Determining occlusions from space and time image reconstructions

Abstract : The problem of localizing occlusions between consecutive frames of a video is important but rarely tackled on its own. In most works, it is tightly interleaved with the computation of accurate optical flows, which leads to a delicate chicken-and-egg problem. With this in mind, we propose a novel approach to occlusion detection where visibility or not of a point in next frame is formulated in terms of visual reconstruction. The key issue is now to determine how well a pixel in the first image can be " reconstructed " from co-located colors in the next image. We first exploit this reasoning at the pixel level with a new detection criterion. Contrary to the ubiquitous displaced-frame-difference and forward-backward flow vector matching, the proposed alternative does not critically depend on a pre-computed, dense displacement field, while being shown to be more effective. We then leverage this local modeling within an energy-minimization framework that delivers oc-clusion maps. An easy-to-obtain collection of parametric motion models is exploited within the energy to provide the required level of motion information. Our approach outper-forms state-of-the-art detection methods on the challenging MPI Sintel dataset.
Type de document :
Communication dans un congrès
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , Jun 2016, Las Vegas, United States. 2016
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01307703
Contributeur : Juan-Manuel Perez-Rua <>
Soumis le : mardi 26 avril 2016 - 16:25:02
Dernière modification le : lundi 9 octobre 2017 - 13:36:15
Document(s) archivé(s) le : mardi 15 novembre 2016 - 13:51:53

Fichier

occlusions_cvpr2016.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

  • HAL Id : hal-01307703, version 1

Collections

Citation

Juan-Manuel Pérez-Rúa, Tomas Crivelli, Patrick Bouthemy, Patrick Perez. Determining occlusions from space and time image reconstructions. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) , Jun 2016, Las Vegas, United States. 2016. 〈hal-01307703〉

Partager

Métriques

Consultations de la notice

1113

Téléchargements de fichiers

538