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Pricing in Heterogeneous Wireless Networks: Hierarchical
Games and Dynamics

Luca Rose, Member, IEEE, E. Veronica Belmega Member, IEEE, Walid Saad, Member, IEEE,
and Mérouane Debbah Senior Member, IEEE

Abstract—In this paper, a novel game-theoretic model of the complex
interactions between network service providers (NSPs) and users in het-
erogeneous small cell networks is investigated. In this game, the NSPs
selfishly aim at maximizing their profit while, simultaneously, the users
seek to optimize their chosen service’s quality-price tradeoff. A Stackelberg
formulation in which the NSPs act as leaders and the users as followers,
is proposed. The users’ interactions are modeled as a general non-atomic
game. The existence of a Wardrop equilibrium in the users’ game is proven
and its expression as a solution of a fixed point equation is provided
(irrespective of the number of NSPs, services offered, pricing policies and
QoS functions). Moreover, a set of sufficient conditions that ensure the
uniqueness of the Wardrop equilibrium is provided. Notably, the uniqueness
of the equilibrium for the particular case of congestion games is shown. An
algorithm approximating these equilibria is provided and its convergence
to an ε−Wardrop equilibrium is proven. The existence of Nash equilibria
for the leaders’ game is shown and illustrated via numerical simulations.

Index Terms—Small cell networks, game theory, Stackelberg game, Non-
atomic game, Wardrop equilibrium

I. INTRODUCTION

The demand for wireless capacity has significantly increased in the
past decade due to the proliferation of bandwidth-intensive applications
[1]. One promising solution towards satisfying the growing demand
for higher wireless QoS is given by the deployment of heterogeneous
networks (HetNets) [2], [3]. The HetNets paradigm is based on the
concept of deploying low-cost, low-power, small cells (SCs) such
as femtocells (FCs), picocells, or WiFi access points to boost the
performance of existing cellular networks [4]–[7]. HetNets can then
be utilized by network service providers (NSPs) that can group them
into services to be offered to the users at specific prices. Thus, at the
users’ level, the variety of available services intrinsically creates a choice
dilemma between the incentive of higher QoS and the disincentive of
higher price, when chosing a service The individual users’ choices with
regards to wireless services are based on the tradeoff between the pricing
levels, set by the NSPs, and the services’ QoS levels that depend on
both the wireless infrastructure and the subscribers’ distribution over
the available services. Given a set of prices, if no user can improve
this tradeoff by unilaterally switching its service we say that the users
are at the so called Wardrop equilibrium (WE). At the NSPs’ end,
revenues depend on the distribution of the users at the WE, which,
in turn, are determined by the prices and the QoS levels of the offered
services. Under these assumptions, NSPs must be able to predict the
users’ behavior in order to optimize their pricing policies and maximize
their revenues.

This issue has already attracted some attention in the literature. In
[8], an optimal pricing scheme is evaluated for a monopolistic market,
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while in [9], the authors also study the dynamics of the users’ demand
in a monopolistic scenario. An extension to oligopolistic markets is
introduced in [10], [11] in which authors prove the existence and
uniqueness of the users’ game equilibrium under some assumptions on
the offered QoS. These works further assume that the QoS offered by
any service in the network depends only on the fraction of users that
subscribe to the service. This reduces the users’ game to a popular class
of games known as congestion games [12]. Such a QoS model is not
always realistic, for example in cases in which single technologies are
shared among different services, or in the case in which several services
compete for the same spectral resources, as highlighted in [13]. In [14],
the authors study the general non-atomic game under the assumption
of fixed strictly different prices of the services. A non-atomic game is
essentially a game with infinitely many players each of which cannot,
individually, determine the utility of the others.

In contrast to these works, we propose a hierarchical or Stackelberg
[15] game model to study these interactions. In a Stackelberg game,
some players, namely the followers, myopically aim at maximizing their
utilities while the other players, namely the leaders, can anticipate the
outcome of the followers’ game. In contrast with vast majority of the
literature, a multi leader hierarchical game is here considered. Within
the context of the studied service selection problem, we propose a model
in which the NSPs assume the role of leaders while the users act as
followers. Here, the NSPs are selfish entities that choose an optimal
pricing strategy to maximize their revenues. To achieve this goal, the
NSPs have to be able to predict the users’ reactions to their pricing
choice, i.e., the users distribution at the equilibrium. Hence, in this
work, we study the complex interactions among the NSPs and the users,
aiming at investigating the existence of the Stackelberg equilibrium
arising from these interactions. This equilibrium is characterized by
a NE for the leaders’ game and a WE for the users’ game. We show
that, in order to evaluate the NE, the NSPs must be allowed to set any
pricing policies, and that there always exists at least one Stackelbeg
equilibrium.

Given the complexity of the Stackelberg formulation, first, we focus
on the interactions of the users and, once their behavior is well
understood, we investigate the optimal pricing strategies at the NSPs
level. At the users’ level, in order to study the WE, we define an
appropriate best-response function and we show that the set of its fixed
points coincides with the set of equilibria. This best-response function
is defined in the case in which the users select one of the services
which offer the highest utility, given the current distribution of users.
We show that, starting from an arbitrary users’ distribution, iterating
this best-response may not lead to an equilibrium. Thus, we propose
a modified algorithm that is shown to converge to a neighborhood of
the WE. Moreover, this improved algorithm allows to more realistically
capture the users’ behavior.

At the NSPs’ level, we assume that the leaders use this algorithm
to anticipate the users’ behavior, to be able to evaluate their pricing
strategies. We analyze the leaders’ game and , under the conjecture of
continuous NSPs’ best-response functions, we prove the existence of at
least one equilibrium point, thus, the existence of an equilibrium for the
overall hierarchical game.
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In conclusion, the main contributions of this work may be summa-
rized as follows: (i) We prove the existence of at least one Wardrop
equilibrium (WE) for the general non-atomic users’ game; (ii) We
define a best-response function to describe the evolution of users’
distribution when they select their individual optimal service; (iii) We
show that the fixed points of this function correspond to the WE set of
the users’ game; (iv) We prove that the result of any best-response is
characterized by a unique set of thresholds which divide the users having
a different set of utility maximizing services; (v) We provide sufficient
conditions that ensure the uniqueness of the WE. In particular, we show
the uniqueness of the equilibrium when the game takes the form of a
congestion game, whereas, to the best of our knowledge, only essential1

uniqueness was proven (for a detailed discussion see [16], [17]); (vi)
We provide an iterative algorithm that allows the leaders to anticipate the
users’ choices by approximating the WE; (vii) We study the multi-level
interactions between NSPs and users under a condition that implies the
existence of at least one pure NE in the leaders’ game; (viii) Extensive
numerical simulations are used to validate all our theoretical results and
to analyze the economical advantages of deploying a new technology.

The rest of the paper is organized as follows. Section II presents
the problem formulation, while Section III provides detailed theoretical
analysis on the properties of the Stackelberg game under study. In
Section IV, we detail the analysis of the NSPs’ game, these results are
then validated via numerical simulations in Section V and conclusions
are drawn in Section VI.

II. SYSTEM MODEL AND GAME FORMULATION

A. Network Model

Consider a wireless system in which a continuum of users can choose
to connect to a finite set of services that are being offered by a finite
number of NSPs denoted by the set K , {1, 2, . . .K}. The users are
organized into a continuous and infinite number of classes. Each class
groups all the users which a certain interest in the QoS. In detail, the
users are distributed into the real segment [0, γ̄] where, γ̄ represents the
maximum interest in the QoS. We refer to users with interest γ ∈ [0, γ̄]
as the users of type γ. Here, users having a higher interest in obtaining a
higher QoS correspond to higher values of γ. In this model, the users are
utility maximizing rational entities distributed on the domain of interest
according to a certain distribution function ρ : [0, γ̄] → R+. We let
Γ(γ) =

∫ γ
0
ρ(x)dx denote the cumulative function with Γ(γ̄) = 1. Each

NSP k ∈ K offers Mk services within the set Mk , {1, 2, . . . ,Mk}.
Here, service 0 and provider 0 denote the absence of service.

Each offered service can be represented by a pair (k, s), with k ∈ K
and s ∈ Mk. For notational simplicity, we define the largest set of
services being offered by the NSPs as Y =

{
1, . . . ,max

k
Mk

}
and

then we define a one-to-one mapping Φ : {K × Y ∪ {(0, 0)} → N as:

Φ(k, s) =


0, , if k = 0, s = 0,

s+

k−1∑
`=1

M` , otherwise.
(1)

Thus, we use a single letter notation to describe the pair (k, s) via
an integer label c = Φ(k, s) that represents a particular service-NSP
pair. Thus, c ∈ C , {0, 1, . . . , C}, with C =

∑K
k=1 Mk. We let αc

be the fraction of users connecting to service c (the service load) and
α = (α0, α1, . . . αC), α ∈ 4C , be the network’s load profile2, or the
user distribution.

In order to subscribe to a service c, a user must pay a price
pc > 0, and we denote by p = (p0, p1, p2, . . . , pC) the network

1Essential uniqueness refers to the fact that the utilities offered by each service
at different WE points is the same.

2We indicate with4C the C-simplex,i.e.,4C =
{
v ∈ [0, 1]C : ||v||1 = 1

}
.

pricing vector. Without loss of generality, these prices are assumed
to be increasingly ordered, such that c > r implies pc ≥ pr . When
selecting a service, a user perceives a QoS equal to gc(α), which is a
function of the whole load profile. We denote the network QoS vector
by g(α) = (g0, g1, g2, . . . , gC) (α). Each gc(α) is assumed to be
a continuous, differentiable function w.r.t. α and a monotonous non-
increasing function of αc [8]–[11], [13], such that gc(α) ≥ 0, ∀α.
Furthermore, since it represents the absence of services, we set p0 = 0
and ∀ α ∈ 4C , g0(α) = 0.

B. Hierarchical Game Formulation

The users consider the service prices as fixed and select the service
which maximizes the tradeoff between the QoS and the price. The NSPs
consider that each user is selecting a service that maximizes its tradeoff,
and, thus, choose the pricing policies that maximize their revenues.
Here, we describe these interactions between NSPs and users via a two
level, hierarchical (Stackelberg) game [15]. This framework has two
interdependent games. The high-level game, or leaders’ game, which
is played by the NSPs, and the low-level game, or followers’ game,
which is played by the users. The NSPs must select the best pricing
scheme while anticipating the users’ possible reactions. In contrast, the
users, ignore the leaders strategies and treat the pricing policies as fixed
parameters independent from their choices.

1) Low-level game: The users consider the network price vector
p as a fixed parameter, while aiming at choosing a service that
maximizes their satisfaction. Since we consider a continuum of users,
this competition is modeled as a non-atomic game defined by the
tuple GF =

(
[0, γ̄], C, {Uγc }c∈C,γ∈[0,γ̄]

)
. The players are the non-

atomic users ordered in an infinite number of classes over the real
segment [0, γ̄]. The set of services C denotes the action set and{
U

(γ)
c

}
c∈C,γ∈[0,γ̄]

is the family of utility functions defined as:

U (γ)
c (α) = γgc(α)− pc, (2)

where U (γ)
c (α) is the utility that users of type γ obtain by subscribing

to service c, when the load profile is α. We consider gc(α) to be
function of the whole load profile α and not only on the service load αc.
The latter is generally assumed in the literature [8]–[11] (i.e., gc(α) =
gc(αc)), which implies a congestion non-atomic game.

One suitable solution for non-atomic game is through the concept
of a Wardrop equilibrium (WE), [18], [19]. However, unlike classical
WE games [20], in our game, we assume users to evaluate each service
also based on their type γ, therefore it is not straightforward to apply
this equilibrium concept. Thus, we define a new concept of equilibrium
used in the general non-atomic game investigated through this paper.
We begin by introducing some useful definitions.

Definition 1 (Set of used services (SUS)) For any arbitrary γ ∈
[0, γ̄], we define the correspondence S(γ) ⊆ C as the set of services
chosen by users of type γ. Further, we define the set of used service
(SUS) as S ,

{⋃
γ∈[0,γ̄] S

(γ)
}

.

Here, it is important to note the analogy between users of the same
type selecting different strategies in a non atomic game, and the use of
mixed strategy in an atomic game [16], [21]. However, since all users
of each type carry an infinitesimal amount of load, practically, it is
more meaningful to study only the cases in which all the users of each
type select only one service, i.e., ∀ γ ∈ [0, γ̄] , |S(γ)| = 1. Next, this
is referred to as users of type γ employing a pure strategy, and as a
SUS in pure strategies. We remark that, given an arbitrary load profile
α ∈ 4C , in general it is not possible to infer the exact services that are
employed by users of an arbitrary type γ ∈ [0, γ̄]. With this assumption,
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it is possible to compute the load profile α from the set S by using the
service to load function defined next.

Definition 2 (Service to load function) Let S be the set of the corre-
spondences between type of users and selected services. Assume that
the users of almost3 all types employ a pure strategy, that is for almost
all γ ∈ [0, γ̄] we have that |S(γ)| = 1. Then, the fraction of users
connecting to a service c ∈ C is given by αc = Rc(S). For each
service c, the service to load function Rc : C → [0, 1] is defined as:

Rc(S) ,
∫ γ̄

0

1{c∈S(x)}ρ(x)dx, (3)

where 1{·} is the standard indicator function and ρ(·) is the users
density function introduced in Section II. By defining R(S) ,
(R1(S), . . . , RC(S)) it is possible to write α = R(S).

We can now define rigorously the WE in the non-atomic game GF :

Definition 3 (Non atomic game (Wardrop) equilibrium) A load
α∗ ∈ 4C is a (Wardrop) equilibrium in pure strategies of the game
GF , if there exists a set of used services S∗ =

{⋃
γ∈[0,γ̄] S

∗(γ)
}

, such
that all the users of almost all type employ a pure strategy, such that
α∗ = R(S∗) and ∀ γ ∈ [0, γ̄] the following condition is met:

U
(γ)
c (α∗) ≥ U

(γ)

c′ (α∗) , c ∈ S∗(γ) and c′ 6∈ S∗(γ) .

Here, we used the symbol S∗(γ) to denote the particular set of
actually used services at the WE. Hereinafter, we denote the set of
the WE asW , {α∗1 , . . . ,α∗W }. There exist several equivalent ways
of expressing the WE, such as:

W =
{
α∗ ∈ 4C : ∃ S∗ : α∗

R(S∗), ∀ γ ∈ [0, γ̄] , S∗(γ) ⊆ arg max
r∈C

U (γ)
c (α∗)

}
(4)

This equilibrium is Wardrop-type equilibrium because all the users of a
single type γ is at the equilibrium according to Wardrop second principle
[19]. That is, focusing on a single type of users γ, all the users of this
type select a service that provides a utility which is greater or equal
that those of the unselected services. This concept is also related to the
NE since no user can improve its utility by unilaterally changing the
selected service [16].

Any arbitrary load profile α induces certain value of U (γ)
C (α). Thus,

for all γ ∈ [0, γ̄] we define a correspondence between the set of the
services which maximize the utility, for a certain α. We define this set
as follows:

Definition 4 (Set of utility maximizing services) For any arbitrary
load α ∈ 4C , the set of utility maximizing services for users of type
γ is given by:

Ŝ(γ)(α) = arg max
r∈C

U (γ)
r (α). (5)

From (4), it is clear that α∗ is a WE if, and only if, for all γ ∈ [0, γ̄]
it results that: S(γ) ⊆ Ŝ(γ)(α∗). In other words, at the WE no user of
any type can improve its utility by unilaterally switching service.

2) Leaders’ game: Each NSP k ∈ K, can autonomously select its
price vector, pk = (p1, p2, . . . pMk ) ∈ RMk+ , so as to maximize its
own revenue. The main difference between leaders and followers, in
a hierarchical game, is that the leaders can predict the reaction of
the followers to their strategies, while the followers are myopic. As
opposed to the users’ non-atomic game, the leaders’ competition is a
noncooperative Nash game, which can be expressed in normal-form

3With the expression almost is intended that only users of a finite amount
types are allowed to chose a plurality of services.

by the tuple GL =
(
K, {Pk}k∈K , {uk}k∈K

)
where uk(·) denotes the

utility of NSP k defined as:

uk(pk,p−k) =
∑
c∈Mk

α∗c(p)pc. (6)

When analyzing the leaders’ game, we refer the WE of the users’ game
by α∗(p) to highlight the dependence of such a state on the price vector
of the leaders. Hence, α∗c(p) represents the fraction of users employing
service c when the underlying system is at a WE given the fixed pricing
vector p.

With this formulation, a suitable solution is the NE [22], that is a set
of price policies such that no NSP can gain by unilaterally modifying its
own strategy. In the studied hierarchical game, this represents the state
in which no user can achieve a higher utility by switching service, and
no leader can obtain higher revenue by changing its pricing strategy.

III. ANALYSIS OF THE USERS’ GAME

In order to study the Stackelberg equilibrium of the studied hierarchi-
cal game, we first need to analyze the equilibrium of the users’ game.
Therefore, our first result pertains the existence of at least one WE in
pure strategies4 for the game GF for any arbitrary pricing profile as
stated below:

Theorem 1 In the game GF defined in Section II-B1, if the following
conditions are met:

[C1] The utility functions depend only on the traffic load and not
on the users’ identities;
[C2] The QoS functions, i.e., gc(α) are continuous functions of α,
for all c ∈ C;

then, for any price profile p ∈ RC+, there exists at least one WE in pure
strategies.

Both conditions [C1] and [C2] follow from the assumptions of our
model (Section II) and the proof follow easily from Theorems 1 and 2
in [21]. This result is particularly relevant since it guarantees that the
users’ game has a WE for any arbitrary pricing vector resulting from the
leaders’ game. Moreover, since this equilibrium is in pure strategies, we
can calculate the load profile by means of the service to load function
in Definition 2, i.e., ∀ α∗ ∈ W, α∗ = R(S∗).

While the existence of at least one WE in pure strategies is necessary
for the analysis of the hierarchical game it is clearly not sufficient.
In order to evaluate the optimal pricing policies each leader needs to
be able to evaluate the value of the load of each service at the WE.
To achieve this goal, we first define a type-wise best-response (TBR)
correspondence, i.e., a function between any given load profile, and the
services which maximize the utility function of a given type of user.
This concept is similar to the standard best-response used in atomic
games.

Definition 5 Let α ∈ 4C be an arbitrary load profile of the network
and let Ŝ(α) be the corresponding set of utility maximizing services.
We define the type-wise best-response (TBR) correspondence, for users
of type γ ∈ [0, γ̄], a function BR(γ) : 4C → C such that

BR(γ)(α) = s, with s ∈ Ŝ(γ)(α), (7)

that is, each type of user selects an element of each SUS. We also define
the set of the TBR as BR(α) =

{⋃
γ∈[0,γ̄] BR

(γ)(α),
}

.

Basically, each type of user selects an unknown service, among the
services that maximize the utility function.

4We recall that, in this context, the expression pure strategy refers to the fact
that all users of each type select only one service.
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A. Characterization of the best-response

The defined TBR is a behavioral rule that, for any arbitrary load
profile, links each type of user to one of its utility maximizing services.
However, this rule is insufficient for the NSPs to estimate the load
profile. Thus, here, we introduce the load-wise best-response (LBR)
function F : 4C → 4C . Given an arbitrary load α, this function
evaluates the load profile which result when all users select one of the
services which maximize their utility. In order to specify this function,
we begin by defining the following:

Definition 6 (Same-priced services set (SPS)) The set of same-
priced services (SPS) is a subset P ⊆ C that contains all the
services with identical price p. That is ∀ c ∈ P, pc = p̂, and
∀ c ∈ C \ P, pc 6= p̂.

Using Definition 6, we can organize all the provided services in a
sequence of non-overlapping SPSs, characterized by strictly increasing
prices. Thus, when p0 < p1 = p2 = p3 < p4 we have P0,P1,P2

such that p0︸︷︷︸
P0

, p1, p2, p3︸ ︷︷ ︸
P1

, p4︸︷︷︸
P2

. The indices of these non-overlapping

SPSs are then grouped in the set E = {0, . . . , E}, E ≤ C (with
equality iff all the services have strictly different prices), and each SPS
e ∈ E is associated its unique price p̂e. Without loss of generality, we
can assume that the SPSs are listed in a strictly increasing order, i.e.,
∀ c, r ∈ E , c < r ⇔ p̂c < p̂r .

For each one of these SPS, for any given load profile α, it is possible
to define a best service (BS), that is a service that offers a utility greater
or equal than any service in the SPS, as follows:

Definition 7 (Best service (BS)) Let P ⊆ C be an SPS where all
services are assigned price p. Consider an arbitrary load profile
α ∈ 4C and define ĝ(α) = maxr∈P`gr(α). A best service (BS)
is a service that is characterized by a price p and a QoS equal to
ĝ(α).

By definition, within each SPS, there exists at least one service which
has the characteristic of the BS. Moreover, the utility offered by the BS
for all type of users is greater or equal than the one offered by any
other service belonging to the same SPS. Hereinafter, we refer to the
set E as the set of BSs and to its generic element as the BS e ∈ E ,
which is characterized by a QoS of ĝe(α) and price p̂e. Also, we say
that users of type γ select a BS e, or that e ∈ Ŝ(γ)(α) meaning that
all the users of type γ select one of the services belonging to the SPS
Pe5. Unlike in [14], where the non-atomic users select a service among
a set of services with strictly different prices, here the users make their
service choices out of a set of BS with strictly different prices.

For any given load profile, in each SPS there might be several services
which share the same QoS. Then, for each SPS, we define the best
service set (BSS), as a set (whose elements depend on the load profile)
which contains all services offering the same QoS and asking the same
price.

Definition 8 (Best services set (BSS)) Let P ⊆ C be an SPS where
all services are assigned price p. Consider an arbitrary load profile
α ∈ 4C and let ĝ(α) be the QoS of the corresponding BS. We
define as the best services set (BSS) the subset P̂(α) ⊆ P , that
is the set of services characterized by the same QoS of the BS:
P̂(α) = {c ∈ P : gc(α) = ĝ(α)}.

From [14], we know that, if all the prices are different, there exist
some thresholds which isolate all the users of any type that select a
certain service. This results holds since on the γ − U (γ)(α) plane,

5More formally, e ∈ Ŝ(γ)(α) means that ∃ c ∈ Pe : c ∈ Ŝ(γ)(α).

the utility (2) offered by each service is a line, and thresholds are the
intersection points of these lines. Intersection points that are unique iff
the slopes and the y-intercepts are all different.

Subsequently, we show that: (i) Among the services offering the same
price, only those who offers the highest QoS may be chosen; (ii) It is
possible to define some subsets of services or BSs which are never
selected when the all the users best-respond. (iii) For any given load
profile, there exists a unique set of thresholds that isolate all the users
of any type that connect to services belonging to the same SPS; (vi) It
is possible to define a function that computes the load profile resulting
when all type of users select one of their utility maximizing services;
(v) A load profile α∗ is a WE iff it is a fixed point of this function.
First, we show a result pertaining to the behavior of users that desire
to connect to some services that are member of an SPS.

Theorem 2 Consider an arbitrary load profile α(0) ∈ 4C , an
arbitrary SPS P , and denote the QoS of the BS by ĝ(α(0)) =
maxr∈Pgr(α

(0)), and by P̂(α(0)) its corresponding BSS. Let all users
of each type γ ∈ [0, γ̄] best-respond according to Definition 5, and
denote by α(1) ∈ 4C the resulting load profile. Then, the utility of all
services within the SPS that do not belong to the BSS is inferior to the
one of the BS, thus, they are never selected by any rational user. That
is, for any service c ∈ P \ P̂(α(0)), α

(1)
c = 0.

Proof: From (2) we can see that if c ∈ P and gc(α(0)) < ĝ(α(0))
then there exists at least one service r ∈ P̂(α(0)) such that ∀γ ∈
[0, γ̄] , U

(γ)
r

(
α(0)

)
> U

(γ)
c

(
α(0)

)
. Hence, since users of each type

select a service which maximize its utility, no type of user selects any
service c ∈ P \ P̂(α(0)), thus α(1)

c = 0.
Theorem 2 states that, among a set of services all characterized by the
same price, only the ones that are providing the users with the highest
QoS have a chance of being selected. This is reasonable, since rational
users always discard a service which demands the same price of another
while providing lower QoS. In the next Lemma we show that any service
that is characterized by a lower QoS and an higher price than another
service is not chosen by any rational user.

Lemma 1 Let α(0) ∈ 4C be an arbitrary load profile and let c, r ∈ C
be two arbitrary services such that either gc(α(0)) ≥ gr(α

(0)) and
pc < pr or gc(α(0)) > gr(α

(0)) and pc ≤ pr . Let each type of
user γ ∈ [0, γ̄] best-respond according to Definition 5, and denote by
α(1) =

(
α(0), . . . , α

(1)
C

)
the resulting load profile. Then, ∀ γ ∈ ]0, γ̄] ,

U
(γ)
c (α(0)) > U

(γ)
r (α(0)), thus it results ∀ γ ∈ [0, γ̄] , r 6∈ Ŝ(γ)(α(0))

and then α(1)
r = 0.

Note that the same results holds with r, c being two BSs. Given Lemma
1, we can define, without loss of generality, a set of eligible BS as
follows: E0 = {e ∈ E : @ r 6= e ∈ E : (gr(α) ≥ ge(α)) ∧ (pr < pe)},
where E0 represents, for a given load profile, subset of BS that are not
chosen by any user which best-respond according to Definition 5.

Lemma 2 Let α(0) ∈ 4C be an arbitrary load profile, let each type
of user γ ∈ [0, γ̄] best respond according to Definition 5 and denote
by α(1) =

(
α(0), . . . , α

(1)
C

)
the resulting load profile. For a given

γ̃ ∈ [0, γ̄], denote by c one of the utility maximizing services, i.e.,
c ∈ Ŝ(γ̃)(α(0)). Let r ∈ C be such that gr(α(0)) < gc(α

(0)). Then,
∀ γ ∈ ]γ̃, γ̄], the utility offered by service c is greater than the one
offered by service r, hence r is never selected by any rational user of
type γ ∈ ]γ̃, γ̄].

Note that the results of Lemma 2 apply to any BS. Thus, Lemma 2
allows us to extend the concept of eligible BS. If a BS e is an element



5

of the set of utility maximizing services Ŝ(γ̃)(α)6 for the users of type
γ̃ and it offers a QoS equal to ĝe(α), then all BSs offering a lower QoS
are not chosen by any type of user with γ > γ̃. These lemmas’ proofs
are given in the appendix. Next, we show the existence of a unique set
of thresholds that isolate all the users of any type that connect to the
same BS, that is that select one of the service of the same SPS.

Theorem 3 Consider a network in which a set C = {0, . . . , C} of
services, organized in a price-wise increasing order, are grouped into a
set E = {0, . . . , E} of BSs organized price-wise in a strictly increasing
order. Consider an arbitrary load profile α(0) ∈ 4C and let all users
of type γ ∈ [0, γ̄] best-respond according to Definition 5. Then, there
exists a unique set of thresholds, 0 ≤ γc∗1 ≤ . . . ≤ γe∗N ≤ γ̄ that isolate
all the users of any type that connect to the same BS: e∗1, e

∗
2, . . . e

∗
N .

The elements of this unique set of thresholds can be evaluated, from
the smallest to the greatest, using the following recursive system of
equations:

En = E0 \
{
r ∈ E0 : ĝr(α

(0)) ≤ ĝe∗n(α(0))
}

e∗n = arg min
e∈En−1

(
pe − pe∗n−1

ĝe(α(0))− ĝe∗n−1
(α(0))

)

γe∗n = min
e∈En−1

(
pe − pe∗n−1

ĝe(α(0))− ĝe∗n−1
(α(0))

) , (8)

with the initial conditions:{
E0 = E \

{
e : ∃r ∈ E : ĝe(α

(0)) ≤ ĝr(α(0)) and pe > pr
}

ĝe∗0 (α(0)) = 0, pe∗0 = 0, γ0 = 0
.

(9)
The evaluation stops when En = ∅.

Theorem 3 proves the following: (i) Any initial load α(0) induces a set
of QoS value, which, together with the services’ prices, set the utilities
that each service offers to each user of the same type. Services which
share the same price, can be selected only if they offer the highest
QoS among their SPS. (ii) For any load α(0), there exist a unique
set of thresholds, uniquely determined by the QoS functions and the
pricing vector, and evaluated via recursion (8), which determines the
load corresponding to each BS, i.e., the fraction of users that select one
of the services that belong to the SPS. (iii) For any initial load α(0),
the set of utility maximizing services Ŝ(α) has a particular structure,
that is:

Ŝ(γ)(α) = P̂en(α), ∀ γ ∈
[
γen , γen+1

]
, (10)

where P̂en(α) ⊆ Pen(α) represents the best services set of SPS Pen ,
that is, all users of type γ ∈

[
γen , γen+1

]
, and no other user, select

one of the service belonging to P̂en(α). This Theorem, whose proof
is reported in Appendix C, is a generalization of Theorem 4 in [14],
where services were all characterized by strictly different prices.

Given this unique set of thresholds, it is possible to exploit the
definition of Γ(·) in Section II to evaluate the fraction of users that
select each BS. Consider two consecutive thresholds γe and γf , we
know that all the users of all the types between the thresholds, and
no other user, select a service belonging to the same SPS, say Pe.
Therefore, if we calculate the load of the BS e, that is the sum of the
loads of the services of the SPS Pe, the service to load function in
Definition 2, becomes simply the integral of the user density function
ρ(·) from γe to γf . That is: αe =

∫ γf
γe

ρ(γ)sγ, which, by means of
the cumulative function Γ(·), can be written as: αe = Γ(γf )− Γ(γe).
Next, we show a theorem that proves the link between the thresholds
evaluated in Theorem 3 and the load of each BS, that is the sum of the
loads of the services belonging to each SPS.

6More formally, if ∃ c ∈ P̂e : c ∈ Ŝ(γe)(α).

Theorem 4 Consider a network in which a set C = {0, 1, . . . , C} of
services, organized in a price-wise increasing order, are grouped into
a set E = {0, 1, . . . , E} of BS organized price-wise in a strictly in-
creasing order. Consider an arbitrary feasible load profile α(0) ∈ 4C .
All the users of each type γ ∈ [0, γ̄] choose one of the services which
maximize their utility, and denote by α(1) the resulting load profile.
Let E∗ = {0, e∗1, . . . , e∗N} be the consequent set of selected BS, and
γ =

(
γe∗0 , . . . , γe∗N

)
the thresholds evaluated in Theorem 3 . Denote,

by α̂(1)
e ∈ [0, 1] the fraction of user which selects the BS e. Thus, we

have α̂(1)
e∗ ,

∑
r∈Pe α

(1)
r . Then, for any BS e ∈ E , the fraction of users

that selects one of its services is given by:{
α̂

(1)
e∗n

= Γ(γen+1)− Γ(γen) ∀en ∈ E∗

α̂
(1)
e = 0 ∀en 6∈ E∗

. (11)

Proof: From Theorem 3, the set γ =
(
γe∗1 , . . . , γe∗N

)
defines the

thresholds such that all the users of type γ ∈
[
γe∗n , γe∗n+1

]
, and no

other user, select the BS e∗n. This means that, if we denote by S(γ)

the set of services used by users of type γ, which results from all the
users best-responding according to Definition 5, then S(γ) ⊆ Pe∗n iff
γ ∈

[
γe∗n , γe∗n+1

]
. That is, all the users of types γ ∈

[
γe∗n , γe∗n+1

]
select one of the services that belong to Pe∗n , while all the users of
different types select a service which does not belong to Pe∗n . Since
α̂

(1)
e∗ ,

∑
r∈Pe α

(1)
r , by means of the service to load function (3), we

have, ∀ e∗ ∈ E∗:

α̂
(1)
e∗ =

∑
r∈Pe∗

∫ γ̄

0

1{r∈S(γ)}ρ(γ)dγ =

∫ γ̄

0

∑
r∈Pe∗

1{r∈S(γ)}ρ(γ)dγ.

Since for each type of user γ, S(γ) contains only one service, we can
write

∑
r∈Pe∗

1{r=S(γ)} = 1{S(γ)∈Pe∗}, thus

α̂
(1)
e∗ =

∫ γ̄
0
1{S(γ)⊆Pe∗}ρ(γ)dγ

=
∫ γe∗

n+1
γe∗n

ρ(γ)dγ = Γ(γe∗n+1
)− Γ(γe∗n).

(12)

Further, if en 6∈ E∗, then no type of user connects to any service
that belong to Pen . In this case, the load of each of these services is
0, i.e. ∀ r ∈ Pen , α

(1)
r = 0. Since α̂(1)

e∗ ,
∑
r∈Pe α

(1)
r we have that

α̂
(1)
e∗ = 0.

To fully determine the load profile after that all users have best-
responded, we must evaluate the repartition of load of one BS into the
services which compose the corresponding SPS. Thus, we define a load-
wise best response function (LBR) that determines the load resulting
from all user selecting one of the utility maximizing service as follows:

Definition 9 (Load-wise best response (LBR)) Let α(0) ∈ 4C be an
arbitrary load profile, let all type of users select one of the service that
maximize its utility function and denote by α(1) ∈ 4C the resulting
(unknown) load profile. Denote by α̂ = (α̂0, . . . , α̂E) the vector of the
loads of all BS calculated using Theorem 4. For each SPS e ∈ E , let
P̂e(α(0)) ⊆ Pe be the corresponding best services set. We define as the
load-wise best response a function F : 4C →4C such that ∀ c ∈ C:

Fc(α(0)) =

=

 α
(0)
c +

α̂e− ∑
r∈P̂e(α(0))

α
(0)
r


|P̂e(α(0))|

if ∃ e ∈ E : c ∈ P̂e(α(0))

0 otherwise

.

(13)
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To understand (13), we note that, if each SPS is a singleton, then
we obtain Fc(α(0)) = α̂c. Thus, the load of the BS coincides with the
load of the unique service of the SPS. Conversely, when the SPSs are
not singleton, the load of the BS, say e, is uniformly divided among
the services in the set of best services, defined in Definition 8. The
term

∑
r∈P̂e(α(0)) α

(0)
r represents the load of the BS e before the

best-response. Hence, the term α̂e −
∑
r∈P̂e(α(0)) α

(0)
r represents the

variation of the load of the BS e caused by the best-response. This
variation is then divided equally among these services, as if the users
were selecting randomly, with equal probability, one of the service in
the same BSS, labeled by e. Notice that, under the assumption that
each type of player employs pure strategies, ∀ α ∈ 4C , F (α) can be
calculated with no information on the exact structure of S.

Next, we show that the set of the fixed points of the equation F (·)
corresponds to the set of WE in pure strategies.

Theorem 5 In the game GF , denote by W the set of WE in pure
strategies, and let F (·) be the LBR function defined in Definition 9.
Then, α∗ ∈ W iff α∗ = F (α∗).

The proof of this Theorem is given in Appendix D. Since the set of
WE coincides with the fixed points of the LBR, the threshold structure
holds also at each WE. This means that, at the WE, the type of users
which select their service from a given SPS are all isolated by two
thresholds, which can be uniquely determined for each equilibrium.

B. Conditions for uniqueness of WE of the users’ game

Here, we show some conditions ensuring the uniqueness of the WE.
In particular, we show that the equilibrium point is unique when the
game is a congestion one, i.e., when the QoS functions depend only on
the load of the corresponding service. Thus, the following theorem states
our most general condition for uniqueness (proof is in Appendix E):

Theorem 6 In the non atomic game GF , let αA =
(
αA0 , α

A
1 , . . . , α

A
C

)
and αB =

(
αB0 , α

B
1 , . . . , α

B
C

)
be two arbitrary feasible load profiles

such that αA0 ≥ αB0 . Let the prices be order in strictly increasing order,
i.e., ∀ r, c ∈ C, r > c implies pr > pc and let {gc(·)} be a family of
positive functions such that ∀ c ∈ C \ {0} :

• [H1] if αAc ≤ αBc , then gc(αA) ≥ gc(αB),
• [H2] if gc(αA) ≤ gc(αB), then αAc ≥ αBc .

Then, the game GF admits only a single equilibrium α∗.

Notice that [H2] is actually a consequence of [H1]. Assumption [H1]
implies that, if the aggregate load of the NSPs’ services (i.e., all the
services aside service 0) decreases, then the QoS of each service losing
subscribers must increase. Consequently, using Theorem 6, we show a
set of theorems that provide some simpler QoS models in which the
equilibrium is unique. The first of these theorems states that if the QoS
offered by any service is more sensible to its own load than to the loads
of the other services then the equilibrium is unique. This model can
approximate homogeneous systems (e.g., a multi-provider network of
Wi-Fi hotspots or small-cells) or system where a service’s QoS depends
only on the service’s own load.

Theorem 7 Let the game GF be the non-atomic users’ game, and let
each service’s QoS function meet the following conditions: ∀α ∈WE
∀c, ` ∈ C \ {0} , c 6= `, (i) gc (α) ≥ 0, (ii) ∂gc

∂αc
(α) <

0, (iii) ∂gc
∂α`

(α) = mc, and (iv) ∂gc
∂αc

(α) < ∂gc
∂α`

(α), where mc ≤ 0
is some negative constant, and let the prices be all different and ordered
in a strictly increasing order (i.e., r > s implies pr > ps), then the
game admits a unique WE.

The proof of this theorem is given in Appendix F. Below, we briefly
explain conditions (i) − (iv). (i) implies that the QoS are always
positive, which well models a wide range of practical cases, for
instance a throughput-based QoS. (ii) implies that the QoS of each
service decreases with the service’s own load, which is true for most
communication services (Wi-Fi, 3G, small cells,...). (iii) means that the
QoS offered by any service does not increase with the load associated
to the other service, irrespective from the service. (iv) means that each
service’s QoS is more sensible to the services’ own load than on other
services’ ones. Indeed, notice that this formulation includes congestion
games (i.e., the case where each service’s QoS function depends only
on the service own load). As a special case, we can obtain a congestion
game by setting mc = 0. Thus, we can state the following:

Corollary 1 In the game GF , let each service’s QoS function gc(·)
depend only on the load of that service αc, that is gc(α) = gc(αc).
Moreover, let each of this function be positive and monotonically
decreasing, i.e, ∀c ∈ C : c 6= 0:{

gc (αc) ≥ 0
dgc
dαc

(αc) < 0,

and let the prices be all different and ordered in increasing order (i.e.,
r > s implies pr > ps) then the game admits only one WE.

Most existing works on HetNets’ markets (e.g., [8]–[11]) assume a
non-atomic game with QoS which depends only on the load of the
service. The equilibrium uniqueness problem in congestion games was
already tackled in [16], [17]. In these works, the authors prove that
the equilibrium is essentially unique, that is, the utility offered by each
service is the same at any WE. In accordance, for our scenario, we
have shown the existence of a unique load profile (i.e., W = α∗)
which implies the uniqueness of the utilities.

C. Users’ game WE learning

Having discussed the existence and uniqueness of equilibria in the
studied game, here, we discuss the possible dynamics that can enable
the users to reach a WE of the game. Little work has been done on this
topic and it is generally assumed that a free market would naturally
converge to a WE system state. However we observed that this is not
true as long as all users change simultaneously their strategies.

The LBR defines a way to calculate the load profile which result
from all the user best responding according to the TBR. Iterating this
process, it is possible to define a dynamics in which, starting from any
load profile, one can evaluate a new load profile as the result of the
users’ best-response dynamics (BRD):

α(t+1) = F (α(t)), (14)

where we used α(t) to denote the load profile at time instant t. Such
an algorithm is known in the technical literature under several different
names: the best-response dynamics [22] or the Picard algorithm [23]. It
is known that these dynamics converge to a fixed point if the iterating
function is a contraction mapping. However, in our scenario, we have
observed via numerical simulations that the function F (·) is generally
not a contraction. Hence, the Picard algorithm does not converge, and
leads to a ping-pong effect, in which the users switch between the
services in a cyclic manner as shown in Fig. 2. Nonetheless, assuming
that all the users change simultaneously their strategies is not a realistic
representation of the market, as users may obtain side-information and
make their decisions at different time instants. Thus, as a behavioral
rule for the studied non-atomic game, we propose the Krasnosielkij
algorithm [23]:

α(t+1) = (1− λ)α(t) + λF (α(t)), (15)
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α ∗

α

F (α )
F (α )

Fig. 1. Geometrical interpretation of condition (17). The distance between
F (α) and α∗ might be bigger than the distance between α and α∗. However,
the angle between the vectors F (α)−α and α∗ −α is minor than π

2
.

where λ ∈ [0, 1] is a constant parameter which tunes the fraction of
users that change their strategies at each iteration of the algorithm. It is
easy to see that this transformation has the same set of fixed-points as
F (·), i.e., the WE set. The convergence conditions of the Krasnosielkij
algorithm are less stringent than the Picard algorithm. For instance,
the Krasnoselskij algorithm converges if F (·) is a pseudo-contraction
mapping [23].

To simplify the notations, we define a pseudo-operator G : 4C →
4C as:

G(α(t)) = (1− λ)α(t) + λF (α(t)). (16)

The dynamics in (15) can be re-written as follows: α(t+1) = G(α(t)).
However, even if we do not observe an asymptotic convergence of the
Krasnoselskij algorithm we can state the following.

Theorem 8 Let α(0) ∈ 4C be the an arbitrary starting load profile,
W the set of the fixed points of F (·), K , maxα∈4C ||F (α) − α||
and ζ a real such that ζ ∈ [0, 1]. Let also gc : 4C → [0, 1] be a
family of QoS functions such that: F (α) is continuous on 4C ; There
exists an α∗ ∈ W such that ∀ α ∈ 4C

||F (α)−α∗||2 < ||F (α)−α||2 + ||α−α∗||2. (17)

Then, ∃ t̄ ∈ N : ∀t > t̄

||α(t) −α∗|| < λK(
1

2ζ
+ 1) (18)

The proof of this theorem is given in Appendix G.
Geometrical Interpretation and explanation of Theorem 8.

Condition (17) can be geometrically described as follows. Consider
the hyperplane orthogonal to the vector α − α∗ which divides the
simplex 4C in two half-space. Then, F (α) stays in the half-space
that contains α∗. More formally, let us denote by X the half space
such that X = {x : 〈x,α−α∗〉 < ||α−α∗||}. Then, ∀α ∈ 4C
we have that F (α) ∈ X . Another simple interpretation, is that the
angle between the vectors α − α∗ and F (α) − α∗ is less than π

2
.

The theorem guarantees that for any α that lies far enough from the
fixed point (i.e., ||α − α∗|| ≥ λK

2ζ
), then the result of one iteration

of the Krasnosielkij algorithm is closer to the fixed point than α. With
far enough being a distance which is λ-parametrized. Since the utility
functions are continuous functions, we can then state the following
corollary:

Corollary 2 Given any family of QoS functions gc : 4C → [0, 1],
such that [C1] and [C2] are satisfied the algorithm α(t+1) = G(α(t)),
converge to a ε-WE with ε ∝ λ.

An ε-WE essentially implies that the distance between the convergence
point of the Krasnoselskij algorithm and a WE is less than or equal to ε
[22]. In order to prove Theorem 8, we first need the following Theorem.

Theorem 9 Denote by W the set of the fixed points of F (·) and by
K = maxα∈4C ||F (α) − α||. Assume that there exists an α∗ ∈ W
such that ∀ α ∈ 4C

||F (α)−α∗||2 < ||F (α)−α||2 + ||α−α∗||2, (19)

and that
||α−α∗|| ≥ λK

2ζ
, (20)

(where ζ is a fixed positive scalar such that 0 < ζ ≤ 1) then,
||G(α)−α∗|| < ||α−α∗||.

The proof of this Theorem is given in appendix H.

IV. LEADERS’ GAME

In Section III, we have provided an algorithm that is able to evaluating
the WE of the users’ game, and we have provided some condition for the
uniqueness of this equilibrium. In this section, we show the main results
of the analysis of the leaders’ game. In a hierarchical game, the leaders
(the NSPs) must select their actions by considering that their outcome
depends on the reaction of the users. In particular, the price induces a
WE in the users’ game, and this WE, together with the pricing policy,
determines the leaders’ revenues. Our first result pertains the definition
of some maximum prices for the services. This results permits to the
leaders to reduce their search-space for the price, and its fundamental
in order to numerically simulate their behavior. From the expressions in
Theorem 3, we can see that there exist some limits in the prices of the
services such that, if the price of a service is set above this limit, then
no user selects the service. These limits depend both on the maximum
interest that the users can have in the QoS, i.e., γ̄, and on the services
characteristics. In this respect, we can state the following results:

Theorem 10 Let pc ∈ R be the price associated to service c ∈ C and
denote by gc(0) the maximum QoS that c can offer. Also, let pc >
γ̄gc(0), then the utility of service c is always minor than 0, thus, no
rational user selects this service. In particular, the load of c at any WE
is 0.

Proof: If pc ≥ γ̄gc(0), then ∀ α ∈ 4C , ∀ γ ∈ [0, γ̄] , U
(γ)
c (α) <

0, hence U (γ)
c (α) < U

(γ)
0 (α), i.e., the price asked is so high that even

users of type γ̄ receive an higher utility for selecting service 0, the
absence of service. Then, from Definition 4, ∀ α ∈ 4C , c 6∈ Ŝ(α),
thus ∀ α∗ ∈ W, α∗c = 0.
Since each service has a finite maximum price, we can define the
greatest of these prices as the maximum price for all the services:
pM = γ̄maxc∈C gc(0). Hence it is possible to reduce with no loss
of generality, the domain of the price vector, i.e., p ∈ [0, pM ]C .

Since the leaders’ game is a Nash game [22], the solution concept is
the NE, which is defined as follows:

Definition 10 (Nash equilibrium) A price vector p ∈ [0, pM ]C is a
NE of the game GL if ∀k ∈ K, ∀p′k ∈ [0, pMAX ]Mk

uk(pk,p−k) ≥ uk(p′k,p−k), (21)

where p−k represents the vector p without the k-th element and the
notation p = p′k,p−k serves to underline the role of the k-th element.
Therefore, at the NE no NSP can improve its outcome by unilaterally
changing its pricing strategy.

In order to show the existence of at least one NE, we begin by defining
the leaders’ best-response as follows:

pk ∈ BRk (α∗ (p)) = arg max
pk∈[0,pM ]Mk

∑
c∈Sk

α∗c(pk,p−k)pc. (22)
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Equation (22) states that the best pricing scheme for the player k
is the one which maximized its utility given as fixed the prices of its
competitors, and considering the overall effect of the prices on the users’
choices. Notice that, the eventual multiplicity of the equilibria at the
low-level game implies a multiplicity of the optimal prices. However,
it is reasonable to assume that the NSPs know the initial load profile,
i.e. how many users subscribe to a certain service at a given time.
Therefore, if the NSPs assume that the users are actually following
the Krasnosielkij algorithm (i.e., at each time a fraction of the users
rationally updates its choices), also in case of multiple equilibria, it is
possible for the leaders to predict the users’ stable loads.

For each player, the BR correspondence defines a curve which denotes
the optimal price given the prices chosen by the competitors. The
intersection points of theses lines correspond with the NE of the game
GL [24]. Hence, we can express the NE as the fixed points of the
following fixed-point equation:

pNE = BR(α∗(pNE)) = BR∗(pNE), (23)

where we denote by BR∗ the composition of the best responses
of the users’ game and of the leaders’ game, i.e, BR∗ = BR ◦ α∗.
Hence, BR∗ : [0, pM ]C → [0, pM ]C is a convex and compact set (is
the Cartesian product of real segments), we can state the following:

Conjecture 1 Let p ∈ [0, pM ]C be the price vector chosen by leaders,
gc(·) : 4C → R be a family of continuous non-increasing functions,
α∗(p) be the equilibrium reached in the users’ game through the
Krasnosielkij algorithm (16), expressed as a function of the price vector
p. Then, α∗(·) is a continuous function of p.

A sketch of the proof of this conjecture is given in Appendix I. This
proposition basically states that to very small variations in the pricing
scheme correspond very small variation in the loads. This result allow
us to state the following:

Theorem 11 Let gc(·) be a family of functions such that BR∗(·) (23)
is continuous with respect to p on the set [0, pM ]C , then the game GL
has at least one NE.

The proof of this Theorem follows directly from Brower fixed-point
theorem [25]. In Fig. 4, we report an example of a system with two
NSP each offering one service. The two lines represent the best-response
lines associated to each operator. In this case, the equilibrium exists and
is unique.

V. SIMULATION RESULTS

Here, we first show that, under certain conditions, the Picard algo-
rithm (14) does not allow the NSP to predict the equilibrium while
the Krasnosielkij (16) is smoothly converging; Second, we illustrate
the uniqueness of the WE in the users’ game equilibrium under the
conditions derived in Section III; Finally, we analyze the interactions
between the leaders and the users and we evaluate the outcome of the
leaders under different assumptions regarding the performance of the
considered HetNet.

A. Users’ Game

The convergence to a WE of the Picard and Krasnoselskij algorithms
is analyzed here. Consider a scenario where the leaders have already
fixed their prices and the users select the respective services. The
utilities associated to each service are: U (γ)

0 (α) = 0; U (γ)
1 (α) =

γ (7− 6.4 (α1 + α3))− 1.2; U (γ)
2 (α) = γ (6− 4.8 (α2 + α4))− 1.5;

U
(γ)
3 (α) = γ (9− 3.2α3) − 3; U (γ)

4 (α) = γ (8− 4α4) − 4.5,
with γ̄ = 1. First, we let all the users freely select the services
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Picard iteration

Krasnoselskij iteration, λ = 0.1

Fig. 2. Thresholds as functions of iteration steps. The dashed line marked with
circles represents the evolution of the thresholds when all the users best-respond
and are allowed to change their strategy, whereas the continuous line marked
with crosses represents the evolution of the thresholds when a fraction equal to
λ = 0.1 of users is allowed to switch their strategy. Note that, in the fourth plot,
the two lines are superposed.

which best suits their QoS-price tradeoff (Picard algorithm), then we
let only a fraction λ = 0.1 of the users change their strategies. The
results are reported in Fig. 2. The four plots represent the evolution
of the thresholds given in Theorem 3 over time, following (14) (Pi-
card algorithm) and (15) (Krasnoselskij algorithm). These results are
obtained starting from an initial load profile α(0) = (1, 0, 0, 0, 0)
(i.e., no user is connected to any offered service). The load profile
obtained via the Picard algorithm after 30 iterations is α(30) =
(0.2869, 0.2411, 0, 0.4720, 0), while via the Krasnoselskij, the load
profile is α(30) = (0.3008, 0.0287, 0.2290, 0.4415, 0). Moreover, it is
possible to observe that, whereas the Krasnosielskij algorithm tends
toward a stable point, the Picard algorithm loops continuously between
the same loads. From these results, we see that if all users are allowed
to change their strategies at every time instant, it is possible to enter
in an unstable infinite loop. Here, NSPs are unable to anticipate the
users’ behavior which results in suboptimal pricing policies. Whether
(14) converges or not strongly depends on the QoS variation with the
system loads. When employing a logarithmic model similarly to the
one used in [13], since the gc(·) QoS functions vary weakly with the
system loads, then it is possible to observe the convergence of the Picard
algorithm towards a WE.

To illustrate the uniqueness of the equilibrium, and the ability of
the Krasnosielskij algorithm to predict it, we consider a system with
C = 4 services. We set the users’ utility functions to: U (γ)

0 = 0;
U

(γ)
1 = γ(3 − 2α1 − α2 − α3) − 1.5; U (γ)

2 = γ(3.5 − 1.5α2 −
0.75α1− 0.75α3)− 2; U (γ)

3 = γ(4.5− 2α3−α1−α2)− 3. Note that
the performances offered by the different services depend on the whole
load profile, i.e., the game does not belong to the class of congestion
games. However, since the conditions of Theorem 7 are met the game
admits a unique equilibrium. In Fig. 3, we initialize the Krasnoselskij
algorithm with six different values: The four vertices of the simplex
44; A point on a face of the simplex (i.e., α(0) = (0, 0.5, 0.5, 0));
A randomly chosen starting point α(0) = (0.41, 0.06, 0.18, 0.35)).
Irrespective of the starting point, the algorithm always converges to
the unique equilibrium: α∗ = (0.61, 0.17, 0.18, 0.02).

B. Leaders’ Game

Each leader independently makes use of the Krasnosielkij algorithm
(16) to estimate the equilibrium reached by the users thus setting the
services’ prices. In our system, the leaders select their optimal prices
one after the other, in a sequential best-response dynamic [26] fashion.
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Fig. 3. Trajectories of the Krasonsielkij algorithm with different starting points
all converging to the same WE α∗ = (0.61, 0.17, 0.18, 0.02). The settings
for this simulation is: Uγ0 = 0; Uγ1 = γ(3 − 2α1 − α2 − α3) − 1.5; Uγ2 =
γ(3.5−1.5α2−0.75α1−0.75α3)−2; Uγ3 = γ(4.5−2α3−α1−α2)−3. Notice
that the value of α0 is not reported in axes of the figure since

∑
c∈C αc = 1.

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

p1

p
2

 

 

BR2(p1)

BR1(p2)

p∗ = (1.87, 0.65)

Fig. 4. Best-responses lines for a network where 2 NSPs offering one service
each. Each leader estimates the WE of the users’ game and evaluates its own
optimal price for each of the possible price taken by the other leader. The meeting
point of the two lines is the (unique) NE.

We consider a system with two NSPs, each offering one service.
Each NSP assumes the competitors prices as fixed, and tests all its
possible pricing strategies, evaluating the corresponding the WE trough
the iteration of (16), thus evaluating its own payoff (6). Therefore, for
each NSP, and for all possible pricing policies of the competitor, we
evaluate the optimal pricing. The resulting curve is an instance of best
response curve [22]. The intersection points of these curves provide the
NEs of the game GL. In Fig. 4, the best response curves of the NSPs
are plotted. The continuity of these curves ensures existence of at least
one intersection point, which here happens in p∗ = (1.87, 0.65).

Next, we study the interaction among the leaders and the users.
We analyze a duopoly market in which an NSP 1 offers one service
(a macro-cell service) and an NSP 2 offers two services (a macro-
cell service and a small-cell service). NSP 2 is evaluating how much
it should invest in the small-cell infrastructure, by evaluating the
economical benefit resulting from its deployment. In this scenario,
service 0 represents, as usual, the absence of service, service 1 and 2 the
macro-cell services of NSPs 1 and 2 respectively and service 3 is the
small-cell service. Each service is associated with a unique portion of
the spectrum, hence the utilities depend exclusively on the services’ own
loads. Therefore, the QoS functions are designed as follows: g0(α) = 0,
g1(α) = 3−α1, g2(α) = 3−α2, g3(α) = G0−1.5α3. The parameter
G0 represents the maximum QoS offered by the small-cell service (i.e.,
the QoS it offers when no user is selecting it). We assume that this value
depends on the amount of infrastructure, and thus of economical effort,
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Fig. 5. Optimal prices for the leaders as a function of the maximum QoS offered
by service 2 of NSP 1 (G0). The QoS of the other services are: g0(α) = 0,
g1(α) = 3 − α1, g2(α) = 3 − α2, g3(α) = G0 − 1.5α3 where service 0
represents the absence of service, service 1 and 2 represent respectively service
1 of NSP 1 and service 1 of NSP 2, and service 3 represents the small-cell
service of NSP 2.
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Fig. 6. Load of each service at the Stackelberg equilibrium as a function of
the maximum QoS offered from service 2 of NSP 1 (G0).

deployed by the NSP. The NSP is then interested in understanding how
much should G0 be.

The analysis is then performed as follows: we let G0 vary from 0
(i.e., no small-cell service deployed) to 5, thus evaluating the optimal
pricing scheme (Fig. 5), the equilibrium loads (Fig. 6) and the NSPs’
utilities (Fig. 7).

From Fig. 5 and Fig. 7, we can see that the income of NSP 1 is
boosted by the new technology only when G0 > 3. When G0 < 3,
NSP 2 can approximately limit the loss of users by decreasing the price
asked for the service. In this case, the effect of the implementation of
the new service by NSP 1 is to slightly decrease the profits of NSP 2
(therefore improving the utilities of the users), instead of increasing the
revenues of NSP 1. In Fig. 5 and Fig. 6, it is possible to notice that an
NSP with one service selects a price that leads to a load level similar in
value to the price. In contrast, the NSP offering two services adopts a
pricing scheme that maximizes the income correspondent to the service
which offers the highest QoS.

Figs. 5-7 also show that the result of a small investment (small G0)
is to decrease the market appeal of the competitor’s offer. As long as
G0 < 3, which is the maximum QoS offered by the macro-cell services,
the second NSP can decrease the price to contain the effect of the new
technology, thus avoiding a incisive increment in the outcome of the first
NSP. However, when G0 > 3, decreasing the price stop being a viable
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Fig. 7. Revenues of each NSP at the Stackelberg equilibrium as a function
of the maximum QoS offered from service 2 of NSP 1 (G0). Notice that the
revenues of NSP 1 increase strongly when G0 ≥ 3.

tactic, and the first NSP income grows linearly with the performance
of the HetNet.

VI. CONCLUSIONS

In this paper, the interactions between an arbitrary number of service
providers offering a variety of services based on a set of heterogeneous
technologies and an infinite population of users have been analyzed.
To study this system, a hierarchical game-theoretic model has been
formulated. This model is composed of a standard Nash game: the
leaders, or network service providers’ game, and a general non-atomic
game as the followers, or the users’ game. In the users’ game, the
assumption of congestion payoffs has been relaxed to allow the users’
utility functions to comply with systems where the QoS of each service
depends on the loads of all the services in the network. The existence
of a Wardrop equilibrium was proven for any pricing policies and
sufficient conditions for its uniqueness were provided. At the service
providers’ level, an algorithm, namely the Krasnosielkij algorithm, has
been provided allow the leaders to anticipate the users’ behavior at
the equilibrium, which let the leaders effectively estimate the market
behavior. Thus, this estimation is used by the NSPs to evaluate their op-
timal pricing strategies. Furthermore, by assuming the continuity of the
NSPs’ best-response, the existence of at least one Nash equilibrium has
been shown, which represents the equilibrium of the overall hierarchical
game. Thorough numerical simulations were performed to validate our
theoretical results. Also, we provide a specific practical scenario to
illustrate the possible uses of the mathematical tools developed in this
work. In this framework, the providers can anticipate the benefit, if any,
of deploying a new service.
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APPENDIX A
PROOF OF LEMMA 1

Proof: For any couple of services c, r ∈ C and any load profile
α ∈ 4C let us define a utility difference function fαc,r : [0, γ̄]→ R as
follows:

fαc,r(γ) = U (γ)
c (α)− U (γ)

r (α)

= γ(gc(α)− gr(α))− (pc − pr). (24)

Basically, fαc,r(·) measures the difference between the utilities that a
user of type γ obtain for connecting to service c with respect to r.
Notice that ∀ c, r ∈ C,α ∈ 4C fαc,r(·) is a monotonic function of γ,
and fαc,r(γc,r) = 0 implies γc,r = pc−pr

gc(α)−gr(α)
.

Proving the lemma is equivalent to proving that ∀γ ∈
[0, γ̄] , fαc,r(γ) > 0. In the case in which gc(α) ≥ gr(α) and pc < pr ,
fαc,r(γ) is a non-decreasing function of γ, which fαc,r(0) > 0, hence
∀ γ ∈ [0, γ̄] , fαc,r(γ) > 0. In the case in which gc(α) > gr(α) and
pc ≤ pr , fαc,r(γ) is an increasing function of γ, which fαc,r(0) ≥ 0,
hence ∀ γ ∈ ]0, γ̄] , fαc,r(γ) > 0.

Therefore ∀ γ ∈ ]0, γ̄] , U
(γ)
c (α) > U

(γ)
r (α), from the definition of

BR in Definition 5, ∀ γ ∈ ]0, γ̄] , BR(γ) 6= r, hence Rr(BR) = 0,
i.e., α(1)

r = 0.

APPENDIX B
PROOF OF LEMMA 2

Proof: By using fαc,r(γ) as defined in (24), proving the statement is
equivalent to proving that ∀γ > γc, f

α
c,r(γ) > 0. From the assumption

that c ∈ Ŝ(γc)(α), we have fαc,r(γc) ≥ 0. From the assumption that
gc(α) > gr(α), we obtain that fαc,r(γ) is a monotonically increasing
function in γ. Therefore, γ > γc implies that fαc,r(γ) > 0.

APPENDIX C
PROOF OF THEOREM 3

Proof: Let γe∗n , e
∗
n, En be defined as in (8). From Lemma 1,

restricting the set of eligible BS as in (9) does not affect the generality of
the formulation. From Lemma 2, ∀n ∈ N restricting the set of eligible
BS from En−1 to En when evaluating γn and e∗n does not affect the
generality of the theorem.

Making use of the function fαe,r defined in (24), proving the theorem
is equivalent to prove that ∀ n ∈ N, ∀ r ∈ En−1, f

α(0)

e∗n,r
(γe∗n) > 0 and

fα
(0)

e∗n,r
(γe∗n+1

) ≥ 0 and thus ∀γ ∈
]
γe∗n , γe∗n+1

[
, fα

(0)

e∗n,r
(γ) > 0. In fact,

if ∀ r ∈ E , ∀ γ ∈
]
γe∗n , γe∗n+1

[
, fα

(0)

e∗n,r
(γ) > 0, then from Lemma 2

all, and only, the users of type γ ∈
]
γe∗n , γe∗n+1

[
select th BS e∗n.

Let r ∈ En−1 be an arbitrary BS, it results that

fα
(0)

e∗n,r
(γe∗n) = fα

(0)

e∗n,e
∗
n−1

(γe∗n) + fα
(0)

e∗n−1,r
(γe∗n)

= fα
(0)

e∗n−1,r
(γe∗n), (25)

since, by substituting the definition of γe∗n in (24), it results
fα

(0)

e∗n,e
∗
n−1

(γe∗n) = 0. Reasoning ad absurdum, if we assume that

fα
(0)

e∗n−1,r
(γe∗n−1

) < 0 then

γe∗n >
pr − pe∗n−1

gr(α(0))− ge∗n−1
(α(0))

, (26)

which contradicts the definition of γe∗n , since we would have found an
eligible service r with a lower γr , therefore ∀r ∈ En−1 f

α(0)

e∗n,r
(γe∗n) > 0.

Now, we show that ∀r ∈ En fα
(0)

e∗n,r
(γe∗n+1

) ≥ 0. Reasoning ad
absurdum, we assume that there exists a service r ∈ En such that
fα

(0)

e∗n,r
(γe∗n+1

) < 0. Then, since fe∗n,r(γe∗n) > 0 and fe∗n,r(·) is a
continuous function, there must exist a certain γr < γen+1 such that
fe∗n,r(γr) = 0. Using (24)

γr =
pr − pe∗n

ĝr(α(0))− ĝe∗n(α(0))
, (27)

which contradicts the definition of γe∗n+1
in (8). This concludes our

proof.
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APPENDIX D
PROOF OF THEOREM 5

Proof: We begin by showing that if α∗ ∈ W then α∗ = F (α∗).
We focus on an arbitrary service c ∈ C. Either this service does not
belong to any best service set, i.e., ∀ e ∈ E , c 6∈ P̂e(α), or it belongs
to one best service set, i.e., ∃! e : c ∈ P̂e(α∗). We recall that a best
service set is a subset of a certain same price service set, in which all
services offer the highest QoS. In the first case, since c is not into any
best service set, it is never selected by any rational user, thus, α∗c = 0.
Also, following (13), Fc(α∗) = 0. Hence, for all services that do not
belong to any best service set it holds that Fc(α∗) = α∗c .

Let us consider now the case in which c is part of a best service
set, say P̂e(α∗). Let us evaluate the total load of the BS e. Knowing
that, at the WE, by Definition 3 rational users chose only to connect
to a utility maximizing services, then the load equals to the sum of the
loads of all the services belonging to the SPS Pe, α̂∗e =

∑
r∈Pe α

∗
r .

Since α∗ ∈ W , from (4) we have that S(γ) ⊆ Ŝ(γ)(α∗), that is all
the selected services are utility maximizing services. However, from
Theorem 3 and (10) we know that there exist two threshold, which we
denote as γe and γf , such that Ŝ(γ)(α∗) = P̂e(α∗) ⇔ γ ∈ [γe, γf ].
This means that all the types of user that select one of the services
inside the SPS are in the real segment [γe, γf ], thus, the load of the BS
can be calculated integrating the density function ρ(·) between these
two thresholds. Hence, by using the cumulative density function,

α̂∗e = Γ(γf )− Γ(γe). (28)

Furthermore, let all users of each type best-respond according to
Definition 5, and denote by α(1) the resulting load profile. From
Theorem 4, it results α̂e = Γ(γf ) − Γ(γe). Which, by using (28),
allows us to say that α̂e = α̂∗e , thus α̂e =

∑
r∈Pe α

∗
r . Substituting this

in (13), we obtain Fc(α
∗) = α∗c . This concludes the first part of the

proof.
Next, we show the reverse implication, that is if α∗ = F (α∗) then

α∗ ∈ W . From the definition of WE in (4), we must show that there
exists a set of used services S satisfying two conditions: (i) ∀ γ ∈
[0, γ̄] , S(γ) ⊆ Ŝ(γ)(α∗) and (ii) α∗ = R(S). Let all the users best-
respond to the load α∗ according to Definition 5 and let S be one of
possible the resulting SUS. Recall that all best-responding users of each
type γ may select indifferently any of the services in their set of best
services Ŝ(γ)(α∗). We want to show that S is a set of used service
which satisfies (i) and (ii).

Condition (i) is respected, in fact, from Definition 5, it results that
∀ γ ∈ [0, γ̄] , S(γ) ⊆ Ŝ(γ)(α∗). That is, all the users of each type
select a service which maximizes their utility function when the initial
load profile is α∗.

To prove condition (ii), we focus on an arbitrary service c ∈ C, and
we distinguish two cases: the case in which c does not belong to any
best service set, and the case in which it belongs to a best service set
denoted by P̂e(α∗). In the first case, from (13) we have that α∗c = 0.
On the other hand, from Definition 8, when all user best-respond no
user select such a service, hence Rc(S) = 0, thus α∗c = Rc(S).

In the case in which c belongs to some best service set P̂e(α∗),
from Theorem 3, we have that there exist two unique thresholds,
which we denote as γe and γf , that isolate all the users that connect
to the BS e, i.e. that select one of the services belonging to the
corresponding SPS Pe. The load of the BS e, is defined as the sum
of the loads of all the services belonging to Pe. Hence, after the
best-response, it is α̂e ,

∑
r∈Pe Rr(S). On the other hand, the

assumption α∗ = F (α∗) implies, from (13), that α̂e =
∑
r∈P̂e α

∗
r ,

thus,
∑
r∈Pe Rr(S) =

∑
r∈Pe α

∗
r . This means that, if α∗ = F (α∗),

then, after a type wise best-response from all the users, irrespective

from the actual service chosen from all the users of any type, the sum
of loads of all the services belonging to the same SPS must not change.

However, according to Definition 5, when best-responding, any user
can arbitrarily select any service belonging to the best service set.
Therefore, we can select each S(γ) ∀γ ∈ [0, γ̄] such that Rc(S) = α∗c ,
we obtain that Rc(S) = α∗c and, thus, α∗ = R(S). This concludes the
proof.

APPENDIX E
PROOF OF THEOREM 6

Proof: From Theorem 1, the game GF has at least one WE,
that we denote by αA =

{
αA0 , . . . α

A
C

}
and ad absurdum let

αB =
{
αB0 , . . . α

B
C

}
be a different WE, with γA =

(
γA0 , . . . γ

A
C

)
and γB =

(
γB0 , . . . γ

B
C

)
being the correspondent thresholds vectors.

Moreover, ∀ c ∈ C, let us denote by gAc = gc(α
A) and gBc = gc(α

B)
and let CA =

{
0, cA1 , c

A
2 , . . . c

A
NA

}
and CB =

{
0, cB1 , c

B
2 , . . . c

B
NB

}
be the respective strictly ordered sets of used services at the WE, this
means that: αAc > 0 if and only if c ∈ CA and αBc > 0 if and only
if c ∈ CB; 0 < cA1 < . . . < cANA and 0 < cB1 < . . . < cBNB with NA
and NB representing the number of services used at the WE αA and
αB respectively. Let us define the intersection function Iw : C2 → R
as follows:

Iw (r, s) =
pr − ps
gwr − gws

, (29)

where r, s ∈ Cw are two arbitrary services and the superscript
w ∈ {A,B} labels the WE load profile used as the argument of
the QoS functions. The name intersection is justified by the fact that
the value represents the unique value of γ for which it results that
Uγr (αw) = Uγs (αw), where these utility functions are defined as in (2).
We underline that from Theorem 3, each threshold γAc∗n is the minimum
intersection among the available services, i.e., we can write

γAc∗n = min
`∈Cn−1

IA (`, c∗n−1) . (30)

In order to prove the body of the theorem, we need to introduce
some preliminary results. As a first step, we show that in any WE
the first service to be used is service 0. By definition all prices are
strictly positive values, therefore ∀α ∈ W , ∀c ∈ C it results that
U0

0 (α) > U0
c (α), moreover following the results of Theorem 3,

α0 = Γ(γc1), and γc1 =
pc1
gc1

. Since both pc1 and gc1 ∈ R+, we
have that γc1 > 0. Since Γ(·) is a strictly increasing function and
Γ(0) = 0, we obtain that Γ(γc1) > 0. As a second step, we show
that if ∀` < n αA

cA
`
≥ αB

cB
`

then ∀` ≤ n γA
cA
`
≥ γB

cB
`

. We proceed by
induction on n defining the following proposition

O` : αAcA
`
≥ αBcB

`
⇒ γAcA

`+1
≥ γBcB

`+1
. (31)

We show that for ` = 1O` is true. Considering that Γ(0) = 0, from (11)
we have that αA0 ≥ αB0 implies Γ

(
γA
cA1

)
≥ Γ

(
γB
cB1

)
. By definition,

Γ(·) is a monotonically increasing function, hence γA
cA1
≥ γB

cB1
. To

complete the proof, let us assume O` to be true ∀` < n and
prove that On is also true. From (11) αAcAn

≥ αBcBn
implies that

Γ
(
γA
cAn+1

)
− Γ

(
γAcAn

)
≥ Γ

(
γB
cBn+1

)
− Γ

(
γBcBn

)
which can be written

as Γ
(
γA
cAn+1

)
− Γ

(
γB
cBn+1

)
≥ Γ

(
γAcAn

)
− Γ

(
γBcBn

)
. Since On−1 is

true we have that γAcAn ≥ γBcBn
, which means Γ

(
γAcAn

)
≥ Γ

(
γBcBn

)
,

since Γ(·) is monotonically increasing. Therefore, we can write that
Γ
(
γA
cAn+1

)
− Γ

(
γB
cBn+1

)
≥ 0, thus, γA

cAn+1
≥ γB

cBn+1
which proves On.

In the following we prove the main body of the theorem. With no
loss of generality, let us assume αA0 ≥ αB0 . We aim at proving that
if αA0 ≥ αB0 then ∀ ` ∈ C αA` ≥ αB` which, since αA,αB ∈ 4C
and αA 6= αB is absurd. Let us recall that the services are organized
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price wise in an increasing order and that prices do not change from
αA to αB . For an arbitrary service n ∈ C either n ∈ CB or n 6∈ CB.
If n 6∈ CB, then αBn = 0, thus αBn ≤ αAn . As a consequence we focus
only on the services which belong to CB. We proceed by induction. Let
us define the proposition P̄` :

αA` ≥ αB` , if ` ∈ CA ∩ CB then gA` ≤ gB` . (32)

It is easy to show that P̄0 is true, since we assumed that αA0 ≥ αB0 ,
and from the definition of service 0 we have that gA0 = gB0 = 0. To
complete the proof, let us assume P̄` to be true ∀` ∈ C, ` < n, and let
us show that P̄n is true.

If n 6∈ CB then αBn = 0 thus αBn ≤ αAn which prove the thesis. If
n ∈ CB then αBn > 0, thus proving that

gBn ≥ gAn (33)

is sufficient to prove the thesis, since from H1 (33) implies αAn ≥ αBn ,
which implies αAn > 0 thus n ∈ CA.

To simplify the notation, let us denote the two sets of used service at
the two WE as follows: CA = {. . . b, r . . .} and CB = {. . . b, n, . . .}.
Here, b is the service used before n in the WE αB (i.e., b =
max

{
` ∈ CB|` < n

}
) and r is the service used in the WE αA just

after b (i.e., r = min
{
` ∈ CA|` > b

}
). Notice that, from (32), b ∈ CB

and b < n imply that b ∈ CA. Moreover, n might belong or not to CA,
thus, we denote the service successive to b in αA by r. From (31), we
have that γAr ≥ γBn , which can be expressed by using the function (29)
as IA(r, b) ≥ IB(n, b). Also, since r ∈ CA we have from Theorem 3
that either gAn ≤ gAb or IA(r, b) < IA(n, b). We analyze the two cases
separately.

The first case is absurd. If gAn ≤ gAb then n 6∈ CA, αAn = 0, thus
n ∈ CB implies αAn < αBn which from assumption H1 implies gBn ≤
gAn . Moreover, b ∈ CB implies that αBb > 0 thus, from assumption
(32), αAb > 0 and b ∈ CA, which, from assumption (32) insures that
gAb ≤ gBb . Reconstructing the chain of inequalities, we obtain gBn ≤ gBb ,
that, from Lemma 2 implies n 6∈ CB, which is absurd.

In the second case, we have that gAn > gAb and IA(n, b) > IA(r, b).
As we have already stated, (31) implies that IA(r, b) > IB(n, b), hence
we obtain IA(n, b) > IB(n, b), thus

pn − pb
gAn − gAb

>
pn − pb
gBn − gBb

,

gBn − gBb > gAn − gAb ,
gBn − gAn > gBb − gAb , (34)

where both parts of the first inequality are positive since from n ∈ CB
we have that gBn − gBb > 0 and n > b implies pn > pb. Notice that
b ∈ CB implies that αBb > 0, thus, since b < n assumption (32) implies
that αAb > 0 and b ∈ CA, which, from assumption (32) insures that
gBb > gAb . This, from (34) gives gBn > gAn .

APPENDIX F
PROOF OF THEOREM 7

Proof: Let us consider two different load profiles αA =(
αA0 , . . . , α

A
C

)
and αB =

(
αB0 , . . . , α

B
C

)
and let us assume αA0 ≥ αB0 .

Any QoS function respecting conditions (i)− (iv) can be written as

gc (α) = fc(αc) +mc

∑
`∈C\{0,c}

α`, (35)

where fc : [0, 1] → R is a function such that ∂gc
∂αc

= dfc
dαc

. Then, for
any arbitrary service c ∈ C \ {0} it results that:

gc(α
A) = gc(α

B) + fc(α
A
c )− fc(αBc ) +mc

∑
`∈C\{0,c}

(
αA` − αB`

)
.

(36)

If αAc ≤ αBc , then from the fundamental Theorem of calculus fc(αBc )−
fc(α

A
c ) < mc

(
αBc − αAc

)
, thus

fc(α
A
c )− fc(αBc ) > mc

(
αAc − αBc

)
. (37)

From (36) we can write:

gc(α
A) >gc(α

B) +mc

(
αAc − αBc

)
+mc

∑
`∈C\{0,c}

(
αA` − αB`

)
(38)

=gc(α
B) +mc

 ∑
`∈C\{0}

(
αA`

)
−

∑
`∈C\{0}

(
αB`

) (39)

=gc(α
B) +mc

(
αB0 − αA0

)
(40)

>gc(α
B), (41)

where the passage between (39) and (40) is justified by the fact that
∀α ∈ 4C it results

∑
`∈C\{0} α` = 1− α0, and the passage between

(40) and (41) is justified from the assumptions that αA0 ≥ αB0 and
mc ≤ 0.

If gc
(
αA
)
≤ gc

(
αB
)

then from (36) we have

fc(α
A
c )− fc(αBc ) +mc

∑
`∈C\{0,c}

(
αA` − αB`

)
< 0

fc(α
A
c )− fc(αBc )−mc

(
αAc − αBC

)
< −mc

(
αB0 − αA0

)
. (42)

From the assumptions that mc ≤ 0 and αA0 ≤ αB0 , we have that
fc(α

A
c ) − fc(αBc ) − mc

(
αAc − αBC

)
≤ 0, i.e. fc(αAc ) − fc(αBc ) ≤

mc

(
αAc − αBC

)
, which from assumption (iii) and the fundamental

Theorem of calculus, is true if αAc > αBc and, from (37), is false
if αAc ≤ αBc . Therefore, we have proven that if αAc ≤ αBc , then
gc(α

A) ≥ gc(α
B) and if gc(αA) ≤ gc(α

B), then αAc ≥ αBc , hence
from Theorem 6 the game GF admits only one equilibrium.

APPENDIX G
PROOF OF THEOREM 8

Proof: Let us begin by distinguishing two cases: (i)
∃ limn→∞α

(n); (ii) @ limn→∞α
(n). In the first case, Banach

fixed-point theorem, and the continuity of F (·) guarantee that
limn→∞α

(n) = α∗. Indeed, if F (·) is continuous then also G(·) is
continuous, since is a composition of continuous functions. Let us
denote as e the converging point, that is: limn→∞α

(n) = e, therefore,
we have:

lim
n→∞

α(n) = lim
n→∞

G(α(n−1)) (43)

= G( lim
n→∞

α(n−1)) = G(e). (44)

The passage from (43) and (44) is giustfied by the continuity of G(·).
Since, by definition, limn→∞α

(n) = e we have e = G(e) which means
that e is a fixed-point of G(·) and, thus, of F (·). Therefore, if there
exists a limit, (i.e., if the algorithm converges) it converges to a fixed
point. Notice that, the existence of the limit can also be expressed as:
∃α∗ ∈ W : limn→∞||α−α∗|| = 0. In the second case, let us define
a distance sequence as

dn = ||α(n) −α∗||. (45)

The thesis, thus, amounts to prove that ∃N : ∀n > N, dn ≤ λK
2C

. We
divide the proof in two steps: first, we prove that ∃N : dN ≤ λK( 1

2ζ
),

second, by using Lemma 5, we show that ∀n > N dn ≤ λK( 1
2ζ

+ 1).
Notice that:
• with no loss of generality, we assume α(0) to be any α ∈ A such

that d0 > λK( 1
2ζ

), since otherwise the thesis results immediately
proven,
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• dn >
λK
2ζ

implies, from Theorem 9, dn+1 < dn, i.e., ∀n : dn >
λK
2ζ
, the sequence {dn} is monotonically decreasing.

We shall prove that ∃N : dN ≤ λK
2ζ

reasoning ad absurdum. Let us,
thus, assume that @N : dN ≤ λK

2ζ
, then {dn}∞0 is a monotonically

decreasing sequence, hence it has a limit. That is limn→∞dn = d,
which we assume to be d > λK

2ζ
. We recall that for (63) and Lemma

3, we have that

||G(α)−α∗||2 =
||α−α∗||2 + ||G(α)−α|| (||G(α)−α|| − 2ζ||α−α∗||) ,

(46)
thus, by using α(n) = G(α(n−1)), dn = ||α(n) − α∗|| and defining
an = ||G(α(n−1))−α(n−1)|| we can write

d2
n = d2

n−1 + an (an − 2ζdn−1) . (47)

The sequence an is bounded, since 0 < an ≤ λK. Thus, from the
Bolzano-Weierstrass theorem there exists a subsequence of an which
converges inside the boundaries. That is ∃ {bk}∞0 ∈ N : bk+1 >
bk, limk→∞ abk = a, a ∈ [0, λK]. Moreover Proposition 1.4.12 in
[27] insures that all the subsequences of a convergent sequence converge
to the same limit, which means limk→∞dbk = d. We can then write
(47) as:

d2
bk = d2

bk−1 + abk (abk − 2ζdbk−1) , (48)

and passing at the limit, we get d2 = d2 + a (a− 2ζd) . This implies
that, either a − 2ζd = 0 or a = 0. In the first case, we would have
d = a

2ζ
, and since a ≤ λK then we have d ≤ λK

2ζ
which contradicts the

assumption that d > λK
2ζ

. If a = 0, this means limk→∞||G(α(bk)) −
α(bk)|| = 0. This means limk→∞α

(bk) ∈ W , thus the algorithm has
converged to a fixed point which contradicts the assumptions.

APPENDIX H
PROOF OF THEOREM 9

In order to prove this Theorem, we first show some useful Lemmas.

Lemma 3 Let G(·) be such that G(α) = (1 − λ)α + λF (α), then
G(α)−α = λ (F (α)−α))

Proof: By substituting (16) in G(α)−α, we have :

G(α)−α = ((1− λ)α+ λF (α)−α) (49)

= λ(F (α)−α). (50)

Lemma 4 Let us assume that ∀α ∈ 4C F (·) is such that

||F (α)−α∗||2 < ||F (α)−α||2 + ||α−α∗||2, (51)

then, it results that

||G(α)−α∗||2 < ||G(α)−α||2 + ||α−α∗||2, (52)

Proof: Assumption (17) is equivalent to
〈(F (α)−α) , (α−α∗)〉 < 0, since we can write
||F (α) − α∗||2 = ||(F (α) − α) + (α − α∗)||2 and, from the
polarization identity 7

||(F (α)−α) + (α−α∗)||2 =
||F (α)−α||2 + ||α−α∗||2 + 2 〈(F (α)−α) , (α−α∗)〉 .

(53)
7Let x,y be ∈ V two vector on a vectorial space V on which it has been defined

a scalar product 〈·, ·〉, then we have that ||x+y||2 = ||x||2+||y||2+2< (〈x, y〉).
Since in our case α, F (α) ∈ 4S ⊂ RS , 2< (〈x, y〉) = 2〈x, y〉.

For Lemma 3 and the inner product definition (left multiplication by a
scalar), we have that

〈(F (α)−α) , (α−α∗)〉 =
1

λ
〈(G(α)−α) , (α−α∗)〉 . (54)

Thus, we have that 〈(G(α)−α) , (α−α∗)〉 < 0. Writing ||G(α) −
α∗||2 as ||G(α)−α∗||2 = ||(G(α)−α) + (α−α∗)||2 we apply the
polarization identity and, using the previous result, we obtain

||(G(α)−α∗)||2 = ||G(α)−α||2 + ||α−α∗||2 + (55)

2 〈(G(α)−α) , (α−α∗)〉 (56)

< ||G(α)−α||2 + ||α−α∗||2. (57)

This ends our proof.

Lemma 5 For all α ∈ 4C we have that

||G(α)−α∗|| ≤ ||α−α∗||+ λK. (58)

Proof: We can write ||G(α) − α∗|| = ||G(α) − α + α − α∗||,
then for the triangular inequality, we have that

||G(α)−α+α−α∗|| ≤ ||G(α)−α||+ ||α−α∗||. (59)

Since ||G(α) − α|| = λ||F (α) − α|| from Lemma 3, and from the
definition of K we have that

||G(α)−α||+ ||α−α∗|| ≤ λK + ||α−α∗||. (60)

Hereunder, we show the proof of the Theorem.
Proof: We begin by rewriting the distance between a single iteration

of the Krasnosielkij algorithm and a fixed point α∗ as follows: ||G(α)−
α∗||2 = ||(G(α)−α)+(α−α∗)||2. Thus, by means of the polarization
identity and the properties of the inner product, we can write

||G(α)−α∗||2 = ||G(α)−α||2 + ||α−α∗||2+
+2 cos(θ)||G(α)−α||||α−α∗||. (61)

Here, θ is the angle between the two vectors G(α)−α and α−α∗.
The assumption that ||F (α)−α∗||2 < ||F (α)−α||2 +||α−α∗||2 and
Lemma 4 guarantee that ||G(α)−α∗||2 < ||G(α)−α||2+||α−α∗||2,
which implies 2 cos(θ)||G(α) − α||||α − α∗|| < 0. Since the norms
cannot obtain negative values, it means that cos(θ) < 0. For simplicity,
we introduce a positive constant C = − cos(θ), thus 0 < C ≤ 1.
Therefore, using Lemma 3, we can write (61) as

||G(α)−α∗||2 = ||F (α)−α||2λ2 + ||α−α∗||2 + (62)

−2Cλ||F (α)−α||||α−α∗||

With some algebra, and by using the assumption that ||α−α∗|| ≥ λ K
2C

we can write:

||G(α)−α∗||2 =
= ||α−α∗||2 + λ||F (α)−α|| (λ||F (α)−α|| − 2C||α−α∗||)
≤ ||α−α∗||2 + λ||F (α)−α|| (λK − 2C||α−α∗||)
≤ ||α−α∗||2 + λ||F (α)−α|| (λK − λK)
= ||α−α∗||2.

(63)
Notice that the passage is justified from the fact that ||F (α)−α||λ ≥ 0
∀α. Moreover, since by definition both ||G(α)−α∗|| and ||α−α∗|| are
non-negative, ||G(α)−α∗||2 ≤ ||α−α∗||2 implies ||G(α)−α∗|| ≤
||α−α∗||.
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APPENDIX I
SKETCH OF THE PROOF OF CONJECTURE 1

Proof: It is possible express the equilibrium as the result of a
sufficient number of iterations of (16), that is α∗(p) = α(T ), where T
is a large enough number of iterations.

Let us define γ(t) as the thresholds vector underlying the t-th iteration
of the Krasnosielkij algorithm α(t).

For any arbitrary α(t−1), Theorem 3 implies that any arbitrary n-
th element of γ(1) is expressed from (8), more precisely γ

(t)
c∗n

=(
pc∗n
−pc∗

n−1

gc∗n
(α(t−1))−gc∗

n−1
(α(t−1))

)
which is a continuous function of any

price vector. Furthermore, the function Γ(·) is continuous, being an
integral function. Hence, ∀ e ∈ E , α̂(t)

e = Γ(γf )−Γ(γe) is continuous
w.r.t. the pricing vector. Hence, ∀ t ∈ N

α(t)(p̄) = lim
p→p̄

α(t)(p̄). (64)
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