Performance of a Server Cluster with Parallel Processing and Randomized Load Balancing

T. Bonald and C. Comte

April 22, 2016

Abstract

We consider a cluster of servers where each incoming job is assigned d servers chosen uniformly at random, for some fixed $d \geq 2$. Jobs are served in parallel and the resource allocation is balanced fairness. We provide a recursive formula for computing the exact mean service rate of each job. The complexity is polynomial in the number of servers.

1 Model

We consider a cluster of S servers, each with service rate μ. Jobs arrive according to a Poisson process with intensity λ. Each incoming job is assigned d servers chosen uniformly at random, for some fixed $d \geq 2$. Each job is processed in parallel by its assigned servers, the overall service capacity being allocated according to balanced fairness [1].

There are $N=\binom{S}{d}$ classes of jobs, defined by the assigned servers. Let $\mathcal{I}=\{1, \ldots, N\}$ be the set of classes. We denote by $\mathcal{S}_{i} \subset\{1, \ldots, S\}$ the set of servers assigned to each job of class i and, for each set $\mathcal{A} \subset \mathcal{I}$ of classes, we denote by $\mathcal{S}(\mathcal{A})$ the set of servers assigned to jobs whose class belongs to \mathcal{A}. Let $x=\left(x_{i}\right)_{i \in \mathcal{I}}$ be the network state, where x_{i} is the number of ongoing class- i jobs. We denote by $\phi_{i}(x)$ the total service rate of class- i jobs in state x. The corresponding vector lies in the capacity set:

$$
\mathcal{C}=\left\{\phi \in \mathbb{R}_{+}^{N}: \forall \mathcal{A} \subset \mathcal{I}, \quad \sum_{i \in \mathcal{A}} \phi_{i} \leq \mu|\mathcal{S}(\mathcal{A})|\right\}
$$

where $|\mathcal{A}|$ is the cardinal of the set \mathcal{A}. The capacity set is a polymatroid, and it follows from [3] that balanced fairness is Pareto-efficient. Specifically,

$$
\forall i \in \mathcal{I}, \quad \phi_{i}(x)= \begin{cases}\frac{\Phi\left(x-e_{i}\right)}{\Phi(x)} & \text { if } x_{i}>0 \\ 0 & \text { otherwise }\end{cases}
$$

where the function Φ is defined by the recursion $\Phi(0)=1$ and, using the notation $\mathcal{A}_{x}=\left\{i \in \mathcal{I}: x_{i}>0\right\}$,

$$
\begin{equation*}
\forall x \in \mathbb{N}^{N} \backslash\{0\}, \quad \Phi(x)=\frac{\sum_{i \in \mathcal{A}_{x}} \Phi\left(x-e_{i}\right)}{\mu\left|\mathcal{S}\left(\mathcal{A}_{x}\right)\right|} \tag{1}
\end{equation*}
$$

Under the stability condition $\lambda<S \mu$, the stationary distribution of the system state is given by

$$
\begin{equation*}
\forall x \in \mathbb{N}^{N}, \quad \pi(x)=\pi(0) \Phi(x)\left(\frac{\lambda}{N}\right)^{|x|} \tag{2}
\end{equation*}
$$

where $|x|=\sum_{i \in \mathcal{I}} x_{i}$ is the total number of jobs. This stationary distribution is insensitive to the job size distribution beyond the mean.

2 Performance

We are interested in the mean service rate, defined by

$$
\gamma=\frac{\mathrm{E}\left(\sum_{i \in \mathcal{I}} \phi_{i}(X)\right)}{\mathrm{E}\left(\sum_{i \in \mathcal{I}} X_{i}\right)}
$$

where X is a random variable distributed according to the stationary distribution π. Observe that, by symmetry, γ is the mean service rate of any job (whatever its class), and that $\gamma \leq d \mu$. Moreover, by work conservation,

$$
\begin{equation*}
\gamma=\frac{\lambda}{\mathrm{E}\left(\sum_{i \in \mathcal{I}} X_{i}\right)} \tag{3}
\end{equation*}
$$

In particular, it follows from Little's law that $1 / \gamma$ in the mean job duration.
There is no explicit formula for computing γ with a low complexity. In particular, the recursive formula of de Veciana and Shah [3] does not apply because the capacity set is not a symmetric polymatroid. We use the recent results of Gardner et. al. [2] to derive an explicit recursive formula, whose complexity is linear in $S N$ (thus polynomial in S). We denote the system load by

$$
\rho=\frac{\lambda}{S \mu}
$$

Proposition 1 We have $\gamma=G / F$ with

$$
G=\sum_{n=0}^{N} \sum_{m=0}^{S} G_{n, m} \quad \text { and } \quad F=\sum_{n=0}^{N} \sum_{m=0}^{S} F_{n, m}
$$

where $G_{n, m}$ and $F_{n, m}$ are given by the recursions $G_{0,0}=1, F_{0,0}=0$,
$G_{n, m}=\frac{\frac{\rho S}{N}}{m-n \frac{\rho S}{N}}\left(\left[\binom{m}{d}-n+1\right] G_{n-1, m}+\sum_{r=1}^{\min (d, m)}\binom{S-m+r}{r}\binom{m-r}{d-r} G_{n-1, m-r}\right)$,
$F_{n, m}=\frac{\frac{\rho S}{N}}{m-n \frac{\rho S}{N}}\left(\left[\binom{m}{d}-n+1\right] F_{n-1, m}+\sum_{r=1}^{\min (d, m)}\binom{S-m+r}{r}\binom{m-r}{d-r} F_{n-1, m-r}\right)+\frac{1}{\lambda} \frac{m}{m-n \frac{\rho S}{N}} G_{n, m}$
if $d \leq m \leq S$ and $\left\lceil\frac{m}{d}\right\rceil \leq n \leq\binom{ m}{d}, G_{n, m}=F_{n, m}=0$ otherwise.
Proof. By symmetry, we have for any $i \in \mathcal{I}$,

$$
\gamma=\frac{\lambda / N}{\mathrm{E}\left(X_{i}\right)}
$$

Let

$$
G\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{x \in \mathbb{N}^{N}} \Phi(x) \prod_{i \in \mathcal{I}} \lambda_{i}^{x_{i}}
$$

and

$$
G=G\left(\frac{\lambda}{N}, \ldots, \frac{\lambda}{N}\right)
$$

In view of (2), we have $\gamma=G / F$, with

$$
F=\frac{\partial G}{\partial \lambda_{i}}\left(\frac{\lambda}{N}, \ldots, \frac{\lambda}{N}\right)
$$

We first prove the recursion for computing G. For any $\mathcal{A} \subset \mathcal{I}$, let

$$
G_{\mathcal{A}}\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\sum_{x \in \mathbb{N}^{N}: \mathcal{A}_{x}=\mathcal{A}} \Phi(x) \prod_{i \in \mathcal{I}} \lambda_{i}^{x_{i}}
$$

and

$$
G_{\mathcal{A}}=G_{\mathcal{A}}\left(\frac{\lambda}{N}, \ldots, \frac{\lambda}{N}\right)
$$

Observe that

$$
G=\sum_{\mathcal{A} \subset \mathcal{I}} G_{\mathcal{A}}
$$

Now let $\mathcal{S}(\mathcal{A})$ be the set of servers that can serve jobs of classes in \mathcal{A}. Let $n=|\mathcal{A}|$ be the number of active classes and $m=|\mathcal{S}(\mathcal{A})|$ be the number of busy servers. In view of 11 , we have

$$
\begin{equation*}
G_{\mathcal{A}}=\frac{\sum_{i \in \mathcal{A}} \frac{\lambda}{N} G_{\mathcal{A} \backslash\{i\}}}{m \mu-n \frac{\lambda}{N}} \tag{4}
\end{equation*}
$$

For all $n=0,1, \ldots, N$ and $m=0,1, \ldots, S$, let

$$
G_{n, m}=\sum_{\substack{\mathcal{A} \subset \mathcal{I} \\|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} G_{\mathcal{A}}
$$

Observe that

$$
G=\sum_{n=0}^{N} \sum_{m=0}^{S} G_{n, m}
$$

Moreover, $G_{0,0}=1$ and $G_{n, m}=0$ unless $d \leq m \leq S$ and $\left\lceil\frac{m}{d}\right\rceil \leq n \leq\binom{ m}{d}$. For such a pair n, m, we deduce from (4) that

$$
\begin{equation*}
G_{n, m}=\frac{\frac{\rho S}{N}}{m-n \frac{\rho S}{N}} \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A} \backslash\{i\}} \tag{5}
\end{equation*}
$$

We can rewrite the sum as follows:

$$
\begin{aligned}
& \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\
|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A} \backslash\{i\}}=\sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A},|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} G_{\mathcal{A} \backslash\{i\}}, \\
&=\sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{B} \subset \mathcal{I}, i \notin \mathcal{B},|\mathcal{B}|=n-1,|\mathcal{S}(\mathcal{B} \cup\{i\})|=m}} G_{\mathcal{B}}, \\
&=\sum_{r=0}^{\min (d, m)} \sum_{\substack{\mathcal{B} \subset \mathcal{I},|\mathcal{B}|=n-1,}}^{|\mathcal{S}(\mathcal{B})|=m-r} \mid \\
& \sum_{\substack{i \in \mathcal{S}(\mathcal{B} \cup\{i\}) \mid=m}} G_{\mathcal{B}}, \\
&=\left[\binom{m}{d}-n+1\right] G_{n-1, m}+\sum_{r=1}^{\min (d, m)}\binom{S-m+r}{r}\binom{m-r}{d-r} G_{n-1, m-r},
\end{aligned}
$$

which is the announced result.
We now show the recursion for F. For any $\mathcal{A} \subset \mathcal{I}$ and $i \in \mathcal{I}$, let

$$
F_{\mathcal{A}}=\frac{\partial G_{\mathcal{A}}}{\partial \lambda_{i}}\left(\frac{\lambda}{N}, \ldots, \frac{\lambda}{N}\right)
$$

Observe that

$$
F=\sum_{\mathcal{A} \subset \mathcal{I}} F_{\mathcal{A}}
$$

For all $n=0,1, \ldots, N$ and $m=0,1, \ldots, S$, we can define by symmetry,

$$
F_{n, m}=\sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A},|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} F_{\mathcal{A}}=\frac{1}{N} \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A},|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} F_{\mathcal{A}}
$$

and we have

$$
F=\sum_{n=0}^{N} \sum_{m=0}^{S} F_{n, m}
$$

Similarly, $F_{0,0}=0$ and $F_{n, m}=0$ unless $d \leq m \leq S$ and $\left\lceil\frac{m}{d}\right\rceil \leq n \leq\binom{ m}{d}$.
For any $i \in \mathcal{I}$ and $\mathcal{A} \subset \mathcal{I}$ with $|\mathcal{A}|=n$ and $|\mathcal{S}(\mathcal{A})|=m$, we have

$$
F_{\mathcal{A}}=\frac{1}{\mu\left(m-n \frac{S \rho}{N}\right)}\left\{G_{\mathcal{A}}+G_{\mathcal{A} \backslash\{i\}}+\frac{\lambda}{N} \sum_{j \in \mathcal{A}, j \neq i} F_{\mathcal{A} \backslash\{j\}}\right\}
$$

so that

$$
\begin{align*}
& F_{n, m}=\frac{1}{N} \frac{1}{\mu\left(m-n \frac{\rho S}{N}\right)}\left\{\sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\
|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} G_{\mathcal{A}}+\sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\
|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} G_{\mathcal{A} \backslash\{i\}}\right. \\
&\left.+\frac{\lambda}{N} \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\
|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} \sum_{j \in \mathcal{A}, j \neq i} F_{\mathcal{A} \backslash\{j\}} \cdot\right\} \tag{6}
\end{align*}
$$

The first term of the sum is

$$
\sum_{\substack{\mathcal{A} \subset \mathcal{I} \\|\mathcal{A}|=n \\|\mathcal{S}(\mathcal{A})|=m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A}}=n \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\|\mathcal{A}|=n \\|\mathcal{S}(\mathcal{A})|=m}} G_{\mathcal{A}}=n G_{n, m}
$$

By equation (5), the second term of the sum is

$$
\sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} G_{\mathcal{A} \backslash\{i\}}=\sum_{\substack{\mathcal{A} \subset \mathcal{I} \\|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A} \backslash\{i\}}=\frac{m-n \frac{S \rho}{N}}{\frac{\rho S}{N}} G_{n, m}
$$

Thus the first two terms of equation (6) are equal to

$$
n G_{n, m}+\frac{m-n \frac{\rho S}{N}}{\frac{\rho S}{N}} G_{n, m}=\frac{m N}{\rho S} G_{n, m}
$$

Now the third term of (6) is

$$
\begin{aligned}
& \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\
|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} \sum_{j \in \mathcal{A}, j \neq i} F_{\mathcal{A} \backslash\{j\}}, \\
& =\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}, j \neq i} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i, j \in \mathcal{A} \\
|\mathcal{A}|=n,|\mathcal{S}(\mathcal{A})|=m}} F_{\mathcal{A} \backslash\{j\}}, \\
& =\sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}, j \neq i} \sum_{\substack{\mathcal{B} \subset \mathcal{I}, i \in \mathcal{B}, j \notin \mathcal{B} \\
|\mathcal{B}|=n-1, \mid \mathcal{S}(\mathcal{B} \cup j\}) \mid=m}} F_{\mathcal{B}}, \\
& =\sum_{r=0}^{\min (d, m)} \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{B} \subset \mathcal{I}, i \in \mathcal{B} \\
|\mathcal{B}|=n-1,|\mathcal{S}(\mathcal{B})|=m-r}} \sum_{j \in \mathcal{I} \backslash \mathcal{B},|\mathcal{S}(\mathcal{B} \cup\{j\})|=m} F_{\mathcal{B}}, \\
& =\sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{B} \subset \mathcal{I}, i \in \mathcal{B} \\
|\mathcal{B}|=n-1, \mathcal{S}(\mathcal{B})=m}}\left[\binom{m}{d}-n+1\right] F_{\mathcal{B}}, \\
& +\sum_{r=1}^{\min (d, m)} \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{B} \subset \mathcal{I}, i \in \mathcal{B} \\
|\mathcal{B}|=n-1, \mid \mathcal{S}(\mathcal{B} \mid=m-r}}\binom{m-r}{d-r}\binom{S-m+r}{r} F_{\mathcal{B}}, \\
& =N\left[\binom{m}{d}-n+1\right] F_{n-1, m}+N \sum_{r=1}^{\min (d, m)}\binom{m-r}{d-r}\binom{S-m+r}{r} F_{n-1, m-r} .
\end{aligned}
$$

Summing the two parts of equation (6) gives the announced result.

References

[1] T. Bonald, L. Massoulié, A. Proutière, and J. Virtamo. A queueing analysis of max-min fairness, proportional fairness and balanced fairness. Queueing Syst., 53(1-2):65-84, 2006.
[2] K. Gardner, S. Zbarsky, M. Harchol-Balter, and A. Scheller-Wolf. Analyzing response time in the redundancy-d system. Technical report, Technical Report CMU-CS-15-141, 2015.
[3] V. Shah and G. de Veciana. Performance evaluation and asymptotics for content delivery networks. In Proceedings of IEEE Infocom. IEEE, 2014.

