Dictionary Learning for Massive Matrix Factorization

Arthur Mensch 1 Julien Mairal 2 Bertrand Thirion 1 Gaël Varoquaux 1
1 PARIETAL - Modelling brain structure, function and variability based on high-field MRI data
Inria Saclay - Ile de France, NEUROSPIN - Service NEUROSPIN
2 Thoth - Apprentissage de modèles à partir de données massives
LJK - Laboratoire Jean Kuntzmann, Inria Grenoble - Rhône-Alpes
Abstract : Sparse matrix factorization is a popular tool to obtain interpretable data decompositions, which are also effective to perform data completion or denoising. Its applicability to large datasets has been addressed with online and randomized methods, that reduce the complexity in one of the matrix dimension, but not in both of them. In this paper, we tackle very large matrices in both dimensions. We propose a new factorization method that scales gracefully to terabyte-scale datasets, that could not be processed by previous algorithms in a reasonable amount of time. We demonstrate the efficiency of our approach on massive functional Magnetic Resonance Imaging (fMRI) data, and on matrix completion problems for recommender systems, where we obtain significant speed-ups compared to state-of-the art coordinate descent methods.
Type de document :
Communication dans un congrès
International Conference on Machine Learning, Jun 2016, New York, United States. PMLR, 48, pp.1737-1746, 2016, Proceedings of Machine Learning Research. 〈http://jmlr.org/proceedings/papers/v48/mensch16.html〉
Liste complète des métadonnées

Littérature citée [26 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01308934
Contributeur : Arthur Mensch <>
Soumis le : mercredi 25 mai 2016 - 16:51:18
Dernière modification le : vendredi 22 juin 2018 - 01:20:28
Document(s) archivé(s) le : vendredi 26 août 2016 - 11:02:39

Fichiers

icml.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01308934, version 2
  • ARXIV : 1605.00937

Citation

Arthur Mensch, Julien Mairal, Bertrand Thirion, Gaël Varoquaux. Dictionary Learning for Massive Matrix Factorization. International Conference on Machine Learning, Jun 2016, New York, United States. PMLR, 48, pp.1737-1746, 2016, Proceedings of Machine Learning Research. 〈http://jmlr.org/proceedings/papers/v48/mensch16.html〉. 〈hal-01308934v2〉

Partager

Métriques

Consultations de la notice

1993

Téléchargements de fichiers

923