one has u(T + t −Λ · n) = U[n](t) for every
[n] ∈NT and t ∈ [0,ε]. Hence, it follows from (3.3) that, for every t ∈ [0,ε],

x1(t)− ∑
(n, j)∈NN×J1,NK
−Λ j≤T+t−Λ·n<0

Ξn−e jA jx0(T + t−Λ ·n) =
(

Ξ̂Λ

[n]B
)
[n]∈NT

(
u(T + t−Λ ·n)

)
[n]∈NT

= ∑
[n]∈NT

Ξ̂
Λ

[n]Bu(T + t−Λ ·n) = ∑
[n]∈NΛ

Λ·n≤T+t

Ξ̂
Λ

[n]Bu(T + t−Λ ·n), (3.5)

where we use that, thanks to the definition of ε0, one has

NT = {[n] ∈NΛ |Λ ·n≤ T + t}, ∀t ∈ [0,ε]. (3.6)

It now follows from (2.5) and (3.5) that the solution x of Σ(A,B,Λ) with initial condition x0 and
control u satisfies x(T + ·)|[0,ε] = x1, and hence (c) holds. Notice moreover that, if we assume x0 ∈
Lp((−Λmax,0),Cd) and x1 ∈ Lp((0,ε),Cd), it follows from (3.3) that U ∈ Lp((0,ε),CmnT ), and thus,
by (3.4), u ∈ Lp((0,T + ε),Cm). Hence, the solution x of Σ(A,B,Λ) with initial condition x0 and
control u satisfies x ∈ Lp((−Λmax,T + ε),Cd), thanks to Remark 2.3, and x(T + ·)|[0,ε] = x1, which
shows that (d) also holds.

Finally, assume that (d) holds, take ε0 > 0 as in (d) and fix ε ∈ (0,ε0). Then, considering a zero
initial condition, for every constant final state x1 ∈ Cd , there exists u ∈ Lp((0,T + ε),Cm) such that,
for almost every t ∈ (0,ε), one has, as in (3.2),(

Ξ̂Λ

[n]B
)
[n]∈NT

(
u(T + t−Λ ·n)

)
[n]∈NT = x1,

where we use that (3.6) holds, up to choosing a smaller ε ∈ (0,ε0). Hence, as in (3.2), one also obtains
that the map CmnT 3U 7→

(
Ξ̂Λ

[n]B
)
[n]∈NT

U ∈ Cd is surjective, and thus (a) is satisfied.
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The next result presents a relative controllability criterion for Ck solutions of Σ(A,B,Λ), which
is slightly different from (a) in Theorem 3.1 due to the compatibility condition (2.1) required for the
existence of Ck solutions.

Theorem 3.2. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , T > 0,
and k ∈ N. Define Ξ̂Λ

[n] as in (2.4). Then the following assertions are equivalent.

(a) One has
Span

{
Ξ̂

Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n < T, w ∈ Cm

}
= Cd. (3.7)

(b) For every x0 C
k-admissible for Σ(A,B,Λ) and x1 ∈ Cd , there exists u ∈ Ck([0,T ],Cm) such that

the solution x of Σ(A,B,Λ) with initial condition x0 and control u satisfies x ∈ Ck([−Λmax,T ],
Cd) and x(T ) = x1.

(c) There exists ε0 > 0 such that, for every ε ∈ (0,ε0), x0 Ck-admissible for Σ(A,B,Λ), and x1 ∈
Ck([0,ε],Cd), there exists u∈Ck([0,T +ε],Cm) such that the solution x of Σ(A,B,Λ) with initial
condition x0 and control u satisfies x ∈ Ck([−Λmax,T + ε],Cd) and x(T + ·)|[0,ε] = x1.

Proof. Let NT
∗ = {[n]Λ ∈ NΛ |Λ · n < T} and n∗T = #NT

∗ . We begin the proof by noticing that (c)
implies (b). Assume now that (b) holds and let us show that (a) is satisfied. For every x1 ∈ Cd , there
exists u ∈ Ck([0,T ],Cm) such that the solution x of Σ(A,B,Λ) with zero initial condition and control
u satisfies x ∈ Ck([−Λmax,T ],Cd) and, from (2.5),

∑
[n]∈NΛ

Λ·n≤T

Ξ̂
Λ

[n]Bu(T −Λ ·n) = x1. (3.8)

Moreover, since x ∈ Ck([−Λmax,T ],Cd), it follows from Remark 2.4 that (2.1) is satisfied, and thus,
for every r ∈ J0,kK, Bu(r)(0) = 0. Thus (3.8) becomes

∑
[n]∈NΛ

Λ·n<T

Ξ̂
Λ

[n]Bu(T −Λ ·n) = x1,

and we conclude, as in the proof of Theorem 3.1, thatCmn∗T 3U 7→
(

Ξ̂Λ

[n]B
)
[n]∈NT

∗
U ∈Cd is surjective,

and thus (a) is satisfied.
Finally, assume that (a) is satisfied and let

ε0 =
1
2

min

 min
[n′],[n]∈NT

∗
[n′]6=[n]

∣∣Λ ·n−Λ ·n′
∣∣ , min

n∈NN

Λ·n6=T

|Λ ·n−T |

> 0.

Let ε ∈ (0,ε0), x0 Ck-admissible for Σ(A,B,Λ), and x1 ∈ Ck([0,ε],Cd). Since x0 is Ck-admissible,
there exists µ ∈ Ck([0,ε],Cm), with a compact support inside [0,ε), such that, for every r ∈ J0,kK,

lim
t→0

x(r)0 (t) =
N

∑
j=1

A jx
(r)
0 (−Λ j)+Bµ

(r)(0). (3.9)

If T = Λ ·n for some n ∈ NN , we set δT = 1 and τ = [n]; otherwise, we set δT = 0 and τ = [0]. As
in the proof of Theorem 3.1, it follows from (a) that the d×mn∗T matrix

(
Ξ̂Λ

[n]B
)
[n]∈NT

∗
admits a right

7



inverse M ∈Mmn∗T ,d(C). Let U =
(
U[n]
)
[n]∈NT

∗
: [0,ε]→ Cmn∗T = (Cm)N

T
∗ be given by

U(t) = M

x1(t)− ∑
(n, j)∈NN×J1,NK
−Λ j≤T+t−Λ·n<0

Ξn−e jA jx0(T + t−Λ ·n)−δT Ξ̂
Λ
τ Bµ(t)

 . (3.10)

Notice that the sum in (3.10) can be taken over the set

G1(t) = {(n = (n1, . . . ,nN), j) ∈ NN× J1,NK | −Λ j ≤ T + t−Λ ·n < 0, n j ≥ 1},

since Ξn = 0 if n∈ZN \NN . Moreover, thanks to the definition of ε0, one has G1(t) = G1(0) for every
t ∈ [0,ε], and thus U can be written for t ∈ [0,ε] as

U(t) = M

x1(t)− ∑
(n, j)∈NN×J1,NK
−Λ j≤T−Λ·n<0

Ξn−e jA jx0(T + t−Λ ·n)−δT Ξ̂
Λ
τ Bµ(t)

 .

In particular, one obtains that U ∈ Ck([0,ε],Cmn∗T ). We extend U into a Ck function on the interval[
− ε

2 ,
3ε

2

]
with a compact support in

(
− ε

2 ,
3ε

2

)
. Define u : [0,T + ε]→ Cm by

u(t) =


U[n](Λ ·n+ t−T ), if t ∈

[
T −Λ ·n− ε

2 ,T −Λ ·n+ 3ε

2

]
for some [n] ∈NT

∗ ,

µ(t), if t ∈ [0,ε],
0, otherwise,

which is well-defined thanks to the choice of ε0, and satisfies u ∈ Ck([0,T + ε],Cm) thanks to the
construction of U and µ . Moreover, one has u(T + t−Λ ·n) =U[n](t) for every [n] ∈NT

∗ and, thanks
to (3.9), it follows from Remark 2.4 that the unique solution x of Σ(A,B,Λ) with initial condition x0
and control u satisfies x ∈ Ck([−Λmax,T + ε],Cd). It follows from (3.10) that, for every t ∈ [0,ε],

x1(t)− ∑
(n, j)∈NN×J1,NK
−Λ j≤T+t−Λ·n<0

Ξn−e jA jx0(T + t−Λ ·n)

= δT Ξ̂
Λ
τ Bµ(t)+

(
Ξ̂Λ

[n]B
)
[n]∈NT

∗

(
u(T + t−Λ ·n)

)
[n]∈NT

∗

= ∑
[n]∈NΛ

Λ·n≤T

Ξ̂
Λ

[n]Bu(T + t−Λ ·n) = ∑
[n]∈NΛ

Λ·n≤T+t

Ξ̂
Λ

[n]Bu(T + t−Λ ·n),

and thus one obtains that the solution x of Σ(A,B,Λ) with initial condition x0 and control u satisfies
x(T + ·)|[0,ε] = x1, which shows that (c) holds.

Remark 3.3. When N = 1, the controlled difference equation (1.1) becomes x(t) = Ax(t−Λ)+Bu(t),
with A= A1 and Λ=Λ1. It follows from Definitions 2.6 and 2.8 that, for n= n∈N, one has Ξ̂Λ

[n] = An,

and thus condition (a) from Theorem 3.1 reduces to rk
(
B AB A2B · · · AbT/ΛcB

)
= d, which is

the usual Kalman condition for controllability of discrete-time linear systems (see, e.g., [33, Theorem
2]). Moreover, condition (a) from Theorem 3.2 reduces to rk

(
B AB A2B · · · AdT/Λe−1B

)
= d,

which is the same as the previous one when T/Λ /∈ N∗.

Notice that (b), (c), and (d) from Theorem 3.1 and (b) and (c) from Theorem 3.2 could all be
used to define relative controllability in different function spaces. Motivated by the equivalences
established in Theorems 3.1 and 3.2, we provide the following definition.
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Definition 3.4. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ ∈ (0,+∞)N , and T > 0.

(a) We say that Σ(A,B,Λ) is relatively controllable in time T if

Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ T, w ∈ Cm

}
= Cd.

(b) If Σ(A,B,Λ) is relatively controllable in some time T > 0, we define the minimal controllability
time Tmin for Σ(A,B,Λ) by Tmin = inf{T > 0 |Σ(A,B,Λ) is relativelycontrollable in time T}.

Remark 3.5. Contrarily to the situation for linear control systems of the form ẋ(t) = Ax(t)+Bu(t)
or x(t) = Ax(t−1)+Bu(t), relative controllability for some time T > 0 does not imply stabilizability
by a linear feedback law. Indeed [17, Theorem 3.1] proves that Σ(A,B,Λ) can be strongly stabilized
by a linear feedback law u(t) = ∑

N
j=1 K jx(t−Λ j) if and only if there exists ε > 0 such that, for every

λ ∈ C with Reλ ≥−ε , one has

rk

(
B Idd−

N

∑
j=1

A je−λΛ j

)
= d. (3.11)

For N = d = 2 and m = 1, consider the system Σ(A,B,Λ) with A = (A1,A2), B, and Λ = (Λ1,Λ2)
given by

A1 =

(
α −α1−`

0 0

)
, A2 =

(
0 1
0 0

)
, B =

(
0
1

)
,

Λ1 = 1, Λ2 = `,

with ` ∈ (0,1) and α > 1. Clearly, Σ(A,B,Λ) is relatively controllable in time T ≥ ` since Span{B,
A2B}= C2. However, for λ ∈ C, one has

Id2−A1e−λ −A2e−λ` =

(
1−αe−λ α1−`e−λ − e−λ`

0 1

)
,

and the first row of this matrix is zero for λ = lnα . Hence (3.11) does not hold for λ = lnα > 0,
which shows in particular that Σ(A,B,Λ) cannot be strongly stabilized by a linear feedback law.

4 Rational dependence of the delays
This section compares relative controllability of Σ(A,B,Λ) for different delay vectors Λ in terms of
their rational dependence structure. We start by recalling the definition of rational dependence and
commensurability.

Definition 4.1. Let Λ = (Λ1, . . . ,ΛN) ∈ RN .

(a) We say that the components of Λ are rationally dependent if there exists n ∈ ZN \{0} such that
Λ ·n = 0. Otherwise, the components of Λ are said to be rationally independent.

(b) We say that the components of Λ are commensurable if there exist λ ∈ R and k ∈ ZN such that
Λ = λk.

Notice that the set ZN can be replaced by QN in Definition 4.1 without changing the definitions
of rational dependence and commensurability. We next introduce a preorder in the set of all possible
delay vectors (0,+∞)N , which describes when one delay vector is “less rationally dependent” than
another.
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Definition 4.2. For Λ ∈ (0,+∞)N , we define Z(Λ) = {n ∈ ZN |Λ ·n = 0}. For Λ,L ∈ (0,+∞)N , we
write Λ 4 L or, equivalently, L < Λ, if Z(Λ)⊂ Z(L). We write Λ≈ L if Λ 4 L and L 4 Λ.

If Λ ∈ (0,+∞)N has rationally independent components, then one immediately computes Z(Λ) =
{0}, and hence Λ 4 L for every L ∈ (0,+∞)N , that is, delay vectors with rationally independent
components are minimal for the preorder 4. Notice also that, for Λ ∈ (0,+∞)N , the set Z(Λ) encodes
the structure of the equivalence classes [n]Λ for n∈NN , in the sense that, for n′ ∈NN , one has n′ ∈ [n]Λ
if and only if n′−n ∈ Z(Λ), which shows that [n]Λ = (n+Z(Λ))∩NN . We recall the following result
from [4].

Proposition 4.3 ([4], Proposition 3.9). Let Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N . There exist h ∈ J1,NK,
`= (`1, . . . , `h) ∈ (0,+∞)h with rationally independent components, and M ∈MN,h(N) with rkM = h
such that Λ = M`. Moreover, for every M as before, one has

RanM =
{

L ∈ RN ∣∣ for every n ∈ Z(Λ), one has L ·n = 0
}
.

In particular, it follows from Proposition 4.3 that the set of all L ∈ (0,+∞)N such that L < Λ is
RanM∩ (0,+∞)N . The next proposition gathers some immediate properties that follow from Defini-
tion 4.2.

Proposition 4.4. Let Λ,L ∈ (0,+∞)N . If Λ 4 L, then, for every n ∈ NN , one has [n]Λ ⊂ [n]L and

Ξ̂
L
[n] = ∑

τ∈NΛ

τ⊂[n]L

Ξ̂
Λ
τ . (4.1)

In particular, if Λ≈ L, then, for every n ∈ NN , one has [n]Λ = [n]L and Ξ̂Λ

[n] = Ξ̂L
[n].

Proof. If Λ 4 L and n ∈NN , the inclusion [n]Λ ⊂ [n]L follows immediately from the fact that Z(Λ)⊂
Z(L) and that [n]λ = (n+Z(λ ))∩NN for every n ∈ NN and λ ∈ (0,+∞)N . Moreover, the set {τ ∈
NΛ | τ ⊂ [n]L} is a partition of [n]L, since, for every n′ ∈ [n]L, one has [n′]Λ ⊂ [n′]L = [n]L and all
equivalence classes in NΛ are disjoint. Hence

∑
τ∈NΛ

τ⊂[n]L

Ξ̂
Λ
τ = ∑

τ∈NΛ

τ⊂[n]L

∑
n′∈τ

Ξn′ = ∑
n′∈[n]L

Ξn′ = Ξ̂
L
[n].

The statements in the case Λ≈ L follow immediately.

The first main result of this section is the following theorem.

Theorem 4.5. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ,L ∈ (0,+∞)N , and T > 0 be such
that Λ 4 L. Set κ = max j∈J1,NK

Λ j
L j

. If Σ(A,B,L) is relatively controllable in time T , then Σ(A,B,Λ) is
relatively controllable in time κT .

Proof. Notice that, for every n = (n1, . . . ,nN) ∈ NN \ {0}, one has Λ·n
L·n = ∑

N
j=1

Λ j
L j

L jn j
L·n ≤ κ , and thus

Λ ·n≤ κL ·n for every n ∈ NN . Using Proposition 4.4, one obtains that

Span
{

Ξ̂
L
[n]Bw

∣∣∣ [n] ∈NL, L ·n≤ T, w ∈ Cm
}

= Span

 ∑
τ∈NΛ

τ⊂[n]L

Ξ̂
Λ
τ Bw

∣∣∣∣∣∣∣∣ [n] ∈NL, L ·n≤ T, w ∈ Cm


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⊂ Span
{

Ξ̂
Λ
τ Bw

∣∣∣ τ ∈NΛ, τ ⊂ [n]L, [n]L ∈NL, L ·n≤ T, w ∈ Cm
}

= Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, L ·n≤ T, w ∈ Cm

}
⊂ Span

{
Ξ̂

Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ κT, w ∈ Cm

}
,

which proves the statement.

Theorem 4.5 proves that relative controllability of Σ(A,B,L) implies that of Σ(A,B,Λ) for all delay
vectors Λ such that Λ 4 L (with different controllability times). The converse of this result does not
hold, as illustrated in the following example.

Example 4.6. Consider the system Σ(A,B,Λ) with N = 2, d = 3, m = 1, Λ = (1,λ ) for some λ ∈
(0,1), and

A1 =

0 0 −1
0 0 0
0 0 0

 , A2 =

0 1 0
0 0 1
0 0 0

 , B =

0
0
1

 .

One has A1 =−A2
2 and hence one immediately computes

Ξn =



Id3, if n = (0,0),
A1, if n = (1,0),
A2, if n = (0,1),

A2
2, if n = (0,2),

0, otherwise.

If λ /∈Q, one has Ξ̂Λ

[n] = Ξn for every n ∈ N2, and thus, for every T ≥ 1,

Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ T, w ∈ C

}
= Span

{
ΞnB

∣∣n = (n1,n2) ∈ N2, n1 +λn2 ≤ T
}

⊃ Span{Ξ(0,0)B,Ξ(1,0)B,Ξ(0,1)B}= C3,

which shows that Σ(A,B,Λ) is relatively controllable for every T ≥ 1 when λ /∈ Q. However, for
λ = 1

2 , one computes

Ξ̂
Λ

[n] =


Id3, if [n] = [(0,0)],
A2, if [n] = [(0,1)],
0, otherwise.

Thus, for every T > 0,

Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ T, w ∈ C

}
⊂ Span{B,A2B} C3,

and hence Σ(A,B,Λ) is not relatively controllable for any T > 0 when λ = 1
2 .

Even if the converse of Theorem 4.5 does not hold in general, one can still obtain that relative
controllability with a delay vector Λ ∈ (0,+∞)N implies relative controllability for another delay
vector L < Λ with commensurable components and sufficiently close to Λ.

Theorem 4.7. Let A = (A1, . . . ,AN) ∈ Md(C), B ∈ Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , and
T > 0. For every ε > 0, there exists L = (L1, . . . ,LN) ∈ (0,+∞)N with commensurable components
satisfying L < Λ and 1≤ Λ j

L j
< 1+ ε for every j ∈ J1,NK such that, if Σ(A,B,Λ) is relatively control-

lable in time T , then Σ(A,B,L) is also relatively controllable in time T .
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Before proving Theorem 4.7, let us show the following result.

Lemma 4.8. Let Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N and T > 0. For every ε > 0, there exists L = (L1, . . . ,

LN)∈ (0,+∞)N with commensurable components such that L<Λ, 1≤ Λ j
L j

< 1+ε for every j ∈ J1,NK,

and, for every n,n′ ∈ NN with Λ ·n≤ T , one has Λ ·n = Λ ·n′ if and only if L ·n = L ·n′.

Proof. Write Λ = M`, with M =
(
m jk
)

j∈J1,NK,k∈J1,hK ∈MN,h(N) for some h ∈ J1,NK and `= (`1, . . . ,

`h) ∈ (0,+∞)h with rationally independent components, chosen according to Proposition 4.3. For
n ∈ N∗, we define L(n) =

(
L(n)

1 , . . . ,L(n)
N

)
∈ [0,+∞)N by L(n) = 1

nM bn`c, where bn`c = (bn`1c , . . . ,
bn`hc). We claim that L(n) satisfies the required properties for n ∈ N∗ large enough.

Notice first that, if n ≥ 1/`min, then all the components of bn`c are positive, and hence L(n) ∈
(0,+∞)N . Moreover, L(n) ∈ QN , and thus L(n) has commensurable components. If n ∈ Z(Λ), one
has Λ · n = 0, which yields nTM` = 0 and, since ` has rationally independent components and the
row vector nTM has integer components, one obtains that nTM = 0, which implies that L(n) · n =
1
nnTM bn`c= 0, and hence n ∈ Z(L(n)), proving that L(n) < Λ.

For j ∈ J1,NK, since n` j− 1 <
⌊
n` j
⌋
≤ n` j, one obtains from the definition of L(n) that L(n)

j =
1
n ∑

h
k=1 m jk bn`kc ≤ Λ j and that L(n)

j ≥ Λ j− 1
n ∑

h
k=1 m jk ≥ Λ j−|M|∞ /n. Hence, for n ≥ 1/`min, one

has 1 ≤ Λ j

L(n)
j

≤ 1+ |M|
∞

nL(n)
j

. Notice that, by construction, for every j ∈ J1,NK, one has L(n)
j → Λ j as

n→ +∞. Hence there exists N1 ≥ 1/`min such that, for n ≥ N1, L(n)
j ≥ Λ j/2 for every j ∈ J1,NK.

Thus, for n≥ N1, one has 1≤ Λ j

L(n)
j

≤ 1+ 2|M|
∞

nΛ j
≤ 1+ 2|M|

∞

nΛmin
. Letting N2 ≥ N1 be such that N2 >

2|M|
∞

εΛmin
,

one obtains that 1≤ Λ j

L(n)
j

< 1+ ε for every j ∈ J1,NK and n≥ N2.

To prove the last part of the lemma, notice that, for every n≥ 1/`min, since Λ 4 L(n), if n,n′ ∈NN

are such that Λ ·n = Λ ·n′, then n−n′ ∈ Z(Λ) and thus L(n) ·n = L(n) ·n′. Let F denote the finite set
F = {n ∈ NN |Λ ·n≤ (1+ ε)T} and define

δ = min
{∣∣Λ ·n−Λ ·n′

∣∣ ∣∣n,n′ ∈ F, Λ ·n 6= Λ ·n′
}
> 0.

Since L(n) → Λ as n → +∞ and F is finite, there exists N3 ≥ N2 such that, for n ≥ N3, one has∣∣∣L(n) ·n−Λ ·n
∣∣∣ < δ

3 for every n ∈ F. Let n ≥ N3. Assume, to obtain a contradiction, that n,n′ ∈ NN

are such that Λ ·n≤ T , Λ ·n 6= Λ ·n′, and L(n) ·n = L(n) ·n′. Then, using that 1≤ Λ j

L(n)
j

< 1+ε for every

j ∈ J1,NK, one computes Λ ·n′ < (1+ ε)L(n) ·n′ = (1+ ε)L(n) ·n ≤ (1+ ε)Λ ·n ≤ (1+ ε)T , which
shows that n′ ∈ F. But

δ ≤
∣∣Λ ·n−Λ ·n′

∣∣≤ ∣∣∣Λ ·n−L(n) ·n
∣∣∣+ ∣∣∣L(n) ·n−L(n) ·n′

∣∣∣+ ∣∣∣L(n) ·n′−Λ ·n′
∣∣∣< 2δ

3
,

which is a contradiction since δ > 0. Hence, if n,n′ ∈ NN are such that Λ ·n ≤ T and Λ ·n 6= Λ ·n′
one has L(n) ·n 6= L(n) ·n′.

Proof of Theorem 4.7. Let ε > 0 and take L as in Lemma 4.8. If n ∈ NN is such that Λ ·n ≤ T , then
[n]Λ = [n]L, since it follows from Proposition 4.4 that [n]Λ ⊂ [n]L and, if n′ ∈ [n]L, Lemma 4.8 shows
that n′ ∈ [n]Λ since Λ ·n ≤ T . In particular, the only equivalence class from NΛ contained in [n]L is
[n]Λ. Hence, Proposition 4.4 shows that, for n ∈ NN with Λ ·n≤ T , one has

Ξ̂
L
[n] = ∑

τ∈NΛ

τ⊂[n]L

Ξ̂
Λ
τ = Ξ̂

Λ

[n],
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and thus

Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ T, w ∈ Cm

}
= Span

{
Ξ̂

L
[n]Bw

∣∣∣n ∈ NN , Λ ·n≤ T, w ∈ Cm
}

⊂ Span
{

Ξ̂
L
[n]Bw

∣∣∣n ∈ NN , L ·n≤ T, w ∈ Cm
}
,

since L · n ≤ Λ · n for every n ∈ NN . Hence relative controllability of Σ(A,B,Λ) in time T implies
relative controllability of Σ(A,B,L) in time T .

5 Minimal time for relative controllability
As stated in Remark 3.3, when N = 1 and (1.1) is written as x(t) = Ax(t−Λ)+Bu(t), relative control-
lability in time T is equivalent to Kalman condition rk

(
B AB A2B · · · AbT/ΛcB

)
= d. Thanks to

Cayley–Hamilton Theorem, rk
(
B AB A2B · · · AbT/ΛcB

)
= rk

(
B AB A2B · · · Ad−1B

)
for

every T ≥ (d− 1)Λ. Hence, if the system is relatively controllable for some time T > 0, it is also
relatively controllable in time T = (d− 1)Λ, which proves that its minimal controllability time Tmin
satisfies Tmin ≤ (d− 1)Λ. The uniformity of this upper bound on the matrices A and B is important
for practical applications, since, if one is interested in finding out whether a given system is relatively
controllable for some time T > 0, it suffices to verify whether it is relatively controllable in time
T = (d− 1)Λ, which can be done algorithmically in a finite number of steps upper bounded by a
constant independent of A and B. The goal of this section is to generalize this upper bound on the
minimal controllability time Tmin for systems with larger N.

We start by considering the case of systems with commensurable delays. In this case, by consid-
ering an augmented system in higher dimension, one can characterize the relative controllability of
Σ(A,B,Λ) in terms of a certain output controllability of the augmented system, as shown in the next
lemma.

Lemma 5.1. Let A = (A1, . . . ,AN) ∈ Md(C)N , B ∈ Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , and
T > 0. Assume that Λ has commensurable components and let λ > 0 and k1, . . . ,kN ∈N∗ be such that
(Λ1, . . . ,ΛN) = λ (k1, . . . ,kN). Denote K = max j∈J1,NK k j. Then Σ(A,B,Λ) is relatively controllable in
time T > 0 if and only if, for every X0 : [−λ ,0)→ CKd and x1 ∈ Cd , there exists u : [0,T ]→ Cm such
that the unique solution X : [−λ ,T ]→ CKd of{

X(t) = ÂX(t−λ )+ B̂u(t), t ∈ [0,T ],
X(t) = X0(t), t ∈ [−λ ,0),

(5.1)

satisfies ĈX(T ) = x1, where the matrices Â ∈MKd(C), B̂ ∈MKd,m(C), and Ĉ ∈Md,Kd(C) are given
by

Â =


Â1 Â2 Â3 · · · ÂK
Idd 0 0 · · · 0
0 Idd 0 · · · 0
...

... . . . . . . ...
0 0 · · · Idd 0

 ∈MKd(C), B̂ =


B
0
0
...
0

 ∈MKd,m(C),

Ĉ =
(
Idd 0 0 · · · 0

)
∈Md,Kd(C), Âk =

N

∑
j=1

k j=k

A j for k ∈ J1,KK,

(5.2)
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Proof. It is immediate to verify that x : [−Λmax,T ]→ Cd is the solution of Σ(A,B,Λ) with initial
condition x0 : [−Λmax,0)→ Cd and control u : [0,T ]→ Cm if and only if the function X : [−λ ,T ]→
CKd defined by

X(t) =


x(t)

x(t−λ )
x(t−2λ )

...
x(t− (K−1)λ )


is the solution of (5.1) with control u and with initial condition X0 : [λ ,0)→ CKd given by

X0(t) =


x0(t)

x0(t−λ )
x0(t−2λ )

...
x0(t− (K−1)λ )

 .

Since ĈX(t) = x(t) for every t ∈ [−λ ,T ], the statement of the lemma follows immediately from
Theorem 3.1.

Since (5.1) is a controlled difference equation with a single delay, we use Lemma 5.1 to charac-
terize the relative controllability of Σ(A,B,Λ) in terms of a Kalman rank condition.

Corollary 5.2. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N , and
T > 0. Assume that Λ has commensurable components. Then Σ(A,B,Λ) is relatively controllable in
time T if and only if

rk
(
ĈB̂ ĈÂB̂ ĈÂ2B̂ · · · ĈÂbT/λcB̂

)
= d, (5.3)

where Â, B̂, Ĉ, and λ are as in the statement of Lemma 5.1.

Proof. Notice that, by Proposition 2.7, the solution X : [−λ ,T ]→ CKd of (5.1) with initial condition
X0 : [−λ ,0)→ CKd and control u : [0,T ]→ Cm is given by

X(t) = Â1+bt/λcX0

(
t−
(

1+
⌊ t

λ

⌋)
λ

)
+
bt/λc

∑
n=0

ÂnB̂u(t−nλ ).

Hence

ĈX(T ) = ĈÂ1+bT/λcX0

(
T −

(
1+
⌊

T
λ

⌋)
λ

)
+
bT/λc

∑
n=0

ĈÂnB̂u(T −nλ ). (5.4)

If Σ(A,B,Λ) is relatively controllable in time T , then, by Lemma 5.1, taking X0 = 0, one obtains
that, for every x1 ∈Cd , there exists u : [0,T ]→Cm such that ∑

bT/λc
n=0 ĈÂnB̂u(T−nλ )= x1, which shows

that (5.3) holds. Conversely, if (5.3) holds, it follows that the matrix
(
ĈB̂ ĈÂB̂ · · · ĈÂbT/λcB̂

)
admits a right inverse M ∈M(bT/λc+1)m,d(C). For X0 : [−λ ,0)→CKd and x1 ∈Cd , let U =

(
U j
)bT/λc

j=0

∈ C(bT/λc+1)m be given by

U =

 U0
...

UbT/λc

= M
[

x1−ĈÂ1+bT/λcX0

(
T −

(
1+
⌊

T
λ

⌋)
λ

)]

and take u : [0,T ]→ Cm satisfying u(T −nλ ) =Un for every n ∈ J0,bT/λcK. It follows immediately
from (5.4) that the solution of (5.1) with initial condition X0 and control u satisfies ĈX(T ) = x1, and
hence, by Lemma 5.1, Σ(A,B,Λ) is relatively controllable in time T .
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Thanks to Cayley–Hamiltion Theorem, Corollary 5.2 allows one to obtain an upper bound on the
minimal controllability time for Σ(A,B,Λ) with commensurable delays.

Lemma 5.3. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), and Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N . As-
sume that Λ has commensurable components. If there exists T > 0 such that Σ(A,B,Λ) is relatively
controllable in time T , then its minimal controllability time Tmin satisfies Tmin ≤ (d−1)Λmax.

Proof. For j ∈ J1,KK, set

Ĉ j =
(
0d,( j−1)d Idd 0d,(K− j)d

)
∈Md,Kd(C).

In particular, Ĉ1 = Ĉ. For every j ∈ J2,KK, one has Ĉ jÂ = Ĉ j−1, and thus Ĉ = ĈKÂK−1. Hence, for
every k ∈ N, one has(

ĈB̂ ĈÂB̂ ĈÂ2B̂ · · · ĈÂkB̂
)
=
(
ĈKÂK−1B̂ ĈKÂKB̂ ĈKÂK+1B̂ · · · ĈKÂK+k−1B̂

)
.

Moreover, since ĈKÂ j = ĈK− j for every j ∈ J0,K− 1K, one computes, for j ∈ J0,K− 2K, ĈKÂ jB̂ =

ĈK− jB̂ = 0, which shows that

rk
(
ĈB̂ ĈÂB̂ ĈÂ2B̂ · · · ĈÂkB̂

)
= rk

(
ĈKB̂ ĈKÂB̂ ĈKÂ2B̂ · · · ĈKÂK+k−1B̂

)
. (5.5)

Let T > 0 be such that Σ(A,B,Λ) is relatively controllable in time T . If T ≤ (d−1)Λmax, one has
immediately that Tmin ≤ (d−1)Λmax. If T > (d−1)Λmax, one has, by Corollary 5.2 and (5.5), that

rk
(
ĈKB̂ ĈKÂB̂ ĈKÂ2B̂ · · · ĈKÂK+bT/λc−1B̂

)
= d.

By Cayley–Hamilton Theorem, since Â ∈MKd(C), this implies that

d = rk
(
ĈKB̂ ĈKÂB̂ ĈKÂ2B̂ · · · ĈKÂK+bT/λc−1B̂

)
= rk

(
ĈKB̂ ĈKÂB̂ ĈKÂ2B̂ · · · ĈKÂKd−1B̂

)
since K + bT/λc − 1 ≥ Kd − 1. Hence, by Corollary 5.2 and (5.5), it follows that Σ(A,B,Λ) is
relatively controllable in time T = K(d−1)λ = (d−1)Λmax, which yields Tmin ≤ (d−1)Λmax.

Now that Lemma 5.3 has established a uniform upper bound on the minimal controllability time
for Σ(A,B,Λ) with commensurate delays, one can use Theorems 4.5 and 4.7 in order to deduce a
uniform upper bound for all delay vectors Λ ∈ (0,+∞)N .

Theorem 5.4. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), and Λ = (Λ1, . . . ,ΛN) ∈ (0,+∞)N . If
there exists T > 0 such that Σ(A,B,Λ) is relatively controllable in time T , then its minimal controlla-
bility time Tmin satisfies Tmin ≤ (d−1)Λmax.

Proof. Let ε > 0 and choose L ∈ (0,+∞)N according to Theorem 4.7. Then Σ(A,B,L) is relatively
controllable in time T . Thanks to Lemma 5.3, the minimal controllability time T (L)

min for Σ(A,B,L)

satisfies T (L)
min ≤ (d−1)Lmax, and, in particular, Σ(A,B,L) is relatively controllable in time (d−1)Lmax.

Hence, by Theorem 4.5, Σ(A,B,Λ) is relatively controllable in time (1+ε)(d−1)Lmax, which proves
that the minimal controllability time Tmin for Σ(A,B,Λ) satisfies Tmin ≤ (1+ ε)(d− 1)Lmax ≤ (1+
ε)(d−1)Λmax. Since ε > 0 is arbitrary, one concludes that Tmin ≤ (d−1)Λmax.
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Remark 5.5. The statements and proofs of the results from this section and the previous one can be
slightly modified to show that, for every A= (A1, . . . ,AN)∈Md(C)N , B∈Md,m(C), Λ= (Λ1, . . . ,ΛN)
∈ (0,+∞)N , and T ≥ (d−1)Λmax, one has

Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ T, w ∈ Cm

}
= Span

{
Ξ̂

Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ (d−1)Λmax, w ∈ Cm

}
.

The set V = Span
{

Ξ̂Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ (d−1)Λmax, w ∈ Cm

}
is the set of all states x1 ∈ Cd

that can be reached by the system Σ(A,B,Λ) after time T ≥ (d− 1)Λmax starting from a zero initial
condition.

When N = 1 and the controlled difference equation (1.1) becomes x(t) = Ax(t−Λ)+Bu(t) with
A = A1 and Λ = Λ1, Kalman decomposition (see, e.g., [33, Lemma 3.3.3]) states that there exists an
invertible matrix P ∈Md(C) such that

PAP−1 =

(
A11 A12
0 A22

)
, PB =

(
B1
0

)
with A11 ∈Mr(C), A22 ∈Md−r(C), B1 ∈Mr,m(C), where r = dimV, the pair (A11,B1) is controllable,
and PV = Cr×{0}d−r = Span{e1, . . . ,er}.

Such decomposition does not hold for larger N in general, i.e., one cannot find in general, for
A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), and Λ ∈ (0,+∞)N for which Σ(A,B,Λ) is not relatively
controllable in any time T > 0, a matrix P ∈Md(C) for which one would have, for every j ∈ J1,NK,

PA jP−1 =

(
A( j)

11 A( j)
12

0 A( j)
22

)
, PB =

(
B1
0

)
(5.6)

with A( j)
11 ∈Mr(C), A( j)

22 ∈Md−r(C), B1 ∈Mr,m(C), with r ∈ J0,d−1K and such that Σ(A(1)
11 , . . . ,A

(N)
11 ,

B1,Λ) is relatively controllable in time T ≥ (r− 1)Λmax. Indeed, consider the case N = 2, d = 4,
m = 1, Λ = (1, `) for some ` ∈

(3
4 ,1
)
, and

A1 =


0 1 0 0
2 0 0 0
0 0 0 1
−3

√
2 0 0

 , A2 =


1
2 0 −1 0
0 1 0 1
0 0 1 0√
3 0 0 2

 , B =


0
0
0
1

 .

Notice that

Span{ΞnB |n = (n1,n2) ∈ N2, n1 + `n2 ≤ 3}
= Span{Ξ(0,0)B,Ξ(0,1)B,Ξ(0,2)B,Ξ(0,3)B,Ξ(1,0)B,Ξ(1,1)B,Ξ(1,2)B,Ξ(2,0)B,Ξ(2,1)B,Ξ(3,0)B}

= Span




0
0
0
1

 ,


0
1
0
2

 ,


0
3
0
4

 ,


0
7
0
8

 ,


0
0
1
0

 ,


0
0
3√
2

 ,


0√
2

7
5
√

2

 ,


0
0√
2

0




= {0}×C3,

and thus, by the definition of relative controllability and Theorem 4.5, one obtains that Σ(A,B,Λ)
is not relatively controllable in any time T > 0. We claim that this system cannot be decomposed
under the form (5.6). If it were the case, one immediately verifies from (5.6) that the vector space
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V= P−1(Cr×{0}4−r) would contain B and be invariant under left multiplication by A1 and A2. Such
invariance implies in particular that ΞnB∈V for every n∈N2, and thus {0}×C3⊂V. Such invariance
then also implies that

V 3 A1


0
1
0
0

=


1
0
0√
2

 ,

which shows that V = C4, contradicting the fact that V = P−1(Cr ×{0}4−r) for an invertible P ∈
M4(C) and r ∈ J0,3K. Hence Σ(A,B,Λ) cannot be put under the form (5.6).

Example 5.6. Let A ∈Md(C), B ∈Md,m(C), k ∈ N∗ and consider the difference equation

x(t) = x(t−1)+Ax(t− k)+Bu(t), (5.7)

which we write under the form (1.1) by setting A1 = Idd , A2 = A, Λ1 = 1, and Λ2 = k. Notice that, by
taking only integer times, (5.7) can be seen as an implicit Euler discretization of the continuous-time
delayed control system ẋ(t) = A0x(t−τ)+B0u(t) with time step h = τ

k and A = hA0, B = hB0, and is
similar to the system (1.3) obtained by an explicit Euler discretization.

One easily verifies using (2.2) that the matrix coefficients Ξn associated with (5.7) are given for
n = (n1,n2) ∈ N2 by

Ξn =

(
n1 +n2

n1

)
An2,

and one then obtains from Definition 2.8 that

Ξ̂
Λ

[n] =
b n1

k +n2c
∑
j=0

(
n1 + kn2− j(k−1)

j

)
A j. (5.8)

Hence Ξ̂Λ

[n] coincides with the discrete delayed matrix exponential eA(n1+1+k(n2−1))
k−1 introduced in [12].

It follows from (5.8) that

Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ T, w ∈ Cm

}
= Ran

(
B AB A2B · · · AbT/kcB

)
,

and thus, by Theorem 3.1, (5.7) is relatively controllable in time T if and only if

rk
(
B AB A2B · · · AbT/kcB

)
= d, (5.9)

its minimal controllability time Tmin satisfying Tmin ≤ k(d− 1) thanks to Theorem 5.4 (this is also
an immediate consequence of (5.9) and Cayley–Hamilton theorem in this case). In particular, in the
single-input case m = 1, the minimal controllability time is Tmin = k(d− 1), since the rank of the
matrix in (5.9) is upper bounded by d− 1 when T < k(d− 1). Notice that this is very similar to the
relative controllability criterion for (1.3) proved in [13, Theorem 3.1].

Theorem 5.4 shows that, given A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), and Λ ∈ (0,+∞)N ,
if one wants to check whether Σ(A,B,Λ) is relatively controllable in some time T > 0, it suffices to
verify whether it is relatively controllable in time (d−1)Λmax, i.e., if

Span
{

Ξ̂
Λ

[n]Bw
∣∣∣ [n] ∈NΛ, Λ ·n≤ (d−1)Λmax, w ∈ Cm

}
= Cd

or, equivalently, if

Span
{

Ξ̂
Λ

[n]Be j

∣∣∣ [n] ∈NΛ, Λ ·n≤ (d−1)Λmax, j ∈ J1,mK
}
= Cd, (5.10)
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where e1, . . . ,em is the canonical basis of Cm. The set whose span is evaluated in the left-hand side of
(5.10) is finite, its cardinality being upper bounded by m#{n ∈NN | |n|1 ≤ (d−1)Λmax/Λmin}, which
is large when Λmax/Λmin is large. The next results provides a way of improving such upper bound, and
hence reducing the number of elements to be evaluated in order to study the relative controllability of
Σ(A,B,Λ).

Theorem 5.7. Let A = (A1, . . . ,AN)∈Md(C)N , B∈Md,m(C), and Λ,L ∈ (0,+∞)N with Λ 4 L. Then
Σ(A,B,Λ) is relatively controllable in some time T > 0 if and only if

Span
{

Ξ̂
Λ

[n]Be j

∣∣∣ [n] ∈NΛ, L ·n≤ (d−1)Lmax, j ∈ J1,mK
}
= Cd. (5.11)

Proof. If (5.11) is satisfied, then, since Λ ·n≤ Λmax
Lmin

L ·n for every n ∈ NN , one obtains that

Cd = Span
{

Ξ̂
Λ

[n]Be j

∣∣∣ [n] ∈NΛ, L ·n≤ (d−1)Lmax, j ∈ J1,mK
}

⊂ Span
{

Ξ̂
Λ

[n]Be j

∣∣∣∣ [n] ∈NΛ, Λ ·n≤ (d−1)Λmax
Lmax

Lmin
, j ∈ J1,mK

}
which proves that Σ(A,B,Λ) is relatively controllable in time T = (d− 1)Λmax

Lmax
Lmin

, and thus also in
time T = (d−1)Λmax thanks to Theorem 5.4.

Let ε > 0. Write Λ = M`, with M ∈MN,h(N) for some h ∈ J1,NK and `= (`1, . . . , `h) ∈ (0,+∞)h

with rationally independent components, chosen according to Proposition 4.3. Since Λ 4 L, it follows
from Proposition 4.3 that L ∈ RanM, and thus there exists r ∈ Rh such that L = Mr. Take rε ∈
Rh with rationally independent components satisfying |r− rε |∞ < ε/ |M|

∞
, and set Lε = Mrε . Then

|L−Lε |∞ < ε and, in particular, Lε ∈ (0,+∞)N for ε small enough. Notice that Lε ≈ Λ, since Λ 4 Lε

by construction and, if n ∈ NN is such that Lε ·n = 0, then nTMrε = 0, which implies, from the fact
that rε has rationally independent components and that nTM is a row vector of integers, that nTM = 0,
yielding Λ ·n= nTM`= 0, and thus Lε 4Λ. Since Λ≈ Lε , it follows from Theorem 4.5 that Σ(A,B,Λ)
is relatively controllable in some time T > 0 if and only if Σ(A,B,Lε) is relatively controllable in some
time, i.e.,

Span
{

Ξ̂
Lε

[n]Be j

∣∣∣ [n] ∈NLε
, Lε ·n≤ (d−1)Lε max, j ∈ J1,mK

}
= Cd.

By Proposition 4.4, this is equivalent to

Span
{

Ξ̂
Λ

[n]Be j

∣∣∣ [n] ∈NΛ, Lε ·n≤ (d−1)Lε max, j ∈ J1,mK
}
= Cd. (5.12)

Notice that, if ε is small enough, then, for every n ∈ NN , Lε ·n ≤ (d− 1)Lε max implies L ·n ≤
(d−1)Lmax. Indeed, assume that, for every ε > 0, there exists nε ∈NN such that Lε ·nε ≤ (d−1)Lε max
and L ·nε > (d− 1)Lmax. Then (d− 1)Lmax < L ·nε ≤ (d− 1)Lε max +(L−Lε) ·nε , which implies
that (d−1)Lmax < L ·nε ≤ (d−1)Lmax + ε(d−1+ |nε |1) and so

(d−1)Lmax < L ·nε ≤ (d−1)Lmax + ε(d−1)
(

1+
Lε max

Lε min

)
(5.13)

Since the set {L ·n |n ∈ NN}∩ [0,τ] is finite for every τ ≥ 0, one obtains that, for every K ≥ 0, the
set {n ∈ NN |K < L ·n ≤ K + δ} is empty if δ > 0 is small enough. Hence, since Lε max/Lε min→
Lmax/Lmin as ε→ 0, one obtains that, for ε > 0 small enough, (5.13) cannot be satisfied, which proves
that Lε ·n≤ (d−1)Lε max implies L ·n≤ (d−1)Lmax for ε > 0 small enough.

If Σ(A,B,Λ) is relatively controllable in some time, then (5.12) is satisfied. Hence, for ε > 0 small
enough,

Cd = Span
{

Ξ̂
Λ

[n]Be j

∣∣∣ [n] ∈NΛ, Lε ·n≤ (d−1)Lε max, j ∈ J1,mK
}
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⊂ Span
{

Ξ̂
Λ

[n]Be j

∣∣∣ [n] ∈NΛ, L ·n≤ (d−1)Lmax, j ∈ J1,mK
}
,

which proves (5.11).

Notice that the set whose span is evaluated on the left-hand side of (5.11) has at most m#{n ∈
NN | |n|1 ≤ (d− 1)Lmax/Lmin} elements, which is an improvement with respect to the upper bound
obtained previously for the set whose span is evaluated on the left-hand side of (5.10) as soon as
Lmax/Lmin < Λmax/Λmin. Hence Theorem 5.7 allows one to algorithmically check whether Σ(A,B,Λ)
is relatively controllable in less steps than by using (5.10). In particular, since we have Λ4 (1,1, . . . ,1)
for every Λ ∈ (0,+∞)N with rationally independent components, one obtains the following improve-
ment of (5.10) in this case.

Corollary 5.8. Let A = (A1, . . . ,AN) ∈Md(C)N , B ∈Md,m(C), and Λ ∈ (0,+∞)N . Assume that Λ

has rationally independent components. Then Σ(A,B,Λ) is relatively controllable in some time T > 0
if and only if

Span
{

ΞnBe j
∣∣n ∈ NN , |n|1 ≤ d−1, j ∈ J1,mK

}
= Cd.
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