D. Komatitsch, R. Martin, J. Tromp, M. A. Taylor, and B. A. Wingate, WAVE PROPAGATION IN 2-D ELASTIC MEDIA USING A SPECTRAL ELEMENT METHOD WITH TRIANGLES AND QUADRANGLES, Journal of Computational Acoustics, vol.09, issue.02, pp.703-718, 2001.
DOI : 10.1142/S0218396X01000796

URL : https://hal.archives-ouvertes.fr/inria-00528424

E. D. Mercerat, J. P. Vilotte, and F. J. Sanchez-sesma, Triangular Spectral Element simulation of two-dimensional elastic wave propagation using unstructured triangular grids, Geophysical Journal International, vol.166, issue.2, pp.166-679, 2006.
DOI : 10.1111/j.1365-246X.2006.03006.x

W. J. Gordon and C. A. Hall, Construction of curvilinear co-ordinate systems and applications to mesh generation, International Journal for Numerical Methods in Engineering, vol.18, issue.4, pp.461-477, 1973.
DOI : 10.1002/nme.1620070405

R. Pasquetti and F. Rapetti, Spectral Element Methods on Unstructured Meshes: Comparisons and Recent Advances, Journal of Scientific Computing, vol.164, issue.1-3, pp.377-387, 2006.
DOI : 10.1007/s10915-005-9048-6

G. Cohen, P. Joly, J. E. Roberts, and N. Tordjman, Higher Order Triangular Finite Elements with Mass Lumping for the Wave Equation, SIAM Journal on Numerical Analysis, vol.38, issue.6, pp.2047-2078, 2001.
DOI : 10.1137/S0036142997329554

URL : https://hal.archives-ouvertes.fr/hal-01010373

F. X. Giraldo and M. A. Taylor, A diagonal-mass-matrix triangular-spectral-element method based on cubature points, Journal of Engineering Mathematics, vol.131, issue.3, pp.307-322, 2006.
DOI : 10.1007/s10665-006-9085-7

W. A. Mulder, NEW TRIANGULAR MASS-LUMPED FINITE ELEMENTS OF DEGREE SIX FOR WAVE PROPAGATION, Progress In Electromagnetics Research, vol.141, pp.671-692, 2013.
DOI : 10.2528/PIER13051308

L. Ding, Z. Lu, and T. Guo, Abstract, Advances in Applied Mathematics and Mechanics, vol.1, issue.01, pp.120-134, 2014.
DOI : 10.4208/aamm.2013.m199

A. E. Løvgren, Y. Maday, and E. M. Ronquist, MAPS ON GENERAL DOMAINS, Mathematical Models and Methods in Applied Sciences, vol.19, issue.05, pp.803-832, 2009.
DOI : 10.1142/S0218202509003632

P. O. Persson and J. Peraire, Curved Mesh Generation and Mesh Refinement using Lagrangian Solid Mechanics, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 2009.
DOI : 10.2514/6.2009-949

L. Lazar, R. Pasquetti, and F. Rapetti, Abstract, Communications in Computational Physics, vol.165, issue.14, pp.1309-1329, 2013.
DOI : 10.1002/fld.1650090405

A. Perronnet, Triangle, tetrahedron, pentahedron transfinite interpolations Application to the generation of C 0 or G 1 continuous algebraic meshes, Proc. Int. Conf. Numerical Grid Generation in Computational Field Simulations, pp.467-476, 1998.

L. Demkowicz, J. Kurtz, D. Pardo, M. Paszynski, W. Rachowicz et al., Computing with hp-adaptative finite elements, 2007.

H. Ltjens, A. Bondeson, and O. Sauter, The CHEASE code for toroidal MHD equilibria, Computer Physics Communications, vol.97, issue.3, pp.219-260, 1996.
DOI : 10.1016/0010-4655(96)00046-X

H. Heumann, L. Drescher, and K. Schmidt, A high order Galerkin method for computing geometric coefficients of axisymmetric magnetohydrodynamic equilibria, INRIA-report

J. Lee and A. Cerfon, ECOM: A fast and accurate solver for toroidal axisymmetric MHD equilibria, Computer Physics Communications, vol.190, pp.72-88, 2015.
DOI : 10.1016/j.cpc.2015.01.015