Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model

Maria Letizia Raffa, Frédéric Lebon, Giuseppe Vairo

To cite this version:

Maria Letizia Raffa, Frédéric Lebon, Giuseppe Vairo. Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model. International Journal of Solids and Structures, Elsevier, 2016, 87, pp.245-253. 10.1016/j.ijsolstr.2016.01.025. hal-01308423

HAL Id: hal-01308423
https://hal.archives-ouvertes.fr/hal-01308423
Submitted on 16 Feb 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model

Maria Letizia Raffaa,b,*, Frédéric Lebona, Giuseppe Vairob

aLMA, Aix-Marseille University, CNRS, Centrale Marseille, 4 Impasse Nikola Tesla CS 40006, 13453 Marseille Cedex 13, France
bDepartment of Civil Engineering and Computer Science Engineering (DCCU), University of Rome "Tor Vergata", via del Politecnico 1, 00133 Rome, Italy

In this paper a spring-like micromechanical contact model is proposed, aiming to describe the mechanical behavior of two rough surfaces in no-sliding contact under a closure pressure. The contact region between two elastic bodies is described as a thin damaged interphase characterized by the occurrence of non-interacting penny-shaped cracks (\textit{internal cracks}). By combining a homogenization approach and an asymptotic technique, tangential and normal equivalent contact stiffnesses are consistently derived. An analytical description of evolving contact and no-contact areas with respect to the closure pressure is also provided, resulting consistent with theoretical Hertz-based asymptotic predictions and in good agreement with available numerical estimates. Proposed model has been successfully validated through comparisons with some theoretical and experimental results available in literature, as well as with other well-established modeling approaches. Finally, the influence of main model parameters is addressed, proving also the model capability to catch the experimentally-observed dependence of the tangent-to-normal contact stiffness ratio on the closure pressure.

\textbf{Keywords:} Interface contact stiffness, Contact area, Imperfect interface approach Homogenization of a microcracked interphase, Asymptotic analysis

1. Introduction

Analytical and numerical modeling of contact problems related to rough surfaces can be surely considered as an open and challenging research topic, strictly associated to many applications in different engineering fields. From a computational point of view, it is possible to identify a class of modeling problems in which it is neither possible nor convenient to account for a fine and detailed description of the contact regions, although local contact features may strongly affect the overall mechanical response for the problem under investigation. In these cases, a possible strategy is based on modeling contact scenarios by introducing suitable stiffness and dashpot distributions at the contact nominal interface, allowing to upscale at the macroscale the influence of dominant contact mechanisms occurring at the roughness scale. In this context and as reviewed by Baltazar et al. (2002), starting from fundamental results of classic contact theories and accounting for many microgeometric features at the contact interface, several theoretical and numerical models have been proposed in the specialized literature (namely, spring-like models), aiming to consistently derive some equivalent stiffnesses.

One of the earliest contact model for elastic rough surfaces was proposed by Greenwood and Williamson (1966). This model is based on the Hertz contact solution for curved elastic nominally-flat surfaces (Mindlin, 1949) and it accounts for a statistical distribution of non-interacting asperities. Moreover, Yoshioka and Scholz (1989) proposed an elastic contact model via a statistical approach that allows to describe possible oblique contact conditions among asperities. By combining the Hertz–Mindlin theory (Mindlin, 1949) and the previously-introduced Greenwood–Williamson contact model, Sherif and Kossa (1991) and Krolikowski and Szczepak (1993) provided an analytical description of normal and tangential contact stiffnesses, in order to establish a theoretical interpretation for the experimental results they obtained. In this case, the contact between two nominally-flat rough surfaces is modeled as the contact between two elastic surfaces, one of which is ideally flat and the other is nominally flat but covered with many spherically-shaped asperities. A generalization of such an approach was developed by Baltazar et al. (2002), accounting also for a possible contact misalignment. Nevertheless, a possible common drawback of all the aforementioned contact models is that they are generally based on a stochastic approach. Accordingly, in order to
make them practically applicable, the identification of a number of statistic parameters, often not easily estimable (McCool, 1986), is required.

A crucial aspect in deriving reliable contact solutions is related to the description of the contact area and its evolution with respect to the closure pressure (Johnson, 1987). Starting from the analytical solution of Westergaard (1939), Johnson et al. (1985) developed a model for the elastic contact between a two-dimensional wavy surface and a rigid flat plane, proposing an analytic description of the contact area in the asymptotic limit cases of early contact (namely, for small values of the closure pressure) and of nearly-full contact conditions (high values of the closure pressure).

More recently, Yastrebov et al. (2014) proposed a refined numerical approach consisting in a FFT-based boundary-element formulation, and they obtained an accurate numerical description of the contact-area evolution with the closure pressure in the case of the elastic contact between a wavy surface and a flat plane.

Several experimental studies can be found in the literature addressing the mechanical behavior of rough surfaces in no-sliding contact under closure-pressure conditions (e.g., Krolkowski et al., 1989; Sherif and Kossa, 1991; Krolikowski and Szczepak, 1993; Baltazar et al., 2002; Dwyer-Joyce and Gonzalez-Valadez, 2003; Gonzalez-Valadez et al., 2010), providing also estimates for normal and tangential contact stiffnesses. For instance, Krolikowski and coworkers (Krolkowski and Szczepak, 1993; Krolkowski et al., 1989) proposed contact-stiffness measures through an ultrasonic method, based on the measurement of the reflection coefficient of ultrasonic waves at the contact interface. Sherif and Kossa (1991) employed an experimental technique based on the evaluation of the local natural frequencies at the contact region. Gonzalez-Valadez et al. (2010) proposed results based on ultrasonic tests and accounting also for loading-unloading cycles of the closure pressure. As a matter of fact, experimental results confirm that: high stress concentrations appear at the contact region, and they result practically unaffected by the shape of bodies in contact at a suitable distance from the contact area (Johnson, 1987; Johnson et al., 1985); hysteresis phenomena occur at the interface (as a result of the plastic deformation localized at the asperity tips) in the case of cycling loads (Gonzalez-Valadez et al., 2010); null values of interface stiffnesses are achieved when the closure pressure tends to zero (Gonzalez-Valadez et al., 2010).

In this paper a novel spring-like theoretical model for no-sliding contact under a closure pressure is proposed. Incremental normal and tangential equivalent stiffnesses at the nominal contact interface are derived, by assuming contact microgeometry be described by isolated internal cracks (Sevostianov and Kachenov, 2008a; 2008b) occurring in a thin interphase region. In detail, effective mechanical properties at the contact zone are consistently derived following the imperfect interface approach recently adopted by Lebon and coworkers (Fouchal et al., 2014; Reik and Lebon, 2010; 2012), by coupling a homogenization approach for microcracked media based on the non-interacting approximation (Kachenov, 1994; Kachenov and Sevostianov, 2005; Sevostianov and Kachenov, 2013; Tsukrov and Kachenov, 2000) and the matched asymptotic expansion method, introduced by Sanchez-Palencia (1987) and Sanchez-Palencia and Sanchez-Hubert (1992) and recently employed by Lebon and Rizzoni (2011), Rizzoni and Lebon (2013), Rizzoni et al. (2014) and Lebon and Zaittouni (2010).

The proposed model is detailed in Section 2, and its validation is provided by comparing numerical results with available theoretical and experimental findings (Section 3.1). Model effectiveness is also proved for a wide range of closure-pressure values by comparing proposed results with those obtained via the contact model introduced by Sherif and Kossa (1991) (Section 3.2). Afterwards, the influence of main model parameters is investigated in Section 3.3, and finally some conclusions are traced in Section 4.

2. Contact model

2.1. General framework

Let the contact problem C be introduced by considering two continuous bodies \(\Omega_1 \) and \(\Omega_2 \), comprising linearly-elastic isotropic materials \((E_i, v_i) \), with \(i = 1, 2 \), being Young modulus and Poisson ratio, respectively, in no-sliding contact via non-conforming rough surfaces under a closure pressure condition (Fig. 1). Let \(S \subset \mathbb{R}^2 \) be the nominal contact interface, belonging to the interface plane \(\pi \). Let a Cartesian frame \((0, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)\) be introduced, with \(x_1, x_2 \) and \(x_3 \) the corresponding coordinates. The origin 0 belongs to \(\pi \), and \(\mathbf{e}_3 \) is orthogonal to \(\pi \) and directed outward from \(\Omega_2 \).

Normal and tangential incremental contact stiffnesses (\(K_{n}^e \) and \(K_{d}^e \), respectively) per unit nominal contact area in \(S \) are defined as:

\[
K_{n}^e = \frac{dF_N}{ds}, \quad K_{d}^e = \frac{dF_d}{ds}
\]

where \(dw \) and \(ds \) are the increments of the relative displacements at the contact interface region in normal (i.e., along \(\mathbf{e}_3 \)) and tangential (i.e., parallel to \(\pi \)) directions, and \(dF_N \) and \(dF_d \) are the increments of the normal and tangential forces transmitted through the unit contact area, respectively. Contact microgeometry is assumed to be isotropic in \(S \) and thereby the tangential contact stiffness \(K_{d}^e \) can be postulated as independent from the tangential direction.

In agreement with the approach adopted by Westergaard (1939) and by Johnson et al. (1985), contact microgeometry is modeled by describing no-contact regions as parallel penny-shaped internal cracks (Sevostianov and Kachenov, 2008a; 2008b) lying on the interface plane \(\pi \). Coplanar mechanical interactions among cracks are considered negligible, resulting in the non-interacting approximation (Kachenov, 1994; Sevostianov and Kachenov, 2013). Accordingly, the region close to the nominal contact interface \(S \) is regarded as an imperfect interphase \(B^e \), defined as the thin layer having \(S \) as the middle section and \(\delta \) as the uniform small thickness, and weakened by identical and parallel penny-shaped cracks of radius \(b \) (Fig. 1).

Referring to a simplistic idealization of the contacting rough surfaces via bi-sinusoidal wavy-like smooth surfaces, both of them with wavelength \(\lambda \) and amplitude \(\Delta \) (such that \(\Delta \ll \lambda \)), a \(\varepsilon \)-thick representative elementary volume (REV) at the contact interface, and occupying the region \(\Omega^c \subset B^e \), can be conveniently introduced as sketched in Fig. 1.

Accordingly, the contact problem \(C \) is faced by introducing an auxiliary model problem \(A \), defined on the microcracked interphase \(B^e \) and described via the REV.

2.2. Imperfect interface approach

Referring to the auxiliary model problem \(A \), and as a notation rule, the following symbols will be adopted: \(\Omega_1^c = \Omega_1 \backslash B^e \) and \(\Omega_2^c = \Omega_2 \backslash B^e \), with \(\Omega_1^c \) also referred to as adherent; \(S_2^c = \Omega_2^c \cap B^e \) identifying the plane interfaces parallel to \(\pi \) between interphase and adherent. It is assumed that \(\Omega_1^c \) and \(B^e \) are perfectly bonded, so that displacement and stress vector fields are ensured to be continuous across \(S_2^c \).

2.2.1. Homogenization of the microcracked interphase

Let \(\Gamma \subset S \) be the crack middle surface for a penny-shaped crack in \(B^e \), and let \(\mathbf{u}^+ \) and \(\mathbf{u}^- \) be the displacement vectors at the parallel-to-\(S \) crack boundaries. Denote also with \(\mathbf{u}_{adm} \equiv \int_{\Gamma}(\mathbf{u}^+ - \mathbf{u}^-)d\Gamma/|\Gamma| \) the average measure of the displacement jump across the crack, in the following referred to as the crack opening displacement vector. In agreement with a well-established
homogenization technique (Kachanov, 1994; Kachanov and Sevostianov, 2005; Tsukrov and Kachanov, 2000), and considering a plane-stress assumption under a frictionless condition along the crack faces, \mathbf{u}_{cod} can be expressed in terms of the stress vector $\mathbf{t}_i = \sigma \mathbf{e}_i$ as (Kachanov, 1994):

$$
\mathbf{u}_{\text{cod}} = \beta \frac{b}{E_0} \mathbf{P}_3 \mathbf{t}_3 + \gamma \frac{b}{E_0} (\mathbf{I} - \mathbf{P}_3) \mathbf{t}_3
$$

(2)

where σ is the second-order Cauchy stress tensor, $\mathbf{P}_3 = \mathbf{e}_3 \otimes \mathbf{e}_3$ is the projector operator along \mathbf{e}_3 (symbol ‘\otimes’ indicating the dyadic product), \mathbf{I} is the identity second-order tensor, and where

$$
\beta = \frac{16(1 - v_0^2)}{3\pi}, \quad \gamma = \frac{32(1 - v_0^2)}{3\pi (2 - v_0)}
$$

(3)

E_0 and v_0 being, respectively, the Young modulus and the Poisson ratio of the undamaged interphase, assumed to be isotropic. It is worth pointing out that E_0 and v_0 can be obtained in terms of the elastic properties (E_i and v_i, with $i = 1, 2$) of the two materials in contact, as the result of a preliminary homogenization step performed on the undamaged ε-thick REV (e.g., Sanchez-Palencia, 1980; Nemat-Nasser and Horii, 2013; Temizer and Wriggers, 2011). Following the Eshelby approach (Eshelby, 1961), the complementary elastic potential $\psi(\sigma)$ characterizing the effective material of the microcracked interphase reads in:

$$
\psi(\sigma) = \psi_0 + \Delta \psi = \frac{1}{2} \sigma : \mathbf{S}_0 : \sigma + \frac{|\Gamma|}{2 |\Delta \Omega|} \sigma : (\mathbf{e}_3 \otimes \mathbf{u}_{\text{cod}})
$$

(4)

where symbol ‘$:$’ denotes the double-dot product, $\psi_0(\sigma)$ is the complementary potential expressed in terms of the fourth-order compliance tensor $\mathbf{S}_0 = \mathbf{S}_0(E_0, v_0)$ of the undamaged interphase, and $\Delta \psi$ is a perturbation term, depending on both microstructural crack features and the crack opening displacement.

By introducing Eqs. (2) and (3) in Eq. (4), the complementary elastic potential $\psi(\sigma)$ of the cracked material in \mathcal{B} reads as (Kachanov and Sevostianov, 2005):

$$
\psi = \psi_0 + \frac{16(1 - v_0^2)}{3(2 - v_0)E_0} \left[(\sigma : \alpha - \frac{v_0}{2} \mathbf{P}_3 : \sigma) \right]
$$

(5)

where the complementary elastic potential of the undamaged interphase is expressed by

$$
\psi_0(\sigma) = \frac{1 + v_0}{2E_0} \sigma : \sigma - \frac{v_0}{2E_0} \sigma : \mathbf{I}
$$

(6)

and $\alpha = \rho \mathbf{P}_3$ is the second-order crack-density tensor, expressed in terms of the scalar density ρ. The latter is defined, in agreement with Bristow (1980), by (see Fig. 1):

$$
\rho = \frac{b^3}{(\Delta \Omega^*)} = \frac{2b^3}{\lambda^2 \varepsilon}
$$

(7)

Due to Eq. (5), the effective compliance tensor \mathbf{S} of the microcracked interphase can be derived component-wise as:

$$(\mathbf{S})_{ijkl} = (\mathbf{S}_0)_{ijkl} + (\Delta \mathbf{S})_{ijkl} = \frac{\partial^2 \psi}{\partial \sigma_{ij} \partial \sigma_{kl}}
$$

(8)

where $\Delta \mathbf{S}$ is the part of the compliance tensor associated to $\Delta \psi$. As a result, the damaged interphase behaves as a transversely isotropic material, with symmetry plane coincident with the interphase mid-plane (namely, π). Therefore, by discriminating with indexes N and T quantities referred to normal and tangential directions to π, respectively, the effective moduli of the cracked interphase result in:

$$
E_N = E_0 \left[1 + \frac{16(1 - v_0^2)}{3} \rho \right]^{-1}, \quad E_T = E_0 \left[1 + \frac{16v_0(1 - v_0^2)}{3(2 - v_0)} \rho \right]^{-1}
$$

$$
G_{NT} = G_0 \left[1 + \frac{16(1 - v_0)}{3(2 - v_0)} \rho \right]^{-1}, \quad v_{NT} = v_0 \left[1 + \frac{16v_0(1 - v_0^2)}{3(2 - v_0)} \rho \right]^{-1}
$$

(9)

where symbol G indicates shear moduli.

2.2.2. Asymptotic analysis

Let the interphase thickness ε (see Fig. 1) be considered as a small parameter. Accordingly, an asymptotic expansion with respect to ε can be conveniently performed referring to the composite system $\Omega^* = \Omega^*_{\varepsilon} \cup \Omega^*_{\varepsilon} \cup \mathcal{B}^*$, where the mechanical properties of the adherents are those of the bodies Ω_1 and Ω_2 in contact, and with the effective material properties of the interphase \mathcal{B}^* given by Eq. (9).

In agreement with Clarlet (1997), let the change of variable $\mathbf{g}: (x_1, x_2, x_3) \rightarrow (z_1, z_2, z_3)$ be introduced in \mathcal{B}^*, with $z_1 = x_1$, $z_2 = x_2$, $z_3 = x_3/\varepsilon$. Moreover, let the change of variable $\mathbf{g}': (x_1, x_2, x_3) \rightarrow (z_1, z_2, z_3)$ be introduced in Ω^*_{ε}, with $z_1 = x_1$, $z_2 = x_2$, $z_3 = x_3 + (1 - \varepsilon)/2$, where the plus (resp., minus) sign applies for Ω^*_{ε} (resp.,...
As a result, interphase Ω' and adherents Ω_i^\ast are rescaled in $B = \{(z_1, z_2, z_3) \in \mathbb{R}^3 | (z_1, z_2) \in S, |z_3| < 1/2 \}$ and $\Omega_e = \Omega_i \pm (1 - \varepsilon) \mathcal{E}/2$, respectively. In detail, $\tilde{\mathbf{u}} = \mathbf{u}^e \circ \mathbf{g}^{-1}$ and $\tilde{\mathbf{e}}^e = \mathbf{e}^e \circ \mathbf{g}^{-1}$ denote displacement and stress fields for B, and $\mathbf{u}^i = \mathbf{u}^i \circ \mathbf{g}^{-1}$ and $\tilde{\mathbf{e}}^i = \mathbf{e}^i \circ \mathbf{g}^{-1}$ are displacement vector and stress tensor for Ω_i^\ast. \mathbf{u}^i and \mathbf{e}^i being the corresponding fields on the composite system Ω'. Accordingly, displacement and stress asymptotic expansions with respect to the small thickness ε result, respectively, in:

\[
\mathbf{u}^e = \mathbf{u}^0 + \varepsilon \mathbf{u}^1 + o(\varepsilon)
\]
\[
\tilde{\mathbf{u}} = \mathbf{u}^0 + \varepsilon \tilde{\mathbf{u}}^1 + o(\varepsilon)
\]
\[
\tilde{\mathbf{u}} = \tilde{\mathbf{u}}^0 + \varepsilon \tilde{\mathbf{u}}^1 + o(\varepsilon)
\]
(10)

where the matrix \mathbf{K} is defined component-wise as $(\mathbf{K})_{ij} = (\mathbf{C})_{ij3}$, and it results in $\mathbf{K} = \text{diag}(\mathbf{K}_1^d, \mathbf{K}_2^d, \mathbf{K}_3^d)$ with

\[
\mathbf{K}_1^d = \frac{3E_0 \lambda^2(2 - \nu_0)}{64b^3(1 - \nu_0^2)}, \quad \mathbf{K}_2^d = \frac{3E_0 \lambda^2}{32b^3(1 - \nu_0^2)}
\]
(20)

By integrating Eq. (19) with respect to z_3 from $-1/2$ to $+1/2$, and in the limit of ε tending to zero, the following zero-order soft-interface law is strictly obtained

\[
t_3 = \mathbf{K}[\mathbf{u}], \quad t_3 = 0 \quad \text{across } S
\]
(21)

where $[\cdot]$ denotes the jump across the interface.

As a result, quantities \mathbf{K}_j^d and \mathbf{K}_d^d introduced in Eq. (20) represent tangential and normal interface stiffnesses, respectively, associated to the auxiliary model problem \mathcal{A}. In particular, they depend on the effective elastic properties of the undamaged interphase, as well as on the characteristic length λ, ε, λ of the plane region $\Delta\Omega' \cap \pi$ on the microcrack radius b. It is worth remarking that, these quantities are introduced in the auxiliary problem \mathcal{A} as descriptors of the microgeometry features in the contact problem \mathcal{C}, and they correspond to the average roughness wavelength and to the average no-contact radius, respectively.

2.3. Effective incremental contact stiffnesses

As a matter of fact, contact microgeometry and, in particular, the characteristic length of no-contact regions depend on the value of the nominal contact pressure p. Thereby, for a given pressure condition characterizing the contact problem $\mathcal{C}(p)$, the corresponding auxiliary model problem $\mathcal{A}(p)$ is matched to the previous one by considering the microcracks radius b as dependent itself on p, such that $0 \leq b \leq \lambda / \sqrt{2}$. In detail, in agreement with the approach proposed by Johnson et al. (1985) and Johnson (1987), $0 \leq \lambda / \sqrt{2}$ when $p < p^*$ and $b \to 0^-$ when $p \to p^*$, where p^* is a measure of the nominal pressure which brings the surfaces into complete contact in \mathcal{C}, and referred to as the complete contact pressure.

In agreement with the Hertz elastic contact theory, an estimate for p^* in \mathcal{C} can be defined as (Johnson et al., 1985):

\[
p^* = \sqrt{2\pi E' \Delta_0 / \lambda}
\]
(22)

(E')$^{-1} = [(1 - \nu_0^2)E_1 + (1 - \nu_0^2)/E_2]$ being the reduced Hertz modulus and Δ_0 being the amplitude of the bi-sinusoidal shape idealizing the contacting rough surfaces at the reference configuration.

It is worth observing that, Eq. (22) strictly holds in an elastic regime. Nevertheless, due to localization mechanisms associated to tips plastic deformation and fatigue effects, the pressure that brings the surfaces into a complete contact condition is surely lower than p^*, and it can be considered as a function of the elastoplastic material behavior, of the pressure loading history, as well as of the number of loading cycles. Accordingly, a possible description of the actual closure pressure can be postulated as:

\[
p^* = h \ p^*_h = h \sqrt{2\pi E' \Delta_0 / \lambda}
\]
(23)

where $h \leq 1$ is a suitable history-based correction term. In the case of loading cycles characterized by the same maximum value of the closure pressure, h can be retained in the order of Δ / Δ_0, where Δ is a measure of the amplitude for the way geometry that idealizes the contacting surfaces at the actual configuration.

Referring to the contact problem \mathcal{C}, the contact areas lying on S are described by introducing the average contact radius \bar{a}, such that $\bar{a} \to 0^+$ when $\bar{p} \to 0^*$ and $\bar{a} \to \lambda / \sqrt{2}$ when $\bar{p} \to p^*$. With reference to the sketch depicted in Fig. 2, and in agreement with both indications provided by Johnson et al. (1985) and numerical evidence by Yastrebov et al. (2014), when $\bar{p} \to 0^+$ then contact areas are described as circular (i.e., contact point condition)
and no-contact areas are almost square-shaped. On the contrary, in the near complete closure condition ($\bar{p} \to 0^+$), the contact areas are assumed to be almost square-shaped and the no-contact areas as quasi-circular.

Let a_0 and b_0 (respectively, a_1 and b_1) be the values of the contact and no-contact radii, respectively, when $\bar{p} \to 0^+$ (resp., $\bar{p} \to p^*$). In agreement with asymptotic estimates provided by Johnson et al. (1985), strictly valid for the elastic contact between a bi-sinusoidal surface and a rigid flat plane, the following relationships are assumed to hold:

$$a_0\left(\frac{\bar{p}}{p^*}\right) = \frac{\lambda}{\sqrt{2}} \left(\frac{3}{8\pi} \frac{\bar{p}}{p^*}\right)^{1/3}$$ \hspace{1cm} (24)

$$b_0\left(\frac{\bar{p}}{p^*}\right) = \frac{\lambda}{2\sqrt{2}} \left[1 - \pi \left(\frac{3}{8\pi} \frac{\bar{p}}{p^*}\right)^{2/3}\right]$$ \hspace{1cm} (25)

$$a_1\left(\frac{\bar{p}}{p^*}\right) = \frac{\lambda}{2\sqrt{2}} \left[1 - \frac{3}{2\pi} \left(1 - \frac{\bar{p}}{p^*}\right)\right]$$ \hspace{1cm} (26)

$$b_1\left(\frac{\bar{p}}{p^*}\right) = \frac{\lambda}{2\pi} \sqrt{3 \left(1 - \frac{\bar{p}}{p^*}\right)}$$ \hspace{1cm} (27)

Therefore, contact (namely, a^c) and no-contact (b^c) radius evolution with \bar{p} in C is postulated to be simply described by the following area-based weighted averages:

$$a^c\left(\frac{\bar{p}}{p^*}\right) = \frac{\pi a_0^2 \left(1 - \frac{\bar{p}}{p^*}\right) + 4a_1^2 \frac{\bar{p}}{p^*}}{\pi \left(1 - \frac{\bar{p}}{p^*}\right) + 4 \frac{\bar{p}}{p^*}}$$ \hspace{1cm} (28)

$$b^c\left(\frac{\bar{p}}{p^*}\right) = \frac{4b_1\left(1 - \frac{\bar{p}}{p^*}\right) + \pi b_0^2 \frac{\bar{p}}{p^*}}{4 \left(1 - \frac{\bar{p}}{p^*}\right) + \pi \frac{\bar{p}}{p^*}}$$ \hspace{1cm} (29)

It is worth pointing out that, Eqs. (28) and (29) satisfy the consistency condition:

$$A_c + A_{nc} = A_n = \frac{\lambda^2}{2}$$ \hspace{1cm} (30)

Moreover, Eqs. (28) and (29) recover the asymptotic relationships introduced in Eqs. (24)-(27), and in particular the following limits for $\bar{p} \to 0^+$ hold:

$$a^c \to a_0 \to O\left(\left(\frac{\bar{p}}{p^*}\right)^{1/2}\right), \quad b^c \to b_0 \to \frac{\lambda}{2\sqrt{2}}$$ \hspace{1cm} (33)

In order to show consistency and accuracy of proposed estimates for contact and no-contact areas, the normalized contact area A_c/A_n computed via Eqs. (30) and (31) is successfully compared, in Fig. 3 and with respect to the dimensionless closure pressure \tilde{p}/p^*, with: numerical results proposed by Krithivasan and Jackson (2007) and by Yastrebov et al. (2014), experimental data reported by Johnson et al. (1985), theoretical asymptotic limits provided by Johnson (1987). It appears that, although simple, the proposed approach can be retained effective for describing in a satisfactorily accurate way the evolution of the contact area versus \tilde{p}. Accordingly, Eq. (29) can be considered as a suitable evolution law for the average no-contact radius b^c in C.

By adopting $b = b^c$ as the matching condition between the contact problem $C(\tilde{p})$ and the corresponding auxiliary model $A(\tilde{p})$ for a given value of the nominal closure pressure, Eq. (29) can be employed in Eq. (20) for defining the interface stiffnesses resulting from the problem A.

It is worth remarking that, Eq. (29) has not to be considered as governing the physical evolution of the crack-closing process induced by a closure pressure condition in the problem A. Indeed, Eq. (29) furnishes a simple and physically-oriented description of the pressure-based evolution of the no-contact radius in $C(\tilde{p})$, adopted, for each value of \tilde{p}, for defining the corresponding actual auxiliary model problem $A(\tilde{p})$.

Furthermore, Eq. (20) cannot be directly used as interfacial contact stiffnesses since, due to the limit conditions expressed in Eq. (33), stiffnesses introduced in Eq. (20) do not recover the physical behavior associated to null stiffness values when $\tilde{p} \to 0^+$. Such an occurrence is described, for instance, by the Hertz theory.
Indeed, in this case, theoretical estimates of interface contact stiffnesses can be expressed as (Sevostianov and Kachanov, 2008a)

$$k_{\text{th}}^N = \frac{4E'}{\lambda' V} \sigma^e, \quad k_{\text{th}}^T = k_{\text{th}}^N \left(2(1 - \nu_0)\right)$$ \hspace{1cm} (34)

and therefore for $\tilde{p} \to 0^+$ it results $\{k_{\text{th}}^N, k_{\text{th}}^T\} \to O((\tilde{p}/p)^{1/3})$.

In order to recover such a behavior for $\tilde{p} \to 0^+$, the effective contact stiffnesses are recast as:

$$k_i^e = k_i^0 \left[1 - e^{-\gamma_i^*(\tilde{p})^{1/3}}\right], \quad i = N, T$$ \hspace{1cm} (35)

where k_i^0 and k_i^e are obtained from the imperfect interface approach, that is by Eq. (20), and γ_i^0 and γ_i^e are model dimensionless parameters.

By enforcing that $k_i^e = k_i^0$ when $\tilde{p} \to 0^+$ (for $i = N, T$), the following theoretical estimates for γ^0-type model parameters can be obtained:

$$\gamma_{N,\text{th}}^0 = \left(9\pi/4\right)^{-1/3} \simeq 0.33, \quad \gamma_{T,\text{th}}^0 = \gamma_{K,\text{th}}^0 \frac{4(1 - \nu_0)}{(2 - \nu_0)^2}$$ \hspace{1cm} (36)

with $\gamma_{T,\text{th}}^0 \simeq 0.32$ for $\nu_0 = 0.3$.

3. Results and discussion

In the following, some comparisons among model results and both experimental data available in literature and theoretical estimates are presented, aiming to validate the proposed approach and to show its soundness and effectiveness. Afterwards, the influence of the model parameters γ_N^0, γ_T^0, and h on the evolution of the interface contact stiffnesses introduced in Eq. (35) versus the closure pressure is investigated.

3.1. Model validation

The experimental results obtained by Gonzalez-Valadez et al. (2010) are herein chosen to validate the proposed model. In detail, they provided experimental measures, by means of ultrasonic pulser-receivers, of interface contact stiffnesses for steel specimens in contact through rough nominally-flat surfaces under a closure pressure. The specimens were subjected to loading-unloading cycles of compressive pressure in a hydraulic frame operating in loading control mode. The load was applied in a quasi-static way, up to the nominal-closure-pressure value of 400 MPa. Steel specimens were characterized by the following mechanical properties: $E_1 = E_2 = E_0 = 200$ GPa and $v_1 = v_2 = v_0 = 0.3$. Accordingly, Hertz-based reduced modulus value results in $E = 109.89$ GPa. Moreover, in agreement with data furnished by Gonzalez-Valadez et al. (2010), contact rough surfaces in the reference configuration can be idealized as regularized wavy-shapes (see Fig. 1) characterized by $\lambda = 130 \mu$m and $\Delta_0 = 1.58 \mu$m.

A comparison procedure among numerical results based on the proposed model and experimental data relevant to the 11-th loading cycle has been carried out, computing (via a least-squares fitting algorithm) the optimal values for parameters γ_N^0 and γ_T^0. As a result, the best-fitting values are $\gamma_{K,\text{num}}^0 = 0.96$ and $\gamma_{K,\text{num}}^0 = 0.58$, and the comparison between the corresponding results obtained via the proposed model and the available experimental data is depicted in Fig. 4.

It is worth pointing out that, the aforementioned numerical estimates for γ_N^0 and γ_T^0 are in the same order of magnitude of the corresponding Hertz-based theoretical ones (see Eq. (36)), and they clearly allow to obtain a good agreement with experimental data.

Previously results have been obtained by considering the complete contact pressure p^* as equal to the Hertz-based one p_H^* introduced in Eq. (22) (i.e., for $h = 1$). Nevertheless, by assuming as a coarse first approximation that $h = \Delta/\Delta_0$, and referring to the measures provided by Gonzalez-Valadez et al. (2010), the following estimates can be consistently considered: $\Delta = 1.18$ (at the 11-th loading cycle) and thereby $h = 0.75$. By adopting $p^* = 0.75 p_H^*$, the numerical predictions of the contact stiffnesses remain in good agreement with the benchmark experimental results, as shown in Fig. 5, and in this case the best-fitting values of γ^0-parameters result in $\gamma_{K,\text{num}}^0 = 0.83$ and $\gamma_{K,\text{num}}^0 = 0.51$. Therefore, a history-based correction of the complete contact pressure leads to a consistent reduction of model parameters γ_N^0 and γ_T^0 towards their theoretical values.

Table 1 summarizes the best-fitting values of γ^0-type model parameters (normalized with respect to their Hertz-based theoretical predictions) for different values of the history parameter h. In detail, proposed results clearly show that a monotonic decrease of h induces a monotonic decrease of the best-fitting values for both
Table 1
Influence of the history-based correction quantity \(h \) on the best-fitting values (num) of the \(\gamma^0 \)-type model parameters, normalized with respect to the theoretical (th) Hertz-based predictions.

<table>
<thead>
<tr>
<th>(h)</th>
<th>0.15</th>
<th>0.2</th>
<th>0.25</th>
<th>0.3</th>
<th>0.35</th>
<th>0.4</th>
<th>0.5</th>
<th>0.75</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma^0_{num}/\gamma^0_{th})</td>
<td>0.7</td>
<td>1.0</td>
<td>1.2</td>
<td>1.4</td>
<td>1.6</td>
<td>1.8</td>
<td>2.0</td>
<td>2.5</td>
<td>2.9</td>
</tr>
<tr>
<td>(\gamma^1_{th}/\gamma^1_{th})</td>
<td>0.5</td>
<td>0.7</td>
<td>0.8</td>
<td>0.9</td>
<td>1.0</td>
<td>1.1</td>
<td>1.3</td>
<td>1.6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

3.2. Comparison with the contact model by Sherif and Kossa

Sherif and Kossa (1991), and similarly Krollikowski and Szczepak (1993), in order to elucidate their experimental findings, provided a mathematical formulation of normal and tangential contact stiffnesses, by combining the contact model (GW) formulated by Greenwood and Williamson (1966) and the Hertz–Mindlin theory (Mindlin, 1949). In detail, contacting rough surfaces were modeled as elastic surfaces covered with elastic asperities which are assumed to be, at least near their summits, as spherical and characterized by the same radius of curvature \(R_s \). Following Sherif and Kossa (1991) and their main references, the corresponding normal (denoted as \(K^N \)) and tangential (\(K^T \)) contact stiffnesses per unit area can be written in the form

\[
K^N = 2 D_s \frac{E_0}{1 - \nu^2} (R_s \sigma_s)^\frac{1}{2} F_1 (t) \tag{38}
\]

\[
K^T = \frac{\pi D_s}{2} \frac{E_0}{(2 - \nu^2)(1 + \nu^2)} (R_s \sigma_s)^\frac{1}{2} F_2 (t) \tag{39}
\]

where \(D_s \) is the density of asperities per unit area, \(\sigma_s \) is the standard deviation of the height distribution of asperities, \(t \) is the normalized to \(\sigma_s \) mean separation between contacting surfaces, and function \(F_1 (t) \) results in

\[
F_1 (t) = \int_0^\infty (r - t)^\frac{1}{2} \Theta (r) \, dr
\]

\[
t = 1 - \frac{\bar{p}}{p^*} \left[1 - \log \left(\frac{\bar{p}}{p^*} \right) \right]
\]

Moreover, in agreement with the experimental characterization provided by Gonzalez-Valadez et al. (2010), stiffnesses in Eqs. (38) and (39) are computed by considering \(E_0 = 200 \) GPa, \(\nu_0 = 0.3 \), and by setting statistical parameters via the correlations given by McCool (1986): \(R_s = 6.34 \mu m, \sigma_s = 2 \mu m, D_s = 7.32 \cdot 10^{-3} \) summits/\(\mu m^2 \).

Results proposed in Fig. 7 clearly highlight that the model herein proposed is much more effective than the statistical description adopted by Sherif and Kossa (1991) in reproducing benchmarking experimental data, both in terms of quantitative values of contact stiffnesses and as regards their evolution with respect to the closure pressure, especially for small values of \(\bar{p} \). In detail, proposed comparison confirms, in agreement with evidence provided by Buczkowski et al. (2014), that the model by Sherif and Kossa (1991) leads to under-rated values of the incremental contact stiffnesses. Moreover, such a GW-based approach, contrary to the herein-proposed theoretical formulation, is not able to recover the pressure-dependent difference between normal and tangential stiffnesses, and thereby it is expected to be inaccurate in describing the tangential-to-normal stiffness ratio versus the closure pressure.
3.3. Sensitivity analysis to main model parameters

A sensitivity analysis addressing the influence of both γ^0-type parameters and the history correction term h is herein focused, aiming to show how possible variations of model parameters with respect to their best-fitting values can affect the effectiveness of model predictions.

Fig. 8 shows normal and tangential stiffnesses, as well as the stiffness ratio K_T^N/K_T^C, versus the nominal closure pressure \bar{p}, highlighting the comparison between model predictions and benchmarking experimental data (Gonzalez-Valadez et al., 2010) when γ^0-type model parameters differ from the corresponding best-fitting values of ±0.25% (in the case $h = 1$, i.e. for $p^* = p_{h}^{*}$). Moreover, Fig. 9 addresses the influence of the history parameter h on the stiffness predictions. Model results have been computed referring to the best-fitting values for γ^0-type parameters associated to the case $h = 1$.

As a general remark, possible variations of the history parameter h (for fixed optimal values of γ^0-type parameters) induce a reduced influence on the model capability to reproduce experimental results. On the contrary, a variation of γ^0-type parameters with respect to their best-fitting values can induce a certain influence on the evolution of the contact stiffnesses with the closure pressure. In detail, proposed results show that a variation of ±25% in γ^0-values produces a change in the slope of the incremental stiffnesses for small values of \bar{p}, leading to differences with respect to the optimal predictions in the order of 15–25% (resp., 20–25%) for K_T^N (resp., for K_T^C) at $\bar{p} = 400$ MPa. Besides, Fig. 8 highlights that the tangential-to-normal stiffness ratio evolution versus the nominal closure pressure exhibits a slight sensitivity to γ^0 and γ^0_T.

4. Conclusions

In the present paper a novel spring-like micromechanical contact model has been proposed. The microgeometry of two rough surfaces in no-sliding contact under a closure pressure has been assumed to be described by a distribution of internal penny-shaped cracks (namely, in the framework of internal-crack approaches), and the contact region has been modeled through a thin microcracked interphase separating the contacting bodies. Accordingly, the effective mechanical properties at the contact nominal interface are consistently derived by employing an imperfect interface approach (Fouchal et al., 2014; Rešnik and Lebon, 2010, 2012), mainly based on two ingredients. On the first, the homogenization
of the interphase region has been performed by adopting the well-established strategy by Kachanov (1994), Tsukrov and Kachanov (2000), Kachanov and Sevostianov (2005) and Sevostianov and Kachanov (2013), under the assumption that cracks do not interact each other (non-interacting approximation). On the second, in the limit of a vanishing interphase thickness, a matched asymptotic expansion method (Lebon and Rizzoni, 2011; Lebon and Rizzoni, 2010; Lebon and Zaittouni, 2010; Rizzoni et al., 2014; Rizzoni and Lebon, 2013) has been considered. As a result, normal and tangential interface contact stiffnesses are consistently derived, introducing the dependency on the closure pressure \bar{p} via a simple but accurate description for the evolution of the no-contact radius with \bar{p}, and by enforcing as consistency requirements some physical constraints suggested by the classical Hertz theory.

Results obtained via the present model have been compared to both theoretical predictions and available experimental data, highlighting soundness and effectiveness of the proposed approach. Moreover, the dependence of the contact stiffness ratio on the closure pressure has been successfully described, fully in agreement with the experimental evidence.

Model performance can be simply enhanced by including possible history-based effects, related to tips plastic deformation and fatigue behavior, by a proper setting of model parameters. Although effective properties of contacting regions are usually derived by employing approaches based on external cracks (Sevostianov and Kachanov, 2008a; 2008b), internal-crack-based descriptions are proved to give reasonable results for normal contact compliance and electric resistance (Sevostianov, 2010). In this context, proposed results can be considered as an attempt to provide a more comprehensive insight on the effectiveness of internal-crack strategies in describing also tangential interface features for no-sliding contact under closure pressure conditions.

Acknowledgments

This work was supported by Bando Vinci 2013 (n. C2-73) of Università Italo-Francese UIF, and by Italian Civil Protection Department (RELUIS-DPC 2014-2018, CUP: E84G14000480007).

References

