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Abstract

The problem of localizing occlusions between consecu-
tive frames of a video is important but rarely tackled on its
own. In most works, it is tightly interleaved with the com-
putation of accurate optical flows, which leads to a deli-
cate chicken-and-egg problem. With this in mind, we pro-
pose a novel approach to occlusion detection where visibil-
ity or not of a point in next frame is formulated in terms
of visual reconstruction. The key issue is now to deter-
mine how well a pixel in the first image can be “recon-
structed” from co-located colors in the next image. We first
exploit this reasoning at the pixel level with a new detec-
tion criterion. Contrary to the ubiquitous displaced-frame-
difference and forward-backward flow vector matching, the
proposed alternative does not critically depend on a pre-
computed, dense displacement field, while being shown to
be more effective. We then leverage this local modeling
within an energy-minimization framework that delivers oc-
clusion maps. An easy-to-obtain collection of parametric
motion models is exploited within the energy to provide the
required level of motion information. Our approach outper-
forms state-of-the-art detection methods on the challenging
MPI Sintel dataset.

1. Introduction
Detecting occluded areas at each instant of a video se-

quence is of utmost interest for many computer vision appli-
cations. In fact, even though occlusion detection is mostly
associated with the problem of computing inter-image cor-
respondences (optical flow for monocular vision, or dispar-
ity map in stereo vision), it is very informative on its own.
Among other applications, occlusion-based reasoning has
been applied to contour and object tracking [21, 44], seg-
mentation of multiple objects [39], action recognition [37],
pose estimation [36], and depth ordering [26].

In spite of the usual association between motion field
estimation and occlusion detection, it is worth noting that
physical motion within the scene by itself does not deter-

mine if an element is hidden at a given instant. An addi-
tional factor is needed in the equation, that is, the observer
point of view, or in other words, the observed 2D visual
representation of the real 3D world, i.e., the image. This
is a well-known fact and limitation of the optical flow as
a representation of physical motion [35]. When working
with a succession of discrete-in-time and discrete-in-space
2D images, one can define that a point of a given image is
occluded in the next (or other) image of the sequence, if it
is not visible by the observer in the latter.

Many state-of-the-art approaches tackle occlusion detec-
tion based on the following question: Does an image point
have a correspondent in the other image that can be confi-
dently identified as physically identical? In practice, this
is indeed evidenced, either implicitly or explicitly, by a
wide range of formulations that consider the problem of oc-
clusion detection as inseparable of displacement estimation
[2, 13, 18, 32, 41]. This simple question leads however to
obstacles in formulating the problem. First, true dense cor-
respondences between images are not easily obtained, es-
pecially on occluded pixels where the optical flow (or dis-
parity, likewise) is not well defined. Even in non-occluded
areas, rapid changes in appearance and scale make the def-
inition and the estimation of unique correspondences diffi-
cult.

We strive for an alternative, more direct, approach to oc-
clusion detection. We adopt an image reconstruction view-
point that frees us, to a large extent, from the need of jointly
estimating an accurate, dense motion field. Instead, we only
make use of “plausible” motions simply extracted from the
image pair.

The main idea is to assess whether or not pixel appear-
ance can be equally well explained by its spatial neighbor-
hood in the same frame and by suitable co-located pixels in
the other frame. If not, this point is likely to be occluded
in the next image. In this way, occlusion detection can be
sought as independent of the knowledge of an accurate, uni-
vocal motion field between the two images. It suffices to ex-
ploit loosely the spatiotemporal coherency in order to select
a suitable spatiotemporal neighborhood.
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Figure 1. Occlusions from color inconsistencies along true flow. (a-b) Two successive frames of the clean ambush 2 sequence from
the MPI Sintel dataset [10]. (c) Occlusion ground truth with occlusions shown in white; (d) Norm of the color difference between points
matched by the true flow (2D projection of the known 3D motions); (e)-(h) Occlusion maps obtained by thresholding at 0.015, 0.050,
0.100 and 0.250 respectively, the min-max normalized (between 0 and 1) color differences along the flow. They are all unsatisfactory (low
precision and/or low recall).

The paper is organized as follows. In Section 2 we dis-
cuss relevant literature and motivate the need for a different
approach to occlusion detection. We then devote Section 3
to introducing the ideas behind our novel approach, whose
formulation is given in Section 4. We report experimental
results, including extensive comparisons to recent occlusion
detection methods, in Section 5. We provide concluding re-
marks in Section 6.

2. On true motion and occlusion models
Seeing occlusion detection as only part of a joint motion-

occlusion problem requires (1) to model accurately visual
motion and (2) to model occlusions in the light of this mo-
tion. As we will show, even if the true motion field is
known, approaches of this type might fail to produce ac-
curate occlusion maps. As a consequence, we argue that
motion should remain an auxiliary variable and not the main
object of interest. This idea deeply contrasts with the rea-
sonings one can find in the literature.

A popular idea is that an occlusion is a violation of the
optical flow constraint: “Occlusions generally become ap-
parent when integrated over time because violations of the
brightness-constancy constraint of optical flow accumulate
in occluded areas” [12].

Other authors make similar claims, without referring to
optical flow integration but stating instead that, under Lam-
bertian reflections and the constant illumination assump-
tion, a brightness change between corresponding points in-
dicates an occlusion of the point in the second image [4, 40].

Another assertion is that flow errors occur in occlusion
areas or that an occlusion is an explanation of motion mis-
matching: “. . . the most probable reasons for such a situ-
ation [flow mismatching] is an occlusion problem or an
error in the estimated matching” [2]. This notion has also
been exploited by other works [13, 22, 43] where forward-
backward flow inconsistency is used to detect occlusions.

Similarly to the brightness conservation constraint, some
authors have proposed that a point is occluded if it switches
from one motion layer or segment to another between con-
secutive frames: “To consistently reason about occlusions,
we examine the layer assignments [of two points in consec-

utive frames] at locations corresponded by the underlying
flow fields” [30]. In our opinion, this argument falls short
for non-planar motions and self-occlusions even when op-
tical flow is allowed to deviate from the assumed paramet-
ric motion as in [30]. Ambiguities on occlusion estimation
from layer assignment are alleviated by enforcing temporal
layer consistency [31].

Relying on a joint motion-occlusion estimation leads to
a chicken-and-egg situation, which is handled in alterna-
tion: “[The algorithm] iterates between estimating values
for [occlusion map], and optimizing the current optical flow
estimates by differential techniques” [28].

Other approaches include the uniqueness criterion [9],
which is known for producing a large amount of false
positives [42], and combinations of the criteria explained
above. For instance, [15] considers flow symmetry in com-
bination with the violations of the optical flow brightness
constancy constraint. Another example is [32] which en-
forces disparity consistency by labeling points that cannot
be matched with another point in the second image as oc-
cluded, while proposing a sequential approach that com-
putes occlusion and disparity iteratively. Different views on
the related problem of finding occlusion borders, but with-
out determining exactly the occlusion regions are found in
[3, 16, 23, 25, 27, 33].

Doubtless, the underlying motion is indeed helpful to
find occlusions. This is further confirmed by the work of
Humayun et al. [14] where a large amount of features were
used to train a random forest, giving a high importance to
motion-based features. In the same way, knowing the oc-
clusion labeling of image pixels clearly helps motion es-
timation. Specifically, it better guides regularization and
smoothing. Many optical flow methods try to deal with oc-
clusions by embedding a discrete state into a continuous nu-
merical scheme [5], or an aggregation framework [13], end-
ing with complex, usually joint formulations that improve
motion estimation. Similarly, stereo vision approaches that
are formulated as discrete label-selection problems can be
naturally extended to handle occlusions by adding a label
for the occlusion state [17, 18], relying on efficient discrete
energy optimization techniques.
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Figure 2. Fictitious occlusions from forward-backward inconsistencies of divergent flows. (a)-(b) Forward-backward divergent flows
associated to a zoom-in (classic hue-saturation color coding at the pixel level, and subset of motion vectors superimposed for better
visualization). (c) True occlusion map, devoid of occlusions; (d) Norm of the forward-backward flow difference between points matched
by the true flow. Because of interpolations required to evaluate backward flows at non-pixel positions, differences are space dependent (e)-
(h) Occlusion maps obtained by thresholding at 0.100, 0.333, 0.500 and 0.900, respectively, the normalized forward-backward differences
along the flow. For better visualization of the error pattern, we zoom-in the resulting images (bottom-left corner). False positives occur all
over the image grid.

In order to pin down our claims, let us assume that we
know the true motion field for an image pair1 and let us ana-
lyze the most common underlying reasonings for occlusion
detection. Figure 1 shows results for the occlusion detec-
tion by finding violations of the color constancy assump-
tion along this motion, that is by thresholding the so-called
displaced frame difference (DFD). If x and x′ are locations
on image grid Ω of two truly corresponding pixels in color
images I1 and I2 respectively, x is declared occluded if

‖I1(x)− I2(x′)‖ > εc, (1)

where εc is a threshold, which is proposed with variants in
[4, 40]. Even though the image sequence in this example
does not contain significant illumination changes nor extra
post-processing effects like mist or motion blur, the color
constancy criterion is not robust enough to detect occlu-
sions even if the true motion is known. This is easily verified
visually by looking at regions where the norm of the color
difference does not have large enough values even across
occluded areas (Fig.1).

A similar experiment can demonstrate that surprisingly,
even when the true optical flow is available, the forward-
backward flow consistency criteria might fail to accurately
capture the real occlusion map (Fig.2). This criterion as-
sumes that given corresponding points x and x′ and their
associated forward and backward flows, wf (x) and wb(x

′),
x is declared occluded if ‖wf (x) + wb(x

′)‖ > εf , where
εf is a threshold [2, 7, 13]. Implementation-wise, the back-
ward flow at x′ is obtained by bilinear interpolation, since
x′ is generally not an integer grid position. Such a detail
by itself generates erroneous flow mismatching which may
be enlarged in different situations such as motion disconti-
nuities or zooming. Even if ground-truth motion is avail-
able at image grid points, wb(x

′) may introduce a position
drift while going backwards to the first image. Figure 2
shows occlusion maps obtained by this criterion for a syn-

1In the sense of the projection of the true physical motion onto the
image plane.

thetic zoom. The errors in the occlusion map can be ex-
plained by the grid discretization of the flows, making the
forward-backward flow difference grow in several zones of
the non-occluded area (whiter pixels in Fig.2), and leading
to a large number of false positives.

As the aforementioned two criteria are the most com-
monly used [2, 4, 7, 13, 40], the amount of errors they can
lead to should not be neglected. Reducing the dependency
of occlusion detection on flow quality, as we propose, is one
answer to this problem.

3. From image reconstructions to occlusion
We consider that the property of being occluded is intrin-

sic to each one of the points of an image. This means that
detecting occlusions may be posed as an independent prob-
lem, and not necessarily strongly attached to a per-pixel es-
timation of motion. We start from the standard concept of
an occluded point, represented in the image space through
the simplified concept of a pixel, as one that is visible in a
first image and not visible in a second image.

A visible to non-visible transition implies a loss of in-
formation between the two images. This means that there
is a pixel in the first image that cannot be explained using
the second image. At a larger scale, to pin things down,
suppose a well-defined object present at one instant. The
question we ask is: Can the visual information carried by
the object be plausibly explained or “reconstructed” by vi-
sual data from the second image? Failing to perform this
reconstruction implies an absence of information and thus,
a disappearing object. Occlusion detection can then be de-
fined as a spatiotemporal reconstruction problem.

For this problem to be well-posed there are two main is-
sues. First, quality of the visual reconstruction has to be as-
sessed with respect to a reference information. Incidentally,
the true reconstruction is available here, and is precisely the
same first image! Note that we reason directly on the qual-
ity of the reconstruction (with known reference) rather than
indirectly on the quality of motion (unknown field). Sec-



ond, the reconstruction should be plausible, meaning that
the way we pull information from the second image to re-
construct the first, must be consistent with apparent scene
changes. Without the latter condition, one can get away
with physically improbable information flows.

We start by focusing first aspect of the problem, that is,
how to construct an occlusion criterion able to reason on
the basis of image reconstruction. The criterion itself as-
sumes that the reconstruction is plausible and consistent. A
plausible reconstruction from a pair of images can be gen-
erated given a plausible correspondence motion field be-
tween them. This defines a natural way of pulling infor-
mation from one image towards the other. A non-plausible
reconstruction would be one that propagates color informa-
tion between points that do not physically relate. Such a
reconstruction is not necessarily useless, as many problems
in image processing are not interested in the interpretation
of the correspondence itself, like motion-compensated im-
age compression, nearest neighbor search (e.g. [6]) or video
denoising.

This puts forward the fact that motion indeed intervenes,
leading us to the second aspect of the problem. We pro-
pose a complete framework for occlusion map estimation
which exploits dynamic idiosyncrasies of the scene of inter-
est. Indeed, the plausibility of the reconstruction (loosely,
how probable it is) does not demand accuracy in motion
estimation nor a hard decision on which is the optimal cor-
respondence vector.

4. Proposed occlusion detection
We start by defining a reconstruction-based criterion for

independently detecting occluded pixels (Section 4.1), as-
suming the knowledge of a correspondence map. In Sec-
tion 4.2, we then leverage this new local model within an
image-wise formulation of occlusion detection, where in-
strumental correspondences are obtained from a collection
of suitable parametric motion models. No accurate optical
flow is thus required while searching the best binary occlu-
sion labeling over the image.

4.1. A reconstruction-based criterion

Let us define two functions ζ(I) and η(I ′; I,w) that
provide two different reconstructions of the same image I ,
either from itself (intra-image reconstruction) or from an-
other related image I ′, a correspondence field between the
two, w, being given (inter-image reconstruction under cor-
respondence guidance). Given a pair (I1, I2) of succes-
sive video frames and some correspondence field w from
the first image to the second one, we shall denote in short
ζ1 = ζ(I1) and η1,2 = η(I2; I1,w).

In essence, η1,2 =
{
η1,2(x)

}
x∈Ω

conveys the appear-
ance of image I1 that is retained by the second image.
As such, under the true motion field, η1,2 is expected to

deviate towards the appearance of I2 for all the occluded
points. This particular behavior is clearly visible in Fig. 3,
where segments with largest motions appear doubled in a
stroboscopic-like effect. On the other hand, ζ1 captures the
intrinsic appearance of I1 revisited from its own perspective
for every x on the image grid Ω.

This means that, if the two functions are defined in a suit-
able way, one could deduct whether a pixel at location x in
the first image of the pair is visible or not in the second one
by comparing ζ1 and η1,2 around this location. Experiments
showed that this comparison is better conducted in an asym-
metric way whereby a local color model g (defined later in
Eq. 6) is fitted to ζ1 in the neighborhood of x and used to
assess the likelihood of η1,2(x) under visibility hypothesis.

Reasoning independently at the pixel level for now, point
x will be considered as not visible in the second image if:

− ln g
(
η1,2(x)

)
> εv, (2)

where εv is a conveniently chosen threshold, and g an ex-
ponential density function.

The function ζ aims mostly at “simplifying” the first in-
put image I1 such that robust comparisons can be conducted
later on. Yet, it is important to preserve the structure of the
input image. A natural choice for this function is the classic
bilateral filter [34]:2

ζ1(x) =
1

Z(x; I1)

∑
y∈Nx

α(x,y; I1)I1(y), (3)

where Nx is a square window centered at x, Z(x; I1) =∑
y∈Nx

α(x,y; I1) is a normalization factor and the
weighting function α depends on both appearance and spa-
tial proximity within pixel pair:

α(x,y; I1) = fa(‖I1(y)− I1(x)‖)fs(‖y − x‖), (4)

with fa and fs being Gaussian kernels.
In a similar fashion, η1,2 will form a structure-preserving

reconstruction of the first image I1 but, this time, using col-
ors from the second image I2 under the guidance of corre-
spondence map w:

η1,2(x) =
1

Z(x; I1)

∑
y∈Nx

α(x,y; I1)I2
(
y + w(y)

)
. (5)

This can be seen as a “displaced cross-bilateral filter”, that
is, the cross-bilateral filtering [19] of a warped image. Note
that, as previously stated, we make use of a correspondence
map only as a tool to find a valid reconstruction of I1.

It is important that the two reconstruction functions
share the same filter weights.3 This way, η1,2 captures
as much as possible the local structure of I1 and both re-
constructions are comparable pixel-wise. Intentionally, this

2Any other discontinuity-preserving image filter could be used, pro-
vided it possesses a guided version.

3In particular, we have the desirable property ζ(I) = η(I; I,0).
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Figure 3. Pipeline for proposed occlusion detection criterion. Given successive images I1 and I2, functions ζ and η generate two
“reconstructions” ζ1 and η1,2 of I1. The second reconstruction is obtained from I2, under the guidance of a given motion field and of I1
(to preserve the structures of it). An arbitrary window of an occluded zone is zoomed-in for inspection. The likelihood of the color at
each pixel of η1,2 is evaluated under the corresponding local model extracted from ζ1 at the super-pixel level (point-to-local-color-model
comparison). This provides a soft-occlusion map that can be either thresholded pixel-wise to obtain a binary occlusion map, or embedded
in the unaries of a joint labeling cost function (not shown here).

structure-mimicking behavior is not favorable for recon-
structing points that are visible only in the first image, i.e.,
occluded points.

The next step in the procedure consists in assessing
whether a point x is occluded or not based on the criterion
defined in (2). In order to conduct this step in practice, we
propose here to over-segment the first reconstructed image
into homogeneous segments where meaningful local color
models can be estimated. In our experiments, these homo-
geneous segments are SLIC superpixels [1], and a Gaus-
sian Mixture Model (GMM) of color is extracted for each
of them, defining the density g in (2).

Image ζ1 is segmented into J super-pixels and the j-th
one, Sj ⊂ Ω, is equipped with the mixture:

gj =

Kj∑
k=1

πj
kG(µj

k,Σ
j
k), (6)

where πj
k, µj

k and Σj
k are respectively the weight, the mean

and the covariance matrix of the k-th component of the mix-
ture. These GMMs provide good local models of ζ1 in the
sense that one can assume that

∀x ∈ Ω, ζ1(x) ∼ gs(x), (7)

where s(x) ∈ J1, JK is the index of super-pixel containing
x. This should also hold for η1,2(x) provided the point is
not occluded in second image. The novel reconstruction-
based test for occlusion detection at the pixel level (2) fi-
nally reads:

x occluded if − ln gs(x)

(
η1,2(x)

)
> εv. (8)

Contrary to DFD-based test (1), this one is not based on
a point-to-point comparison but on a point-to-local-model
one. We shall demonstrate experimentally that it is a more
powerful alternative. Yet, as DFD-based test, it still as-
sumes that a correspondence map is available to produce the
temporal image reconstruction η1,2 = η(I2; I1,w). Next,
we explain how to use this novel modeling over the whole
image without depending on a single, accurate motion field.

4.2. From motion models to occlusions without stop-
ping by optical flow

We propose a method for detecting occlusions which
uses the image-reconstruction reasoning explained above.
In order to be agnostic to optical flow computation, we pro-
pose to rely on a collection of motion models that spans
the various dynamics of the scene and thus enables plausi-
ble image reconstructions. As classically exploited in video
segmentation and analysis, the apparent motion at work in
natural dynamic scenes can often be decomposed into a
set of low-complexity models, typically region-wise affine
models. Such a paradigm recently proved useful also to es-
timate dense optical flows [43]. In our case, such models
will provide candidate correspondences at each pixel, lead-
ing to a discrete labeling problem intertwined with the main
one of occlusion detection.

We start by computing a set W = {wk, k = 1 · · ·K}
of K parametric motion models that are relevant to differ-
ent sub-regions of the scene. We extract a large number K
of overlapping windows of different sizes, starting with a
window encompassing the full image support, and subse-
quently reducing the size by a half and changing position of
the windows with a fixed overlap factor of 50%, covering
the whole image for every window size. For the image size
of the Sintel dataset, with four levels of window sizes we
obtain, for instance, K = 115 windows.

For each window, we robustly estimate a parametric
warp that captures at best the motion of corresponding scene
fragment. Several classic techniques can be used to this end.
In our experiments, we combine semi-dense matching, to
handle large displacements, with robust affine motion es-
timation. We first extract point matches between images
I1 and I2 with DeepMatching4 [24] and fit an initial affine
motion to the matches originated from the window of in-
terest. These models are then refined with Motion2D5, an
M-estimator relying on all support intensities [20].

4http://lear.inrialpes.fr/src/deepmatching/
5http://www.irisa.fr/vista/Motion2D/

http://lear.inrialpes.fr/src/deepmatching/
http://www.irisa.fr/vista/Motion2D/


This multi-window motion estimation approach ar-
guably provides a partially redundant collection of motion
models, but it is simple and it circumvents in particular the
intricate problem of motion segmentation. From the setW
of K parametric motion models thus obtained, we want to
exploit the most plausible at each pixel to achieve occlu-
sion detection. Observe that with this procedure, pixel-wise
occlusion modeling is not tied to a single, accurate, dense
optical flow, but rather to a region-wise characterization of
the scene dynamics.

The task to solve is now the one of jointly selecting a
motion model and deciding on visibility for each pixel. We
pose it as an energy minimization problem with respect to
a motion model labeling M =

{
m(x)

}
x∈Ω
∈ J1,KKΩ and

an occlusion map O =
{
o(x)

}
x∈Ω

∈ {0, 1}Ω, where 1
means occluded point. For pixel location x, label m(x) in-
dicates which one of the available parametric motion mod-
els is relevant, while o(x) establishes if there is an occlusion
or not. For m(x) = k, the associated inter-image recon-
struction (5) is denoted ηk1,2(x). The joint energy to mini-
mize is defined as:

E(O,M) =
∑
x∈Ω

φx(o(x),m(x)) + DL(M)+ (9)∑
x∼y

(
ψm
x,y(m(x),m(y)) + ψo

x,y(o(x), o(y))
)

where the second sum is taken over all pairs of neighboring
pixels. The unary potential reads

φx(0, k) = − ln gs(x)(η
k
1,2(x)), φx(1, k) = αv, (10)

where αv > 0 is the cost of labeling a single pixel as oc-
cluded. It is related to εv in pixel-wise test (8). This data
term is thus not based on point-wise displaced frame differ-
ences as classically done, but on reconstruction-based lo-
cal modeling. Although this modeling effectively penalizes
motions that do not preserve color information up to the
precision of the local model, this data-term, as seen from
the unknown motion point-of-view, would not be suitable to
yield an accurate pixel-wise motion estimation. Again, this
is not the intention anyway, the sole aim being to reason
locally on as plausible as possible inter-image reconstruc-
tions. This is further analyzed in Section 5.

Since each motion label k corresponds to a specific im-
age window, one could restrict the labeling of pixel x ac-
cording to the windows it belongs to. We found, however,
that this restriction can cause block-like artifacts in the la-
bel assignment, with subsequent damage to final occlusion
labeling. To capture motion model locality in a less drastic
way, we propose instead to double φx(0, k) (unary poten-
tial for visible points) for motion models k stemming from
windows x does not belong to.

The binary potentials share a similar form of contrast-

sensitive smoothing:

ψa
x,y(k, k′) = λa exp (−βa ‖I1(x)− I1(y)‖) [k 6= k′]

(11)
with a ∈ {“o”, “m”}, where [·] is Iverson bracket and λo,
λm are positive parameters.

Finally, the global motion label cost DL(M) penal-
izes the complexity of the labeling through its “description
length”, i.e., the number of labels effectively used:

DL(M) = λc]{k : ∃x ∈ Ω,m(x) = k}. (12)

The occlusion map O and, as a by-product, the motion-
model label map M , are obtained by minimizing E(O,M)
(Eq. 9) with a block coordinate descent in an alternate way.
Given occlusion assignment O, minimizing E(O,M) w.r.t.
M only amounts to minimizing∑
x∈Ω

φx(o(x),m(x)) +
∑
x∼y

ψm
x,y(m(x),m(y)) + DL(M).

(13)
This can be done approximately by usingα-expansions with
the method of [11] in order to handle the global label cost
term. Subsequently, for a given motion model label map,
the occlusion map can be recovered by minimizing w.r.t. O
the following function:∑

x∈Ω

φx(o(x),m(x)) +
∑
x∼y

ψo
x,y(o(x), o(y)), (14)

with graph-cuts [8]. The occlusion and label maps are al-
ternatively updated for a small number of iterations. Recall
that this process is not oriented at optical flow recovery, but
at selecting plausible motion models.

5. Experimental results
For the quantitative evaluations reported in this section,

we rely on the MPI Sintel dataset6 [10]. This dataset
comprises 69 sequences from the open-source CGI movie
Sintel7 for which ground-truth optical flows and occlusion
maps have been computed from the known 3D dynamic
structure of the scenes.

5.1. Evaluation of the occlusion criterion

Let us first demonstrate the value of the reconstruction-
based criterion introduced in Section 4.1 by performing
pixel-wise occlusion detection under the guidance of three
different correspondence fields: (1) The true optical flow,
as accessible in MPI Sintel sequences; (2) The true flow
contaminated by independent additive Gaussian noise of
standard deviation 2.5; (3) The flow estimated with Deep-
Flow8[38], a state-of-art optic flow estimator which does
not handle occlusions but solves for long displacements.

6http://sintel.is.tue.mpg.de/downloads
7https://durian.blender.org/download/
8http://lear.inrialpes.fr/src/deepflow/

http://sintel.is.tue.mpg.de/downloads
https://durian.blender.org/download/
http://lear.inrialpes.fr/src/deepflow/


0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
alley 1

FPR

T
P

R

 

 

our−clean=0.881
dfd−clean=0.696
our−noise=0.832
dfd−noise=0.631
our−deep =0.739
dfd−deep =0.631

0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
alley 2

FPR

T
P

R

 

 

our−clean=0.936
dfd−clean=0.801
our−noise=0.904
dfd−noise=0.764
our−deep =0.889
dfd−deep =0.712

0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
ambush 2

FPR

T
P

R

 

 

our−clean=0.979
dfd−clean=0.938
our−noise=0.967
dfd−noise=0.926
our−deep =0.805
dfd−deep =0.725

0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
ambush 4

FPR

T
P

R

 

 

our−clean=0.918
dfd−clean=0.762
our−noise=0.903
dfd−noise=0.748
our−deep =0.835
dfd−deep =0.688

0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
ambush 5

FPR

T
P

R

 

 

our−clean=0.924
dfd−clean=0.776
our−noise=0.904
dfd−noise=0.746
our−deep =0.759
dfd−deep =0.626

0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
ambush 6

FPR

T
P

R

 

 

our−clean=0.959
dfd−clean=0.806
our−noise=0.942
dfd−noise=0.793
our−deep =0.827
dfd−deep =0.736

0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
ambush 7

FPR

T
P

R

 

 

our−clean=0.961
dfd−clean=0.830
our−noise=0.945
dfd−noise=0.807
our−deep =0.923
dfd−deep =0.554

0 0.2 0.5 0.8 1
0

0.2

0.5

0.8

1
bamboo 1

FPR

T
P

R

 

 

our−clean=0.793
dfd−clean=0.619
our−noise=0.737
dfd−noise=0.571
our−deep =0.750
dfd−deep =0.639

Figure 4. Quantitative comparison of proposed reconstruction-based criterion and classic DFD-based criterion. Occlusion detection
ROC curves and associated AUC on eight sequences of the MPI Sintel dataset, obtained by varying the threshold of proposed criterion
(solid lines) and of DFD criterion (dashed lines). Colors indicate the origin of the motion field: true optical flow (green), true optical flow
contaminated by Gaussian noise (blue), DeepFlow estimate (red).

Figure 5. Qualitative results of our occlusion detection method on several MPI Sintel scenes. From left to right: Average of the
two input frames; Occlusion ground-truth; Occlusion map with proposed method; Final motion model labeling, where each color loosely
represents the size and position of the window linked to the selected motion model through a jet-map colorization (Big to small and from
upper-left to bottom-right); Optical flow obtained by evaluating the selected motion model at each pixel (with classic hue-saturation color
coding); And true optical flow with same color coding.

For all the experiments, we fixed the number of super-pixels
J to 700. We found experimentally that having only 2 com-
ponents for each GMM provides good results in general.
Furthermore, the standard deviation of the Gaussian kernels
was set to 1.0, with a window size of 5 pixels. These param-
eters are related to the local color model variability within
the superpixel supports.

Comparisons are conducted against DFD-based detec-
tion, which is at the heart of approaches based on analyzing
violations of the brightness constancy assumption [4, 40].
For eight sequences of the dataset, we report in Fig. 4 oc-
clusion detection ROC curves (true-positive-rate (TPR) vs.
false-positive-rate (FPR)) and area under the ROC curves
(AUC), both varying the threshold εc in the rule (1) and
varying εv in our own framework (8). It can be seen that
our reconstruction-based criterion has more discriminative
power than classic DFD criterion in the prospect of occlu-
sion detection. In all regimes and on all the sequences the
former outperforms the latter, often by a substantial mar-
gin. More interestingly, for most of the sequences, i.e.,
“alley 1”, “alley 2”, “ambush 4”, “ambush 5”, “ambush 7”

and “bamboo 1”, the decrease in occlusion detection perfor-
mance due to flow inaccuracies (with noisy ground-truth or
DeepFlow estimate) is less significant for our method. Re-
markably, when used together with DeepFlow, our criterion
outperforms on several sequences the DFD criterion based
on true motion field.

5.2. Full system evaluation

We now turn to the complete minimization-based
method introduced in Section 4.2. We compare it on
MPI Sintel sequences to several recent approaches: (1) a
learning-based occlusion detection algorithm, which uses a
non trivial ensemble of hand-designed features [14], includ-
ing forward-backward flow inconsistencies for several opti-
cal flow methods; (2) a method based on layer assignment
and depth ordering [30]; (3) a method that leverages reason-
ing on local layers relationships [29]; (4) a sparse occlusion
detection method that relies on departures from the optical
flow color constancy assumption [4].

In the experiments, we limit the number of iterations
of our alternate minimization method to 2, as it converges



Figure 6. Qualitative comparison with state-of-the-art on real
images. From left to right: Average of the two input frames, final
occlusion map with proposed method, results of [4], and of [30].

quickly. Furthermore, we set λo = 20.0, λm = 33.3,
βo = 0.1, βm = 0.2, and λc = 103 by hand-tuning. Setting
critical parameter αv is discussed below.

Table 1 summarizes results by the average F-score com-
puted over all 69 ground-truth MPI Sintel sequences, using
two ways of setting the main occlusion parameter for each
method, e.g., αv for our method. In a first set of experi-
ments (“Global 69” column), it is manually set at once for
all sequences. For [29] and [14], the corresponding param-
eters are set to 0.5, as reported by [29]; for our method αv is
set to 10; finally, for [4]9 and [30]10 we set the parameters to
the values proposed by the respective authors. In a second
round (“Oracle 69” column), we tuned the key parameter of
each method so as to maximize the F-scores. As it can be
appreciated, our reconstruction-based method outperforms
all the other reported methods in both settings. Finally, we
also present some results (as available) by tuning the pa-
rameters to maximize the F-scores only in the 23 training
sequences on the final rendering pass of the Sintel dataset
(“Oracle Final” column).

We provide in Fig. 5 several samples of our results for
visual inspection. Despite the complexity of some of these
scenes, occlusion maps of good quality are obtained. In
particular, extended occlusions produced by large displace-
ments are very well captured, while retaining some details
of smaller occluded regions. It is also interesting to exam-
ine associated motion model labelings M =

{
m(x)

}
x∈Ω

and associated motion flows
{
wm(x)(x)

}
x∈Ω

(Fig. 5 e-
f). While motion labels define segments that relate well to
actual moving regions (e.g. the arm of the woman in the
fourth sequence or the whole person in the first one), the
flows are not very accurate for all the sequences. This is
not surprising since source motion models have been esti-
mated beforehand over arbitrary image windows. Motion
model selection with no further processing cannot produce
accurate optical flows. This reveals, as already highlighted
in Section 4.2, that the distinctive nature of our framework

9http://vision.ucla.edu/˜ayvaci/spaocc.html
10We thank authors for providing us with their source code.

Table 1. Quantitative comparisons on MPI Sintel dataset. For
each method, the average F-score (the higher, the better) is com-
puted with two different ways of setting the main detection param-
eter over all the available training sequences and rendering passes.
We also present results on the Final rendering pass.

Detection method Oracle 69 Global 69 Oracle Final
Learning [14] 0.535 0.448 -

Depth order [30] 0.465 0.449 0.398
Local layers [29] 0.474 0.376 -
Sparse method[4] 0.310 0.259 0.258

Ours 0.550 0.540 0.491

is to focus on good reconstruction-based modeling of oc-
clusion, with inference requiring only plausible correspon-
dences, not accurate per-pixel optical flow. The local color
modeling, however, carries a few problems that somewhat
limit the performance of our method. For example, GMMs
easily overfit in textureless regions, causing false positives
under slight temporal illumination variations.

Regarding execution times, for a sample image pair of
size 436×1024, our full method takes about 1212 s (29 s for
the multi-window motion estimation and 1183 s for the en-
ergy minimization) on an Intel i7-3540M CPU @ 3.00GHz.
In comparison, [4] takes 1601 s, while [30] takes 2201 s on
the same machine.

Finally, we show in Fig. 6 additional comparative re-
sults on real-world image sequences. Qualitative assess-
ment of these results further confirm the merit of our ap-
proach: more accurate occlusion maps are produced com-
pared to [4] and [30].

6. Concluding remarks
We have introduced a new approach to detect occlusions

that occur from one frame to another in a video sequence.
Departing from classic approaches that tightly link this task
to the accurate computation of optical flow, we propose a lo-
cal spatio-temporal reconstruction model that only requires
the knowledge of a plausible motion. Given a collection of
parametric motion models simply extracted from the scene
at hand, we show how this local reconstruction model can
be harnessed within a global energy function to deliver high
quality occlusion maps.

Quantitative experiments yielded two important find-
ings: (1) Proposed reconstruction-based modeling provides
a detection criterion at the pixel level that is a powerful
alternative to classic criterion based on intensity inconsis-
tency along the flow. Even when exploiting the true flow,
later criteria perform less well that ours with the output of
an off-the-shelf flow estimator. (2) Our complete energy-
based framework consistently outperforms state-of-the-art
approaches on MPI Sintel dataset. More generally, we qual-
itatively observed the ability of our framework to produce
good quality occlusion detection maps, even in scenes com-
prising large occluded regions and complex motions.

http://vision.ucla.edu/~ayvaci/spaocc.html
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