
HAL Id: hal-01309151
https://hal.science/hal-01309151

Preprint submitted on 28 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Ontological Driven Approach of HAD Specific
Language Designing

Marcellin Nkenlifack, Serge Mboubé - Etouké

To cite this version:
Marcellin Nkenlifack, Serge Mboubé - Etouké. An Ontological Driven Approach of HAD Specific
Language Designing. 2016. �hal-01309151�

https://hal.science/hal-01309151
https://hal.archives-ouvertes.fr

Edition Spéciale CRI’2015 – 2015, pages 1 à 21 – A R I M A

An Ontological Driven Approach of HAD Specific
Language Designing

Marcellin Nkenlifack† et Mboubé-Etouké Serge‡

† Département de Génie Informatique

Institut Universitaire de Technologies FOTSO Victor de Bandjoun
Université de Dschang
PO BOX 134 BANDJOUN
CAMEROUN

marcellin.nkenlifack@gmail.com

‡ Département de Mathématiques et Informatique
Université de Dschang
PO BOX 69 DSCHANG

CAMEROUN

mboube.etouke.serge@gmail.com

RÉSUMÉ: La plupart de langages qui ont été développés pour concevoir les systèmes

automatiques n'offrent qu'une compréhension graphique (pour l'utilisateur), au lieu d'une

compréhension machine (par un ordinateur) en même temps qu'une capacité à traiter les modèles

desdits systèmes. Nous nous intéressons ici à la proposition d'une approche de conception d'un

langage dédié aux systèmes automatiques, plus précisément les systèmes dynamiques hybrides à

travers la modélisation basée sur le Diagramme d'Activité Hybride HAD. L'approche développée

tire avantage de la description de l'ontologie du domaine au moyen d'un réseau sémantique afin de

révéler les faits, concepts, relations ou liens d'association, comportements et sémantiques

implicites et/ou explicites qui gouvernent la connaissance des systèmes dynamiques hybrides via

HAD.

ABSTRACT. Most of the languages that have been developed to design control system have only a

graphical understanding than machine understanding and processing ability. In this paper, we

address and introduce the issue of designing a domain specific programming language in the field

of control system, more especially, hybrids dynamics systems designed through HAD modeling.

The approach presented takes advantage of semantic networks ontological description that reveals

the implicit facts, concepts, relationships, behaviors and semantics which govern HAD knowledge

to design a sound domain specific language which is more convenient when writing a control

system code. The facts, association’s links and behaviors that implicitly characterize an

automatism model through HAD modeling, forming therefore an influence network among entities

of the model, are regrouped in concepts, relationships and semantics which takes all ist meaning

in a semantic network.

2 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

MOTS-CLÉS : Systèmes Dynamiques Hybrides, Diagramme d’Activité Hybride (HAD), Langages

dédiés, Réseaux Sémantiques, Xtext, Java, Eclipse.

KEYWORDS: Automatics Hybrids Dynamics Systems, Hybrid Activity Diagram (HAD), Domain

Specific Languages (DSL), Semantic Networks, Xtext, Java, Eclipse.

1. Introduction

An automatic system is one that can run itself (both in ist control and process)
without human intervention. Several approaches of description of this type of system
have been developed [1]: the Discrete Systems (DS), the Continuous Systems (CS) and
the Hybrid Dynamic Systems (HDS) that regroup both the first two. Like is done in
software engineering, the development of those systems start within a stage that makes a
model of the future system. In automation, languages that are used to design the model
depend on which approach is used. The Discrete Systems Approach most prefers
languages of state’s machines in which we find StateCharts, Grafcets and Gemma [2].
The Continuous Systems Approach prefers Differentials Equations [6], and Hybrid
Activity Diagram (HAD), introduced in [3], recently developed in LAIA - FV UIT –
University of Dschang, Cameroon, has proved his height ability in the designing of
Hybrid Dynamics Systems.

Even if are StateCharts, Grafcets or Gemma in Discrete Systems Approach,
Differentials Equations in Continuous Systems Approach or, most recently HAD in
Hybrids Dynamics Systems Approach, all those languages despite they gives a
thoroughly understanding of compositions and behaviors of the system under design
through his model, they only give a graphical meaning of the functionality of the system
by or for an engineer or designer, not a machine understanding of the system model that
can be eventually given in text code, in a specific language handling concepts and
semantics of the domain. This is the issue that has attracted our attention.

In the following, we will focus our attention on the Hybrids Dynamics Systems
Approach of description of systems, and we will talk about those systems through a
model designed via HAD modeling. Given that automation in general, and Hybrids
Dynamics Systems in particular are specific fields, we propose to design a domain
specific language that will capture facts, concepts, behaviors and semantics that lives in
automation viewed through HAD approach. To reach our issue, we adopt an intuitive
approach starting by a domain analysis which falls on the ontology of the domain
represented in semantic networks. From there, we initiate an approach that derives our
ontology in to a production rules set that, with some other arrangements will constitute
the grammar of the proposed language.

So, we are not dealing about the concrete semantic meaning in semantic networks
based knowledge representation language, but we are taking advantage of his cognitive

An Ontological Driven Approach of HAD Specific Language Designing 3

A R I M A

plausibility and expressivity [4] to reveal all types of facts, concepts, relationships and
semantics that implicitly live in Hybrids Dynamics Systems viewed through HAD
modeling. The sound semantic network representing HAD knowledge domain consist of
our ontology that, like [5] stated, drives our approach in a characterization of a specific
programming language that has only specificities on Hybrids Dynamic Systems viewed
through HAD.

This article is presented as follows. Section 2 provides overviews on Hybrids
Dynamics Controls Systems and HAD modeling approach, ist mains concepts and
semantics. Section 3 gives the semantic network that we have designed to reveal the
ontology of HAD in the purpose of designing a domain specific language. Section 4
introduces our driven policy from semantic network based HAD-ontology to a HAD
programming language, the ANTLR-based grammar, Xtext-based IDE of HAD
Programming Language that we have designed and the Rolling Mill code in example of
use. Finally, section 5 presents the conclusion and perspectives.

2. Hybrids Dynamics Control Systems and HAD

2.1. Hybrids Dynamics Control Systems

Researches on industrials automatics systems in general, and on Hybrids Dynamics
Controls Systems in particular have taken initiatives to solve some essentials issues of
the domain [1]:

 Designing, which consist of having a systemic approach structuring all
different objects of the system in accordance with the physical meaning of
the causality of their interactions.

 Analysis, that includes the development of a set of verification and
validation tools of Hybrids Dynamics Systems then, a mastering of the
complexity of this analysis and the physical interpretation of some
properties to examine some properties like the system global stability
through all is running stages.

 Simulation, in which actual researches concerns formal methods and tools
relating to Hybrids Dynamics Systems behaviors analysis, and the synthesis
of control principles which are still in their beginning [7].

Given that, simulation, above all, is still an inescapable path when is necessary to
help design an installation, validate some control system designed for the installation or
validate the model proposed.

Hybrids Dynamics Systems are those in which coexists a discrete sub-system
interacting with a continuous sub-system:

4 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

The global state of the system can be described via a combination of continuous
variables, discrete variables, or symbolic ones (likes “open”, “close”, “defective”).

Variables used to define the time can be in continuous type (in differentials-algebra
equations), discrete type (sampling of the signal describing variable evolution, each
sample having its own date), and symbolic type (in this case, different events are not still
joint to some determined instance and can never be used like dates).

The process can also be continuous and factual. This is the case of installations of
continuous productions with final stages of discontinuous packaging.

The particularity of those types (hybrids ones) of systems is their interactions. For
example, the sequential-continuous interactions can be materialized at actions level
(stage of the Grafcet). We then talk of action-interaction. The continuous-sequential
interactions are found at receptivity levels associated to transitions. Figure 1 gives a
glance of a minimal hybrid Grafcet [3].

Figure 1. Example of a mini Hybrid Grafcet

Observing the above minimal Grafcet (Fig.1), we can notice that:

 The action 1 : “Start induction motor” starts an interaction from the stage 1
of the Grafcet and it is applied on the induction motor (a continuous sub-
system). It is an action-interaction example of sequential-continuous type.

 The receptivity (1) : “Motor speed = 18 rev/s” calls an interaction coming
from the induction motor and acts on the following of the Grafcet. It is a
receptivity-interaction, of continuous-sequential type.

One minimal designing of Hybrids Dynamics Systems can there be represented as
Figure 2 shows [1]

 Figure 2. Hybrids Dynamics Systems Designing pattern.

 The state follows in X=Xc×Xd, where Xc is included or equals of Rn and
Xd is included or equals of N.

Hybrid
Dynamic
System

ucUc

udUd

xcXc

xdXd

An Ontological Driven Approach of HAD Specific Language Designing 5

A R I M A

 The inputs of the system are functions of controls U=Uc×Ud.

 The hybrid system can thus be structured under two followings parts:

- One continuous dynamic sub-system Sc that its evolution is described
through a transition continuous function φc that depends of the value
of xd : xc (t) = φc (t, to, xc(to), xd, uc) ;

- One factual discrete sub-system Sd that its evolution is described
through a transition discrete function φd : xd (t+) = φd (t, xc, xc(t), ud)
;

- A set of links among the two sub-systems.

2.2. HAD modeling approach

Work done in [3] introduces Hybrid Activity Diagram HAD, a modeling approach
that gives a solution of hybrids dynamics systems object-oriented designing. HAD takes
in to account causes to effects relationships among entities, and has this advantage to be
compatible with both the languages of industrials systems specifications (Grafcet,
MSMC) and classical UML diagrams [8][9]. The foundations of HAD are built on
activity diagram model of UML, causes to effects physics behaviors, parallelism
structure and influences network among entities.

The UML activity diagram model shows correctly the global sequential organization
of activities of several objects in several uses cases. Also, an activity diagram like
Grafcet reveals the parallelism structure of the system through some pseudo-states of
type convergence and divergence. So, activities diagrams models are close to Grafcets,
and in more broad view, to industrials automatisms specifications tools. Thus, and like
[3] [10] stated, activity diagram model is more convenient for designing multithreading
applications.

Causality is a fundamental notion that helps in the handling of physical system
because it allows understanding how a system reaches a given state from the study of
interactions among variables [11]. It’s a notion that is tightly related to running
conditions of the system. Once that these conditions are well defined, interactions
express causes to effects relationships among variables of the system, illustrating the
mechanism through which they influences each others. This mechanism then built some
influences network among entities of the system. Causality concept can be handled
following two mains approaches, bond-graph and temporal where more details can be
found at [11] [12].

6 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

2.2.1. “Activity Class” Concept

The Class Activity that [3] introduce incorporate a causes to effects organ or
component. Influences that it’s under or captures are causes, when influences that it
exerts are affects. An Activity Class is characterized by an internal mechanism that, for a
right given combination of causes, produces a determined effect. It’s logical unit having
three fundamentals characteristics:

- Type of influence that it exert,

- Nature of his behavior,

- Running mechanism.

 Figure 3 gives an illustration of his structure [3].

Figure 3. General’s characteristics of an ActivityClass.

ActivityClass notion is light comparable at MSMC language phenomenon concept
that descriptions are well detailed in [7].

2.2.2. HAD “Activity Module” Concept.

An ActivityModule represent an influence module. It’s constituted of some set of
internals activity classes. Entities that don’t belong to the application, but influences it
from outside are calls ActivityCause. Ideally, any activity class instance can exert his
influence outside of the module.

Instances of some module that exert no influences are calls ActivityNoEffect.
Figure 4 following presents some components of ActivityModule.

 Figure 4. ActivityModule components.

ActivityClass ActivityCause

ActivityEffect ActivityNoEffect

An Ontological Driven Approach of HAD Specific Language Designing 7

A R I M A

2.2.3. Conditional’s behaviors and Parallelim handling.

In UML classical diagrams, “connections” are pseudo-states having one input
transition and several watched output transitions. Only one of these output transitions
can be taken. A “fusion” marks the end of a conditional behavior initiated by a
connection [13->8]. Parallelism is described by “disconnections” and “junctions”.
Work [3] authors have proposed to represent “connections”, “fusion”, “disconnections”,
and “junctions” through particulars objects that they have called “ActivitySlectON”,
“ActivitySeectOFF”, “ActivityThreadON”, and “ActivityThreadOFF”.

2.2.4. Running bloc of HAD model.

The schema presented by Figure 5 gives an illustration and a well understanding of
the input/output dynamic of HAD modeling and ist functional or running decomposition
[3]:

 y1 = f(x1, x2, x3, …);

 y2=g(x1, x2, x3, …);

 y3=h(x1, x2, x3, …) ;

 etc.

Figure 5. Input/output HAD running bloc pattern.

8 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

Because of the summary character of this part, we refer readers to numerous articles
and books that have been written, some illustrating HAD performances, and others HAD
improvement, giving all details on HAD metagraph, compatibilities with Grafcet, UML,
applications putting HAD in use and others [3] [13] [14] [15] [16] [17].

3. Semantic Network Based HAD – Ontology

Even if formal languages, like HAD, have been developed to handle functionalities
of hybrids dynamics systems in designing, most of those languages only have a
graphical understanding of the model proposed than a machine understanding. To
handle this issue, we take advantage of Domain Specific Languages discipline which
stated that it has the advantage of representing, or coding, several aspect of the system
using a language that is not only close to the domain in study, but tightly using concepts
and semantics of the domain of interest [18]. Because the language will be specific for
some specific domain, it’s necessary to start by an analysis of the domain of interest,
here, HAD. The results of this analysis constitute our HAD-Ontology. It’s necessary to
start from here like [5] stated on one hand, and because the specific language must
capture all concepts, relationships and semantics implicitly or explicitly living in the
domain.

Ontology is a set of knowledge terms, including the vocabulary, the semantic
interconnections, and some simple rules of inference and logic for some particular topic
[19], and it can also be defined as an explicit representation of a shared understanding of
the important concepts in some domain of interest [20][23].

After studies carried out by [3] [13] [14] [15] [16] [17] and others on hybrids
dynamics systems domain through HAD, we have observed that any hybrid dynamic
system HAD model unveils five distinct entity families or modules: InputActivityModule
representing the input of the model, HADCommandSystem the control,
OutputActivityModule the output of the model, MainActivityModule the set of specials
mechanisms of the system in designing, and NoEffectActivityModule giving information
on the current running. Those modules also interact through some influencial networks:
HADCommandSystem captures influences from InputActivityModule, runs
MainActivityModule, exerts influences to OutputActivityModule, and provides
information through NoEffectActivityModule.

To have a right understanding of this, looks Figure 6 following. All of those
modules and influences running work like a semantic network.

An Ontological Driven Approach of HAD Specific Language Designing 9

A R I M A

Figure 6. Semantic Influences Network of HAD Domain.

All facts, association’s links and behaviors of entities in the domain are respectively
regrouped in Module concept (HADCommandSystem, InputActivityModule,
MainActivityModule, OutputActivityModule, and NoEffectActivityModule), influence
relationships (Capturing, running, exerting, and information providing) and a special
semantic according to:

 if h ϵ HADCommandSystem → Ǝ (i ϵ InputActivityModule) and (m ϵ
MainActivityModule) / capturesInfluencesFrom(h, i) and runs(h, m);

 if o ϵ OutputActivityModule → Ǝ h ϵ HADCommandSystem /
exertsInfluenceTo(h, o);

 if n ϵ NoEffectActivityModule → Ǝ h ϵ HADCommandSystem /
providesInformationVia(h, n).

The above element gives an effective comprehension of the domain. With this
semantic network, we are really taking advantage of ist expressivity, and his cognitive
plausibility like [4] observed. One can therefore fairly understands what is about reading
the influences network drawn as a semantic network. Also, they well understand the
organization in which all HAD model of some hybrid dynamic system is structured.
Here, we are taking advantage of modularity that allows many engineers to work in the
same model of the system, but each of them focusing his attention on a particular
module.

10 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

The central idea in HAD domain is the Activity notion [3]. Thus, in the domain, all is
an Activity or a kind one that has been specialized and specified to the module in which
it takes all is meaning. This means that, each ActivityModule regroups a set of Activity
according to the semantic of that module.

3.1. In the InputActivityModule

The only special and specific kind of Activity is ActivityCause which is a unit that
only flowing some type of influences, depending on the design (it can be a signal, a
message, …). It’s the basic unit of causes influences of the entire model in designing.
An ActivityCause is represented as Figure 7 following.

Figure 7. An ActivityCause representation.

3.2. In the OutputActivityModule

The only kind of Activity is ActivityEffect. It’s the basic unit of output influences of
the entire model in designing. This same module can somtimes play as a transition one
among two HAD models in designing. “Fig. 8” that follows give a representation.

Figure 8. An ActivityEffect representation.

3.3. In the NoEffectActivityModule

We only have ActivityNoEffect where mechanism don’t have any influences on the
system running, but allows information provided by control. “Fig. 9” gives a
representation.

Fig. 9. An ActivityNoEffect representation.

An Ontological Driven Approach of HAD Specific Language Designing 11

A R I M A

3.4. In the MainActivityModule

We have several kind of Activity among those who are complex, and those who are
more light and simple. The more simple one is IActivity which captures influences,
simply runs his internal mechanism after it has verified some conditions, and produces
one influence. It can be represented like Figure 10 shows.

Figure 10. An IActivity representation

The other kind of Activity in this module are very complex and corresponds to
connections, disconnections, junctions, and fusions situations in the model [3]:

 ActivityThreadsONs which opens or initiates a multi-thread situation from one
influence that it has captured, and ActivitySelectONs which opens or initiates a
selection situation. They can have as many outputs as possible depending of the
situation.

 ActivityThreadsOFFs which closes or ends a multi-threading situation and
ActivitySelectOFFs which closes or ends a selection situation. They can also
have as many inputs as possible depending of the situation.

Those concepts respect some logic when designing a model of hybrid dynamic
system:

 if i ϵ InputActivityModule → Ǝ ij, ActivityCause(ij)
/ i = Uj=1 ...m{ij};

 if o ϵ OutputActivityModule → Ǝ oj, ActivityEffect(oj)
/ o = Uj=1 ...m{oj};

 if n ϵ NoEffectActivityModule → Ǝ nj, ActivityNoEffect(nj) / n = U=1 ...m{nj};
 if ActivityThreadsONs(a) → Ǝ xj, j=1,..m, IActivity(xj) / influenceCause(x1, a) &

influenceCause(a, xj, j=2,..m) & run(xj);
 if ActivitySelectONs(a) → Ǝ xj, j=1,..m, IActivity(xj) / influenceCause(x1, a) &

influenceCause(a, xj, j=2,..m) & !run(xs), s the selection;
 if ActivityThreadsOFFs(a) → Ǝ xj, j=1,..m, IActivity(xj) / influenceCause(xj, j=1,..m-

1, a) & influenceCause(a, xm);
 if ActivitySelectOFFs(a) → Ǝ xj, j=1,..m, IActivity(xj) / influenceCause(xj, j=1,..m-1,

a) & influenceCause(a, xs) & !run(xs), s the selection;

12 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

The other concepts in the field are those we qualify of more complex and
corresponds to situations in which we leaves from threads to thread, selections to
threads, and threads to selections. There are called: ActivityThreads2Thread,
ActivitySlects2Thread, and ActivityThreads2Select. Those concepts are governed by the
following logic:

 if ActivityThreads2Thread(a) → Ǝ xj, j=1,..m, IActivity(xj) / influenceCause(xj,

j=1,..x, a) & influenceCause(a, xx+1,...,m);

 if ActivityThreads2Select(a) → Ǝ xj, j=1,..m, IActivity(xj) / influenceCause(xj,

j=1,..x, a) & influenceCause(a, xx+1,...,m) & !run(xs), s ϵ [x+1; m] the selection;

 if ActivitySelects2Thread(a) → Ǝ xj, j=1,..m, IActivity(xj) / influenceCause(xj,

j=1,..x, a) & influenceCause(a, xx+1,...,m) & !run(xs), s ϵ [1; x] the selection;

i, j, m ϵ N.

Because we are not dealing with the graphical aspect of the language here, we avoid
graphics for those complex and more complex concepts. But, they can be found in
works [3] [13] [14] [15] [16] [17]. Anyway, Figure 11 gives an example of a graphical
illustration for deep view.

Figure 11. An excerpt of a HAD model in use for an example respecting some
above logic.

An Ontological Driven Approach of HAD Specific Language Designing 13

A R I M A

In HADCommandSystem : the most interest Activity we have are the Begin and the
End Activity, simply for starting and stopping the system.

Even that all those kind of Activity are specific of some semantic, all of them
incorporates a set of basics properties and mechanism regrouped in the Activity. Those
properties are: Name giving the name on the entity, INnbre giving the number of input
influences flows, IN the input influences flows interfaces, Syn that synchronize all input
flows according to the specific semantic of the entity, Message containing message that
influence its neighbor, OUnbre giving the number of output influences flows, and OU
the output influences flows interfaces.

4. Semantic Network based HAD – Ontology Driven Policy

Designing HAD Specific Language

Once the domain analysis have been done and the domain knowledge have been
unveiled through his semantic network based ontology, logics of reasoning, and others,
we now can deal in the domain, well understanding and shared.

4.1. The Driving Approach

The approach that we are introducing here is an intuitive one regarding the structure
of HAD domain knowledge. We state that, given that each module in the HAD domain
knowledge has its own specific semantic, thus, each of them corresponds to a specific
production rule which recognizes each instance of this module. In the same way, given
that each specific concept in each HAD knowledge domain module characterizes and
means a specific semantic, each of them also corresponds to a specific production rule
that recognizes each instance of this concept. Thinking like this, we just derives the
following:

1. HADCommandSystem → ‘Begin’ ‘{‘ ((InputActivityModule)+
(MainActivityModule)+ (NoEffectActivityModule)* (OutputActivityModule)*
) ‘}’ ‘End’ ;

2. InputActivityModule → : ID ‘{‘ (ActivityCause)+ ‘}’ ;

3. MainActivityModule → : ID ‘{‘ (Activity)+ ‘}’ ;

4. NoEffectActivityModule → : ID ‘{‘ (NoEffectActivity)+ ‘} ;

5. OutputActivityModule → : ID ‘{‘ (OutputActivity)+ ‘}’ ;

14 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

6. ActivityCause → ‘Activity’ ID ‘is’ ‘ActivityCause’ ((RuleMessage)
(RuleOperation)? (RuleSortie) ‘EndActivity’ ID ;

7. Activity → ‘Activity’ ID ‘is’ Type ((RuleEntree) (RuleSyn) (RuleMessage)

(RuleOperation) (RuleSortie)) ‘EndActivity’ ID ;

8. OutputActivity → ‘Activity’ ID ‘is’ ‘OutputActivity’ ((RuleEntree) (RuleSyn)
(RuleMessage) (RuleOperation) (RuleSortie)) ‘EndActivity’ ID ;

9. RuleEnntre → ID ‘as’ ‘IN’ ((< ID)+);

10. RuleSyn → ID ‘as’ ‘SYN’ (((RuleSyn1) | (RuleSyn2))) ;

11. RuleMessage → ID ‘as’ ‘Message’ (STRING) ;

12. RuleOperation → ID ‘as’ ‘OP’ (ID()) ;

13. RuleSortie → ID ‘as’ ‘OU’ ((ID>)+) ;

14. RuleSyn1 → (‘OR’ ID)+ (RuleSyn2)? ;

15. RuleSyn2 →(‘AND’ ID)+ (RuleSyn1)? ;

16. Type → ‘IActivity’ | ‘ActivitySelectONs’ | ‘ActivitySelectOFFs’ |

‘ActivityThreadsONs’ | ‘ActivityThreadsOFFs’ | ‘ActivityThreads2Thread’ |
‘ActivityThreads2Select’ | ‘ActivitySelects2Thread’ ;

4.1. The ANTLR-based HAD grammar

For more convenient development, we have taken advantage of effective tools that
can be helpful having a cool LR(k) recognizer. ANTLR is a favorite one on the field of
language engineering [21]. The followings table gives the ANTLR-Java implementation
of HAD grammar.

TABLE I. ANTLR-Java (Xtext) HAD Grammar implementation.

grammar org.xtext.example.mydsl.HADsl with
org.eclipse.xtext.common.Terminals
generate hADsl "http://www.xtext.org/example/mydsl/HADsl"
Programme:(pream=Preambul)
;

An Ontological Driven Approach of HAD Specific Language Designing 15

A R I M A

Preambul: 'HADProgram' nameprgrm=ID '{' core=Core '}';
Core: 'Begin' '{' ((moduleIn+=InputActivityModule)+
(moduleMain+=MainActivityModule)+
(moduleSansEffet+=NoEffectActivityModule)*
(moduleOut+=OutputActivityModule)?)* '}' 'End' (fin=ID)?;

InputActivityModule: 'InputActivityModule' ':'
nameModuleIn=ID '{' (nameAcs+=ActivityCause)+ '}' ;

ActivityCause: 'Activity' nameAc1=ID 'is'
'ActivityCause' '(' (rulemsg=RuleMessage)
(ruleop=RuleOperation)? (rulesortie=RuleSortie)? ')'
'EndActivity' nameAc2=ID ';' ;

RuleMessage: nameM=ID 'as' 'Message' '(' message=STRING
')' ';';
RuleSortie: nameS=ID 'as' 'OU' '(' (sorties+=ID '>')+ ')'
;

RuleOperation: nameO=ID 'as' 'OP' '(' operation=ID
'()' ')' ';';
MainActivityModule: 'MainActivityModule' ':'
nameModuleMain=ID '{' (iactivities+=IActivity)+ '}';

IActivity: 'Activity' nameIAc1=ID 'is' nameType=Type '('
(ruleentree=RuleEntree) (ruleSyn=RuleSyn)
(rulemsg=RuleMessage) (ruleop+=RuleOperation)+
(rulesortie=RuleSortie) ')' 'EndActivity' nameIAc2=ID ';';

NoEffectActivityModule: 'NoEffectActivityModule' ':'
nameNoEffect=ID '{' (nameNoEffects+=NoEffectActivity)+ '}';
NoEffectActivity: nameNoEffect1=ID 'is' 'NoEffectActivity'
'(' (rulemsg=RuleMessage) ')' ';' 'EndActivity'
nameNoEffect2=ID ';' ;

OutputActivityModule: 'OutputActivityModule' ':' nameOut=ID
'{' (nameOuts+=OutputActivity)+ '}';
OutputActivity: nameOutAc1=ID 'OutputtActivity' '('
(ruleentree=RuleEntree) (ruleSyn=RuleSyn)
(rulemsg=RuleMessage) (rulesorti=RuleSortie)? ')' ';'
'EndActivity' nameOutAc2=ID ';' ;

16 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

RuleEntree: nameE=ID 'as' 'IN' '(' ('<' entrees+=ID)+ ')'
';';
RuleSyn: nameSyn=ID 'as' 'SYN' '('((ruleSyn1=RuleSyn1) |
(ruleSyn2=RuleSyn2)) ')' ';' ;

RuleSyn1: ('OR' id1+=ID)+ (rulS1=RuleSyn2)?;

RuleSyn2: ('AND' id2+=ID)+ (rulS2=RuleSyn1)?;

Type:'IActivity'|'ActivitySelectONs'|'ActivitySelectOFFs'|'Acti
vityThreadsONs'|'ActivityThreadsOFFs'|'ActivityThreads2Thread'|
'ActivityThreads2Select'|'ActivitySelects2Thread';

Listing 1. ANTLR-Xtext based Implementation of HAD Grammar

4.2. HAD Grammar in use: Case of Rolling Mill code

4.2.1. The Rolling Mill

The Rolling Mill is an effective example of hybrid automatic system. The system
transforms metallic blocs to steel sheets. The lamination process calls sequences of
operations: the metal is heated at a precise temperature; the opening among rolls is
adjusted to allow the metal to inter. The bloc is inserted in rolls; the induction motor
move rolls with constant velocity until the opening is stabilized at some fairly weak
value; steel sheets produced are ejected from rolls, and the sequence restart. More
details can be found in [22]. The logic (sequence) of operations, defined by the Grafcet,
is implemented by programmable automaton (Programmable Logic Controller), which
thus constitutes sequential sub-system of the hybrid system. The other components of
the system (servo-motor, opening roll gap controller, induction motor, rolls, temperature
controller) constitute the continuous sub-system. They are designed by a set of algebraic
and differentials equations.

4.2.2. The HAD Rolling Mill Model

HAD Rolling Mill Model that we will code with the new HAD-specific language is
shown at Figure 12, takes from [3]:

An Ontological Driven Approach of HAD Specific Language Designing 17

A R I M A

Figure 12. HAD Rolling Mill Model.

4.2.3. HAD’s excerpt code of Rolling Mill

Listing 2 gives us a view of an excerpt of the HAD code of “Rolling Mill” system.

18 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

HADProgram RollingMill {
 Begin {
 InputActivityModule : ModuleEntree {

 Activity E1 is ActivityCause (
 msg as Message ("Process Data Ready");
 operation as OP (none());
 ou as OU (I2>)
)EndActivity E1 ;

 Activity E2 is ActivityCause (
 msg as Message ("Ready for Next Roll");
 operation as OP (none());
 ou as OU (S1>)
)EndActivity E2 ;

 Activity E3 is ActivityCause (
 msg as Message ("Specimen in Position");
 operation as OP (none());
 ou as OU (I7>)
)EndActivity E3 ;

 Activity E4 is ActivityCause (
 msg as Message ("Mill Reverse");
 operation as OP (none());
 ou as OU (S>)
)EndActivity E4 ;
 }

 MainActivityModule : ModulePrincipal1 {
 Activity I1 is IActivity (
 inI1 as IN (<be);
 synI1 as SYN (OR be) ;
 msg as Message ("OK");
 operation as OP (none());
 outI1 as OU (I2>)
)EndActivity I1;
…}

Listing 2. An excerpt code of Rolling Mill

The next figure, Figure 13 shows us a view of HAD Eclipse based IDE developed to
handle Hybrids and Dynamics system designed via HAD modeling approach.

An Ontological Driven Approach of HAD Specific Language Designing 19

A R I M A

Figue 13. HAD Eclipse based IDE

20 A R I M A – Edition Spéciale CRI’2015 – 2015

A R I M A

5. Conclusion and Perspectives

We have addressed and introduced the issue of designing a domain specific language
driven by the specific ontology of the domain under study and we have taken this
occasion to propose a programming language of hybrids dynamics system viewed
through HAD modeling. The approach is simple and very useful. We have
demonstrated its usability when designed a semantic network HAD domain knowledge
and derived it to a set of production rules that finally, has constituted the grammar of the
language corresponding to the domain, HAD here. The results presented here are among
works that are currently conducted in the purpose to make HAD a throughly Domain-
Specific Language in both modeling and programming for handling hybrids dynamics
systems simulation. Those results are among those that formalized HAD according to
MOF2, developing of an Eclipse based IDE for HAD modeling and designing an MDA-
based architecture that will support HAD entire framework (modeling and
programming).

The work introduced here are still in progress. In the future, we will present
HADtalk (the HAD-specific programming language corresponding to HAD modeling) in
use, in a real world hybrid dynamic system, its entire simulation, its stable Eclipse-based
plug-in for developing any hybrid dynamic system, and tutorials. We also consider the
issue of model transformation that allows to move from a HAD model to a HAD code,
and vice versa, depending of the requirements or convenience of the user.

Bibliographie

[1] J. Zaytoon, “Systèmes Dynamiques Hybrides”, Traité Information - Commande - Communication
Hermes, Paris, 2001.

[2] H. Brenier, Métamodèles des machines d’état, Les spécifications fonctionnelles des automatismes
industriles et temps réel, Dunood Paris, 2001, pp.143-176.

[3] E. Tanyi and M. Nkenlifack, “Une Adaptation d’UML à la Modélisation des Systèmes Hybrides”, in e-
STA, vol. 7, n°2, 2010, pp 46-57.

[4] R. Nkambou, Modeling the Domain, “Advances in Intelligent Tutoring Systems ”, R. Nkambou, J.
Bourdeau and R. Mizoguchi (Eds), Sptinger-Verlag, Berlin Heidelberg, 2010, pp 15-32.

[5] D. Gasevié et al., Ontologies, “Model Driven Engineering and Ontology Development”, 2nd edn,
Sptinger-Verlag, Berlin Heidelberg, 2009, pp 44-80.

[6] S. Lipschutz, Mathématiques pour informaticiens: Cours et exercices, série Schaum, McGraw-Hill Inc,
New York, 1983.

[7] H. Brenier, Métamodèles MSMC (Modélisation et Simulation des Machines Cybernétiques), Les
spécifications fonctionnelles des automatismes industriles et temps réel, Dunod Paris, 2001, pp.194-
248.

[8] OMG, UML2 Reference Manual. www.omg.org.

[9] J. Rumbaugh, I; Jacobson and G. Booch, “The Unified Modeling Language Reference Manuel”,
Addison-Wesley, 1999.

An Ontological Driven Approach of HAD Specific Language Designing 21

A R I M A

[10] E. Tanyi and M. Nkenlifack, “An object oriented simulation platform for hybrid control systems,
Analysis and Design of Hybrid Systems (ADHS) 2003, Proc. Of the IFAC International Conference, St
Malo, France, June 16-18 2003, Edited by S. Engell, H. Gueguen and J. Zaytoon, ISBN 0-08-044094-0.

[11] S. Traoré, “Une Approche Orientée Objet dans la Simulation des Systèmes Dynamiques Semi-
Continus”, Thèse de Doctorat de l’Institut National Polytechnique de Grenoble, Grenoble, France, 1999.

[12] J. Buisson, “Bond graphs à commutations, in Systèmes Dynamiques Hybrides”, traité Systèmes
automatisés, Information Commande et Communication, Hermès, Paris, 2001, pp. 93-117.

[13] M. Nkenlifack, E. Tanyi and F. Fokou, “Establishing bridges between UML, HAD and GRAFCET
Metamodels for the Modeling of Dynamic Systems”, International Journal of Scientific & Engineering
Research, Vol. 2, Issue 3, March-2011, ISSN 2229-5518.

[14] M. Nkenlifack, E. Tanyi, and F. Fokou, “Ameliorationof the HAD Metamodel for the Modeling of
Complex Hybridd Systems”, International Journal of Advanced Research in Computer Science, Vol. 2,
N° 1, Jan-Feb 2011, ISSN N° 0976-5697.

[15] M. Nkenlifack, E. Tanyi, and L. Domche, “Interoperability between the improved Metagraph HAD and
Grafcet: Case of the power Network of Cameroon”, IJRRAS 9(1) October 2011, Vol. 9, Issue 1, October
2011.

[16] M. J. A. Nkenlifack, “HAD: Une Extention du Langage UML pour la Modélisation des Systèmes
Hybrides ”, Du Génie Logiciel au Génie Automatique, Editions Universitaire Européennes, Dudweiler
landstr. 99, 66123 Sarrebruck, Allemagne, 2004, ISBN 978-613-1-56194-8, pp. 157-172.

[17] M. J. A. Nkenlifack, “Amélioration et Normalisation du Métagraphe HAD pour l’Analyse des Systèmes
Hybrides Complexes ”, Du Génie Logiciel au Génie Automatique, Editions Universitaire Européennes,
Dudweiler landstr. 99, 66123 Sarrebruck, Allemagne, 2004, ISBN 978-613-1-56194-8, pp. 173-217.

[18] M. Fowler and R. Parsons, “Domain – Specific Languages”, Addison – Wesley Professional, September
2010, Print ISBN-10: 0-321-71294-3.

[19] J. Hendler, “Agents and semantic web”, IEEE Intelligent Systems, 2001, Vol. 16, N° 2, pp. 30 – 37.

[20] Y. Kalfoglou, “Exploring ontologies”, Handbook of Software Engineering and Knowledge Engineering,
Vol. 1, Fundamentals, ed. S.K. Chang, World Scientific, Singapore, pp. 863-887.

[21] T. Parr, “The Definitive ANTLR Reference. Building Domain-Specific Languages”, The Pragmatic
Programmers, Pragmatic Bookshelf, USA, May 2007, ISBN-10: 0-9787392-5-6.

[22] E. Tanyi and D. Linkens, “A G2 based Hybrid Modeling and simulation strategy and its Application to
a Rolling Mill”, Control Engineering Pratice, London, 1998.

[23] T. R. Gruber, “A translation approach to portable ontology specifications”, Knowledge Acquisition,
June 1993, Volume 5, N° 2, pp 199–220.

