Dictionary Learning for Massive Matrix Factorization

Abstract : Sparse matrix factorization is a popular tool to obtain interpretable data decompositions, which are also effective to perform data completion or denoising. Its applicability to large datasets has been addressed with online and randomized methods, that reduce the complexity in one of the matrix dimension, but not in both of them. In this paper, we tackle very large matrices in both dimensions. We propose a new factorization method that scales gracefully to terabyte-scale datasets, that could not be processed by previous algorithms in a reasonable amount of time. We demonstrate the efficiency of our approach on massive functional Magnetic Resonance Imaging (fMRI) data, and on matrix completion problems for recommender systems, where we obtain significant speed-ups compared to state-of-the art coordinate descent methods.
Type de document :
Communication dans un congrès
International Conference on Machine Learning, Jun 2016, New York, United States. JMLR Workshop and Conference Proceedings, 48, pp.1737-1746, 2016, Proceedings of the 33rd Internation Conference on Machine Learning. <http://jmlr.org/proceedings/papers/v48/mensch16.html>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01308934
Contributeur : Arthur Mensch <>
Soumis le : mercredi 25 mai 2016 - 16:51:18
Dernière modification le : samedi 18 février 2017 - 01:14:39
Document(s) archivé(s) le : vendredi 26 août 2016 - 11:02:39

Fichiers

icml.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01308934, version 2
  • ARXIV : 1605.00937

Citation

Arthur Mensch, Julien Mairal, Bertrand Thirion, Gaël Varoquaux. Dictionary Learning for Massive Matrix Factorization. International Conference on Machine Learning, Jun 2016, New York, United States. JMLR Workshop and Conference Proceedings, 48, pp.1737-1746, 2016, Proceedings of the 33rd Internation Conference on Machine Learning. <http://jmlr.org/proceedings/papers/v48/mensch16.html>. <hal-01308934v2>

Partager

Métriques

Consultations de
la notice

1029

Téléchargements du document

616