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Abstract

In this paper, we extend the autonomous robot control
and plan language RPL with constructs for specifying ex-
periences, control tasks, learning systems and their param-
eterization, and exploration strategies. Using these con-
structs, the learning problems can be represented explic-
itly and transparently and become executable. Wth the ex-
tended language we rationally reconstruct parts of the AG-
ILO autonomous robot soccer controllers and show the fea-
sibility and advantages of our approach.

1. Introduction

Due to the complexity and sophistication of the skills
needed in real world tasks, the development of autonomous
robot controllers requires an ever increasing application of
learning techniques. On the other hand, the application of
learning mechanisms on their own has turned out to be not
sufficient for most complex control tasks. We conclude from
this situation that for challenging and complex control tasks
programming and learning should be combined synergeti-
cally. In order to achieve this synergy, we embed learning
capabilities into robot control by developing extensions for
a robot control language that allow for the explicit specifi-
cation of executable learning problems.

The need for extensions of control languages that facil-
itate robot learning arises from the substantial differences
between programs that learn and robotic agents that learn.
Learning programs are fed with training data by a teacher.
In contrast, to learn effectively robotic agents must typically
collect experiences by themselves. As making experiences
requires the robot to take physical action and as physical
action often fails or has undesired effects the experiences
made by the robot might be uninformative or even obstruct
learning. For example, an experience in which a robot col-
lides with a wall and the motor stalls is at best useless for
learning the robot’s dynamics. Thus the effective collection
of the experiences requires sophisticated control, execution

monitoring, specific perception and abstraction mechanisms
and therefore the collection of experiences should become
part of the learning process.

The modern robot control languages we know of do
neither enforce nor strongly support the rigorous design
of learning mechanisms. Their transparent integration into
robotic agents that learn autonomously is rather an opaque
art than an engineering exercise. In this paper, we attempt to
improve this situation by extending RPL, an existing control
language, with constructs for specifying control tasks, expe-
riences, learning problems, exploration strategies, etc. Us-
ing these constructs, learning problems can be represented
explicitly and transparently and become executable.

As a starting point for the development of our robot
learning framework we borrow concepts from experien-
tial learning theory. Experiential learning [8] is a well re-
searched learning methodology in adult learning, which is
based on the assumption that experience plays the central
role in learning. The theory defines learning as “the process
whereby knowledge is created through the acquisition and
transformation of experience. Knowledge results from the
combination of grasping and transforming experience”[8].

In this paper, we realize these ideas by treating “experi-
ence” as a first class object in our computational model of
robot learning. We view an experience as a robot’s percep-
tion of its own behavior and the effects thereof in the light
of specific learning tasks. Experiences in RPL| parn allow
programmers to specify mechanisms

1. for recognizing that a substream of sensory data con-
stitutes an experience for a given learning problem,

2. forabstracting experiences given as a substream of raw
sensory data into an abstract experience represented in
a language suitable for learning,

3. for monitoring the collection of experiences and rec-
ognizing uninformative and misleading experiences,

4. for specifying which collections of experiences would
allow for good results of the learning process, and

5. for storing and indexing collected experiences.

With the extended language we rationally reconstruct
substantial parts of the controller of the AGIL O autonomous



soccer robots. The reconstructed program can learn a reper-
toire of routines for playing competently robot soccer.

In the remainder of this paper we will describe the con-
trol language extensions needed to treat experiences and
learning problems as first class objects. We will then show
how these extensions enable programmers to develop learn-
ing robotic agents much more efficiently and effectively.

2. Learning Robotic Agents

As our basic conceptualization of the robotic agent and
its environment, we use the agent model [13] in combina-
tion with the dynamic system model [7, 12]. The explicit
representation of these models and the definition of pro-
gram variables in terms of concepts of these models sup-
ports learning, planning, and failure diagnosis in robot con-
trollers. In this paper we exploit only parts of these models,
in particular observable and controllable state variables (see
section 3.1). In a companion paper [10], we describe the ex-
plicit specification of additional parts of this model.

In this conceptualization, the state of the world evolves
through the interaction of the controlling process — the
robot’s control system (or controller) — and the controlled
process, which comprises events in the environment, phys-
ical movements of the robot and sensing operations. The
purpose of the controlling process is to influence the evolu-
tion of the controlled process so that it meets the specified
objectives.
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Figure 1. Dynamic system model.

Figure 1 shows a block diagram of the dynamic system
model that underlies the design of our robot control sys-
tem. The processes are depicted as boxes and the interac-
tions between them as lines with arrows. There are two in-
teractions between the controlling and the controlled pro-
cess: first, the controlling process sends control signals to
the controlled process to influence the evolution of the con-
trolled process in the desired way and second, the control-
ling process observes the controlled process by interpreting
the sensor data that are produced by the controlled process.

The agent program continually receives percepts gener-
ated by the state estimation processes and outputs control

signals for the controlled process. The belief state and the
control signals are explicitly represented as state variables.
The state variables representing the belief state are observ-
able and are automatically updated in each interpretation
cycle. The state variables representing the control signals
are controllableand their values can be asserted in the agent
program. The use of state variables makes the dynamic sys-
tem model in the agent program explicit and transparent.
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Figure 2. A general model of learning agents.

An Agent Program for a L earning Agent. Figure 2 shows
a general model for learning agents according to Russell and
Norvig [13] (Chapter 18). We structure the agent program
of a learning robotic agent into four functional units: the
performance element, the critic, the learning element, and
the problem generator. The performance element specifies
the agent’s behavior. The critic receives the robot’s percept
and represents the experience in an abstract way to facilitate
learning. The learning element manipulates parts of the per-
formance element in order to improve the performance of
these parts based on earlier experiences. Finally, the prob-
lem generator proposes activities to the performance ele-
ment to acquire informative experiences.

Components of a Learning Robotic Agent. To get better
intuitions about how control languages should be extended
to support autonomous robot learning, let us look at the in-
dividual modules of the agent program in more detail.

In our computational model learning task specific expe-
rience classes are one of the most basic entities and they
specify the following aspects of experiences. First, which
experiences are needed to learn the task well? How can the
robot make such experiences through physical action? That
is, which control routines does the robot have to execute to
produce them? How can the robot recognize the start and
end of an experience? Given an experience as raw sensory
data, is the experience informative for the respective learn-
ing task? If the experience is informative how can it be ab-
stracted to make it more useful for learning? Finally, how



can experiences be stored and retrieved?

The performance element realizes the agent function,
the mapping from percept sequences into the actions that
should be performed next. To facilitate learning the parts of
the performance element that should be learned and adapted
should be represented in such a way that the learning el-
ement can reason about, modify, and generate them. The
performance element should also provide means to collect
data, which also monitors the data collection process and
steps in when failures and problems occur. In addition, pre-
cautions have to be taken if functions and control routines
haven’t been learned yet.

The critic is best thought of as a learning task specific
abstract sensor that transforms raw sensor data into infor-
mation relevant for the learning element. To do so the critic
monitors the collection of experiences and assesses whether
a given episode is informative for the learning task. The in-
formative episodes are abstracted into a feature representa-
tion that facilitates learning. The critic also generates feed-
back signals or rewards that assess the robot’s performance
during an episode. Finally, the episodes are stored and main-
tained as resources for learning.

The learning element applies different learning tech-
niques such as neural network learning or decision tree
learning. The learning element also specifies the appropri-
ate parameterization of the learning mechanism, the bias,
to perform the learning task effectively. Finally, the learn-
ing element specifies how the result of the learning process
is to be transformed into a piece of code that can be exe-
cuted by the performance element.

The problem generator can be called with an experi-
ence class and returns a new parameterization for the rou-
tine that collects the experiences. The new parameteriza-
tions are generated as specified in the distribution of param-
eterizations of the experience class.

The Interpretation Cycle. The basic interpretation cycle
of the learning agent’s program operates in two modes: ac-
tive and passive. In the passive mode the agent performs
the actions proposed by the agent function. Concurrently
the critic observes the sensor stream to detect the start and
end of episodes. If the recognized episodes are assessed to
be informative they are abstracted and then stored into the
episode database. In the active mode the critic operates in
the same way. The performance element carries out a loop
in which it asks the problem generator for the next param-
eterization of the experience collecting routine. It then exe-
cutes the routine until completion and asks for the next one.
Discussion. To perform a particular learning task compe-
tently, autonomously, and efficiently all four components of
the learning agent have to be tailored for the learning task.
We propose to extend the control languages to provide the
means for specifying learning task specific performance el-
ements, critics, learning elements, and problem generators.
An example problem for experience-based learning. As

our running example for the rest of the paper we will take
a simple control task that we have solved for the AGILO au-
tonomous soccer robots [5]. Our hardware platforms are pi-
oneer | robots with a standard color CCD camera as their
primary sensing device. The AGILO robots use a sophisti-
cated probabilistic state estimation mechanism to estimate
the robot’s global position on the football field both reliably
and accurately [14]. Thus in our experimental setting the
robot’s agent program gets the most probable robot position
and orientation with respect to the global football field co-
ordinate system and the robot’s rotational and translational
velocity in its percept vector.

Pioneer | robots have a simple differential drive that is
controlled by specifying the speed at which each of the
two drive wheels are to turn. The relative speed of the two
drive wheels determines the radius of the curve the robot
moves along and the absolute value of the robot’s speed.
We use an abstract interface that allows for the drive con-
trol in terms of a desired rotational and translational veloc-
ity of the robot. Thus our control signal vector is a pair of the
desired rotational and translational velocity. Steering differ-
ential drives for complex navigation tasks with high per-
formance is very difficult and therefore we will learn the
steering routine from experience. As described and justi-
fied by experimental results in our earlier work [6] we per-
form our learning tasks in a simulator with the robot dy-
namics learned from the real physical robots.
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Figure 3. Visualization of state variables

As the control task we consider the task of navigating
from a given start pose (position and orientation) of the
robot to a goal pose. According to our objective of combin-
ing programming with learning we solve the navigation task
using a routine that determines the shape of the path through
programmed heuristic methods combined with learned sub-
tasks for trajectory following. To determine the shape of the
path we have heuristic rules for setting control points and
compute a Bezier curve from the start to the end state con-
strained by the control points. The programmed part selects
an intermediate target point on the Bezier curve that is vis-



ible and moderately close. This process is shown in figure
3, where the intermediate points of the Bezier curve are de-
picted as triangles.

The routines for approaching the next intermediate target
point are to be acquired through experience-based learning.
The basic idea for learning the approach routine is to let the
robot drive all kinds of simple curves: narrow curves and
wide curves and those with different velocities. We then se-
lect for the simple navigation tasks the most efficient expe-
riences and use these experiences to train a neural network
to be used as the intermediate target approach routine.

For the implementation of the agent program we use the
reactive robot control/plan language RPL [9], which we will
extend to support experience-based learning. RPL has been
successfully used by high-level controllers of real-world
robotic agents including autonomous tourguide robots [3]
and robot office courier applications [4].

RPL (Reactive Plan Language) [9] is a very expressive
high-level robot control language. It provides conditionals,
loops, program variables, processes, and subroutines as well
as high-level constructs (interrupts, monitors) for synchro-
nizing parallel actions. To make plans reactive and robust, it
incorporates sensing and monitoring actions, and reactions
triggered by observed events.

There are two more features that make RPL suitable for
the implementation of learning robotic agents. First, the RPL
programs are represented at execution time as plans: con-
trol programs that cannot only be executed but also rea-
soned about and modified. This feature facilitates the op-
eration of the learning element by explicitly representing
the code pieces to be learned and adapted. Second, RPL pro-
vides a macro mechanism that we use to introduce new con-
trol structures needed for experience-based learning.

3.1. Specifying the Dynamic System M odel

A common problem in the robot controllers is the in-
consistent naming of program variables that store physical
quantities. Thus, the first extension to RPL that we make
is not specific to learning but equally useful in many other
aspects of autonomous robot control: we require that pro-
grammers explicitly specify state variables and their physi-
cal meanings.

Below comes the specification of some state variables,
the percept and control signal vector. Consider our dynamic
system model depicted in figure 1 for reference. State vari-
ables are represented in the control system as representa-
tional units with the following components: the name of the
state variable which has to be unique within the control sys-
tem, the physical meaning of its values, its orientation, i.e.,
if the variable denotes a vector it specifies the direction of

the vector, and the unit of measurement of the variable val-
ues and a declaration of whether the variable is observable
and/or controllable.

declare state vars

x position(robot)  dim: (x) unit: m observable
y position(robot) dim: (y) unit: m observable
3 position(robot) dim: (@) unit: degrees observable
position position(robot)  dim: (x, y) unit: m, m observable

pose position(robot) dim: (x,y, @) nit: m, m, degrees observable
Viranslation Velocity(robot)  dim: (Vi anclation) Unit: m/s observable
Vrotation velocity(robot) dim: (Vyotation unit: degrees/s observable
command(robot) dim: (cyanglation? unit: m/s

command(robot)  dim: {c, unit: degrees/s

c

c
2.

Ctranslation
Crotation

Using the state variables declared above we can then de-

clare the percept and control signal vectors:
declare perCEpt vector <X7 Y, ¥, Viranslation Vrotation)

rotation controllable

declare control signal vector {Ciranslation s Crotation )

These specifications are much more than a more rigor-
ous form of documentation and the introduction of con-
sistent naming conventions. They are used for automati-
cally writing and parsing log files, for automatically speci-
fying database table schemata, and other tedious bookkeep-
ing work. The specifications will become even more impor-
tant as our reasoning tasks about control programs become
more complex.

3.2. Specifying an Experience

In sections 1 and 2 we have motivated and outlined the
pieces of information that have to be provided by a pro-
grammer to realize robotic agents that perform experience-
based learning. In this section we will describe the language
constructs that we introduce into RPL to specify these pieces
of information explicitly and transparently. We will start
with experiences.

Experience classes are defined using the RPL| aARN
macro def-experience-class. The parameter (learning
tasks) specifies the set of learning tasks where this class
of experiences can be used as examples to learn from. The
next parameter (featurelanguage) describes the abstract pa-
rameters in which experiences of the class are represented
for better learning performance. The specification of the ab-
straction itself is then indicated by the keyword abstraction
and is a tuple or a mapping from one tuple into another
one. Each tuple element must be either a state variable or
a feature of the abstract feature language. The distribution
of experiences that should be acquired through active col-
lection of experiences is then specified as the parameter
(distribution). In addition, the programmer has to provide
methods for the recognition and the active acquisition of ex-
periences. Two more methods are generated automatically
from the definition of the abstract experience: the method
for abstracting raw experiences and the method for storing
episodes in the episode database.

def-experience-class nav experience
learning tasks (learning tasks)

with-feature-language (feature language)
abstraction (abstraction)

distribution (distribution)
methods (detect-method), {collect-method)




To show how the different parameters of the experience
class are specified we use the simple learning task we have
specified in section 2.

Let us first specify the episode recognition routine. Es-
sentially this method defines the conditions that indicate
that an episode starts, terminates, and that the physical ac-
tion has failed. In the example below the method is param-
eterized with the pose that the robot should start with and
the orientation of the robot that should terminate the expe-
rience. Thus the experience should start when the robot has
reached the starting position and end if the orientation has
reached the value @enq. We have two kinds of failures: the
robot might not finish the experience within the given time
resources and second the robot moved out of bounds. In the
first case the collection process is aborted in the second case
it is to be retried with a different starting position.

method detect nav experiences (Xstart, Ystart; Pstart s Pend)
start-cond z = Xstart A Y = Ystart A @ = Pstart
end-cond ¢ = QYend
failure-conds if |z| > fieldsizey throw out-of-bounds
if time > tmax  throw time-out
failure-handlers catch out-of-bounds do restart
catch time-out do abort

Figure 4. Visualization of features

As the next component of our experience class we spec-
ify the language for abstracting experiences. Here, we name
new features and specify how they are to be computed from
the state variables. The features we have defined for our ex-
ample problem are illustrated in figure 4.

define feature language nav feature language
features

d <« \/(:cgm — Tcurrent )2 + (Ygoal — Yeurrent )
Tgoal — zcurrent)
Ygoal — Ycurrent
The abstract experience is then a tuple that contains only
state variables and features from the feature language. In
our case the abstraction is

abstraction nav abstraction
d x Y0 — Ctranslation X Crotation

The collect method is a piece of an RPL plan that gener-
ates the physical actions needed for the collection of a sin-
gle experience. Given the starting position and the desired
rotational and translational velocities of the robot as param-
eters the RPL plan first navigates to the starting position and
then moves with the specified velocities.

method collect nav experiences

rpl-procedure
seq (setup-rpl-proc)
{control-rpl-proc)

$o

Qcurrent — arctan (

Finally, we specify the distribution of the experiences to
be collected for learning our control task. It is often useful
to specify more than one distribution, in order to try several
combinations of experiences later on. Therefore we define
the relevant parameters for the distribution first.
specify distribution parameters nav distribution

(X, ¥, )start: constant (-5.0, -2.5, 0.0)

©end" constant 90.0

rotation: range (1.0, 180.0)

translation: range (0.0, 1.0)

Now we can define different distributions by setting the
values of the non-constant parameters. The values of a pa-
rameters can be obtained systematically, randomly or by a
list of fixed values. If not stated otherwise, the parameters
are assumed to be independent, thus the overall distribution
is the cross product of their values. We can however spec-
ify distributions over combinations of parameters as well.
declare distribution medium curves of type nav distribution

rotation:  systematic range (20.0, 60.0) step 1.0
translation: systematic range (0.2, 1.0) step 0.05

3.3. Specifying Control and Learning Tasks

In the last section we have described how the robot can
make the experiences that it needs for learning. Now we
look at control tasks, entities in our control system that can
be learned and at learning elements, the elements that per-
form the learning tasks. A control task is the representation
of a skill the robot should possess, for example going to the
ball or scoring a goal. Control tasks can be realized in dif-
ferent ways — the control routines.

In our running example we have already encountered a
small hierarchy of control tasks and routines. The control
task of navigation with a specified goal orientation is spe-
cialized into a navigation routine using Bezier curves (fig-
ure 3). For following the Bezier curve we introduce a sec-
ond control task, whose specification is given below.

control task navigate without orientation

goal specification z, y
control process specification

achievable((z, y)) = active
—achievable({z, y)) = fail
(z,y) = (Xgoal Ygoal) = Succeed

control routines variant 1, variant 2, variant 3

We have simplified the navigation task by dropping the
goal orientation. Furthermore we specify the failure and
success conditions of the task. For the simple navigation
task the robot will learn three alternative control routines,
which are described in section 4. To do so, we have to spec-
ify a learning problem.

learning problem variant 1
experiences nav experiences 1

learning element nav learning element

A learning problem consists of two parts: the experiences
and a learning element. In our example the learning ele-
ment remains the same for all three control routines, only
the experiences are altered. The learning element uses the




learning system SNNS (Stuttgart Neural Network Simula-
tor). The number of input and output nodes is deduced from
the abstraction specified in section 3.2. The remaining pa-
rameters are set by the user as follows:

learning element nav learning element

use system SNNS

with parameters
hidden units: 5

cycles: 50
learning function: Rprop

4. Learning Navigation Routines

After having introduced our language extensions we will
now show how the constructs are transformed into exe-
cutable code and that the constructs make indeed important
aspects of the learning tasks transparent and programmable.

L
PN

Figure 5. Exploited symmetries

To illustrate the advantages of specifying the learning
problem explicitly, we compare three variants of the learn-
ing problem introduced in section 2. The variants use the
same mechanisms for collecting experiences and learning,
but differ with respect to the experience sets they use. The
experience sets are varied along two dimensions: the expe-
rience abstraction and the distribution. One of the abstrac-
tions uses a reflection factor that exploits symmetries with
respect to reflections along the x-axis, while the other one
does not (as illustrated in figure 5). Our second distribution
is a subset of the first one omitting examples with low trans-
lational velocity. Thus, the distribution in section 3.2 is re-

laced by the following one:

declare distribution medium curves fast of type nav distribution

rotation:  systematic range (20.0, 60.0) step 1.0
translation: systematic range (0.6, 1.0) step 0.05

So we have three variants of experience sets. The first
doesn’t exploit any symmetry-axis and uses the original dis-
tribution. In the second variant symmetries are exploited by
the abstraction and the distribution remains as in the first
variant. For further improvement the third variant uses a dis-
tribution with fewer slow experiences.

Learning Steps. The first step in a learning process is the
acquisition of experiences. The (detect method) specifies
that part of the critic that monitors the collection of data.
The (detect method) is translated into a piece of RPL code
that is wrapped around the control program. The wrapped
code is a monitoring procedure that runs concurrently with
the active program. The monitor waits until the starting con-
dition of the experience becomes true. Then the monitor
starts recording the experience and waits for the end con-
dition of the experience. After the end the raw experience is

stored into the episode database. An excerpt of the experi-
ence log is shown below.

(start-raw-exp :EXP-CLASS nav-experience :EXP-ID 5)
(Percept :T 1:X-4.3:Y -2.4 :p 0.85 :V¢y 0.73 :Vpot 0.07)
(Command :TRANSLATION 0.75 :ROTATION 17.0 :KICK L
(Percept :T 2 :X -4.25:Y -2.49 1 0.96 :V¢p 0.72 Vot 2.17)
(Command :TRANSLATION 0.75 :ROTATION 17.0 :KICK L

(Command :TRANSLATION 0.75 :ROTATION 17.0 :KICK _L)
(Percept :T 8 :X -3.83:Y -2.48 1 2.19 :V¢p 0.72 Vot 2.04)
(end-raw-exp :SUCCESS)

If the critic classifies the experience as informative (in
our case it does, because the collection has succeeded), it
is accepted as a raw experience and stored in the experi-
ence data base by the procedure (store method). The next
step is to transform raw experiences into abstract ones. The
(abstract method) for performing the transformation is gen-
erated automatically from the given feature language. The
database entry of abstract experiences extracted from the
raw experience given above would look like this:

abstract-navigation-experience

id d Yo Ctranslation Crotation
1 | 0.071310 | 131.981 0.75 17.0
2 | 0.142221 | 132.061 0.75 17.0
3 | 0.070911 | 125.679 0.75 17.0

Figure 6 shows the resulting distribution of experiences.

Having acquired the experiences the robot starts the actual
learning process. This is simply done by calling a (learn
method), which is provided by the learning system, using
the parameters given in the learning task specification. The
learn method also generates an executable function that can
be called by the robot’s control program.
Results. The three simple navigation routines were learned
automatically and then used to navigate by following Bezier
curves. The quality of the navigation routines was mea-
sured in terms of accuracy and speed. Figure 8 (a) shows the
derivation of the goal angle. To compare the time needed to
reach a goal position, the derivation from the average time
of the three variants is depicted in figure 8 (b). Higher val-
ues denote less time for a navigation task.

Apart from the statistical evaluation we plotted the
course of the robot using each of the navigation routines

Viranslation

Figure 6. Specified experience distribution.




Figure 7. Performance of navigation routine: (a) Variant 1; (b) Variant 2; (c) Variant 3
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Figure 8. (a) Accuracy; (b) Time Statistics

in order to see possible deficits (figure 7). The little tri-
angles depict the Bezier curve that is to be followed, the
robot’s translational velocity is represented by the length of
a line orthogonal to the orientation of the robot and the rota-
tional velocity is shown by the tint of the colors. It is obvi-
ous from all three methods of evaluation that the first vari-
ant does very badly. The routine hardly follows the Bezier
curve. The goal position is often reached, the orientation
however is reached by mere chance. The navigation is also
very slow, because of long detours. The small alteration in
the state space of the second variant has a considerable ef-
fect on the performance. This is not surprising, since the
state space is cut in half by exploiting reflection invariances.
The Bezier curve is usually followed easily, wherefore the
goal position and orientation are reached without problems.
With the transition to the third variant the enhancement of
the performance is not as drastic, but still an improvement
is perceptible. The goal is usually reached faster with com-
parable, sometimes slightly better, accuracy.

Discussion. There are several advantages of the approach
we propose. Since experience distributions are objects we
can maintain alternative distributions concurrently during
the development of the controller. In particular we can gen-
erate distributions from the log data of games and thereby
for example acquire opponent specific experience distribu-
tions. Another big advantage is the storage of collected ex-
periences in databases. We can selectively query specializa-
tions of navigation tasks and learn specific navigation rou-
tines or we can delete experiences where the robot didn’t
perform well. The same holds for the representation of dif-
ferent feature languages. Another remark we would like to
make is that our experience-based learning controllers are
fully operational within the AGILO controllers.

5. Related Work

Several programming languages have been proposed and
extended to provide learning capabilities. Thrun [17] has
proposed CES, a C++ software library that provides proba-
bilistic inference mechanisms and function approximators.
Unlike our approach a main objective of CES is the compact
implementation of robot controllers. CLIP/CLASP [1] is a
macro extension of LISP, which supports the collection of
experimental data and its empirical analysis. Programmable
Reinforcement Learning Agents [2] is a language that com-
bines reinforcement learning with constructs from program-
ming languages such as loops, parameterization, aborts, in-
terrupts, and memory variables. This leads to a full expres-
sive programming language, which allows designers to el-
egantly integrate actions that are constrained using prior
knowledge with actions that have to be learned. None of
these projects addresses the problem of acquiring and se-
lecting the data used for learning. This leads to a poorer
performance of the learning process.

More complex tasks have been dealt with in the
RoboCup domain. In the simulation league, reinforcement
learning techniques are being scaled to deal with the much
larger state spaces. An example is [15], which uses SARSA-
learning and linear tile-coding, along with various adapta-
tions such as predefined hand-coded skills and a reduction
in the number of players, to learn a Keep-away task. Work
described in [16] focuses on stronger integration of control
and perception, with a hierarchical learning approach, ap-
plied to the complex tasks in the middle-size league. This
integration leads to good results. Although both works solve
complex learning tasks, they do not integrate the learning
mechanisms into the programs.

Williams [11] has applied model-based reasoning tech-
niques to the control of an autonomous spacecraft. In his
case the models are component models of the electrical sys-
tem where the system interactions are relatively fixed and
known a priori. As the applications he realizes are high-risk
and have high reliability constraints, learning of control rou-
tines is not extensively investigated in this approach.



6. Conclusions

In this paper, we have extended the reactive plan lan-
guage RPL with constructs that support experience-based
robot learning. In the extended language entities such as ex-
perience classes, control tasks, learning problems, and data
collection strategies can be represented explicitly and trans-
parently, and made executable. In the learning and execu-
tion phase of the extended control language, these entities
are first class objects that control programs cannot only ex-
ecute but also reason about and manipulate. These capabil-
ities enable robot learning systems to dynamically reorga-
nize state spaces and to incorporate user advice into the for-
mulation of learning problems. We have also shown how the
constructs are made executable and that the adequate speci-
fication of these entities gives us very powerful mechanisms
for the realization of high performance robot learning sys-
tems. The extensions that we have presented are expressive
enough to rationally reconstruct substantial parts of an ex-
isting autonomous robot soccer control system — the AG-
ILO robot controller.

In this paper we have presented preliminary results and
addressed only a restricted scope of learning mechanisms.
Additional complex control systems need to be imple-
mented using our approach and the conciseness and expres-
sivity of our constructs need to be assessed and analyzed.
We are just starting to incorporate optimizing learning tech-
niques such as reinforcement learning into our approach.

We see the main impact of our framework along two
important dimensions. From a software engineering per-
spective, the language extensions allow for transparent im-
plementation of learning steps and abstract representation
of complex physical systems. These aspects are typically
not adequately addressed in current control systems, which
makes them hard to understand and adapt to new require-
ments and conditions. The second dimension, which we
find much more exciting, is the use of the framework as
a tool for investigating more general and powerful com-
putational models of autonomous robot learning. The pro-
grammability of learning systems, the modifiability of state
representations, the possibility of reparameterizing learn-
ing systems, and the executability of learning specifications
within the framework enables us to solve complex robot
learning tasks by automatic programs without human in-
teraction. The framework thereby enables us to investigate
adaptive robot control systems that can autonomously ac-
quire very sophisticated skills and competent task control
mechanisms for a variety of performance tasks.
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