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Abstract

We consider a cluster of servers where each incoming job is assigned d servers chosen uniformly at
random, for some fixed d > 2. Jobs are served in parallel and the resource allocation is balanced fairness.
We provide a recursive formula for computing the exact mean service rate of each job. The complexity
is polynomial in the number of servers.

1 Model

We consider a cluster of S servers, each with service rate u. Jobs arrive according to a Poisson process with
intensity A\. Each incoming job is assigned d servers chosen uniformly at random, for some fixed d > 2. Each
job is processed in parallel by its assigned servers, the overall service capacity being allocated according to
balanced fairness [1].

There are N = (i) classes of jobs, defined by the assigned servers. Let Z = {1,..., N} be the set of
classes. We denote by S; C {1,...,S} the set of servers assigned to each job of class i and, for each set A C Z
of classes, we denote by S(.A) the set of servers assigned to jobs whose class belongs to A. Let © = (z;);ez
be the network state, where z; is the number of ongoing class-i jobs. We denote by ¢;(x) the total service
rate of class-i jobs in state . The corresponding vector lies in the capacity set:

C= {¢eRf :VACI, Z¢i<ﬂ|8(~’4)|}ﬂ
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where |A| is the cardinal of the set A. The capacity set is a polymatroid, and it follows from [3] that balanced
fairness is Pareto-efficient. Specifically,

P(x—e;) )
Viel, ¢i(z)= { () if z; >0,

0 otherwise,

where the function ® is defined by the recursion ®(0) = 1 and, using the notation A, = {i € Z : z; > 0},

S D)
S @

Ve € NV\ {0}, ®(z)=
Under the stability condition A\ < Spu, the stationary distribution of the system state is given by
Ve e NV 7(z) = 7(0)®(x) <) , (2)

where |z| = >, 7 z; is the total number of jobs. This stationary distribution is insensitive to the job size
distribution beyond the mean.



2 Performance

We are interested in the mean service rate, defined by

BT 6(X))
E(Ziel’ Xi) ,

where X is a random variable distributed according to the stationary distribution w. Observe that, by
symmetry, 7 is the mean service rate of any job (whatever its class), and that v < du. Moreover, by work
conservation,

P
E(Ziez X?)
In particular, it follows from Little’s law that 1/ in the mean job duration.
There is no explicit formula for computing v with a low complexity. In particular, the recursive formula
of de Veciana and Shah [3] does not apply because the capacity set is not a symmetric polymatroid. We use
the recent results of Gardner et. al. [2] to derive an explicit recursive formula, whose complexity is linear in
SN (thus polynomial in S). We denote the system load by
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where G, rm and F, ., are given by the recursions Goo =1, Fpo =0,
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ifd<m<S and (%1 <n< (73), Gnm = F,;m = 0 otherwise.

Proof. By symmetry, we have for any i € Z,
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In view of (2)), we have v = G/F, with




We first prove the recursion for computing GG. For any A C Z, let

Galha, - aw) = > @) A

zeNN: A=A i€l
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and

Observe that

Now let S(A) be the set of servers that can serve jobs of classes in A. Let n = |A| be the number of active
classes and m = |S(A)| be the number of busy servers. In view of (I)), we have

A
L AG
G = ieAN A\ )
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Foralln=0,1,...,Nand m=0,1,...,5, let

Grm = > G 4.
ACZT
[Al=n,|S(A)[=m
Observe that
N S
G=> > Gum
n=0m=0

Moreover, Goo =1 and Gy, ,,, = 0 unless d < m < § and [%ﬂ <n< (ZL) For such a pair n,m, we deduce
from that
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We can rewrite the sum as follows:

Z Z Gagiy = Z Z Ga\(i}s
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[Al=n,|S(A)|=m |Al=n,|S(A)|=m
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min(d,m)
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which is the announced result.

We now show the recursion for F'. For any A C Z and i € Z, let

F _9Ga (A A
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Observe that

F=Y Fa

ACT

Foralln=0,1,...,N and m=0,1,...,S5, we can define by symmetry,

Fn,m: Z FA:%Z Z Fu
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and we have
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Similarly, £p,0 = 0 and F, ,n, = 0 unless d <m < S and (%1 <n< (TC’Z)
For any ¢ € 7 and A C T with |A| = n and |S(A)| = m, we have

Fa=——725 (04t Gau + > Fa
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so that
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The first term of the sum is
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By equation , the second term of the sum is
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Thus the first two terms of equation @ are equal to
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Now the third term of @ is
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Summing the two parts of equation @ gives the announced result. |
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