Performance of a Server Cluster with Parallel Processing and Randomized Load Balancing

T. Bonald and C. Comte

April 22, 2016

Abstract

We consider a cluster of servers where each incoming job is assigned d servers chosen uniformly at random, for some fixed $d \ge 2$. Jobs are served in parallel and the resource allocation is balanced fairness. We provide a recursive formula for computing the exact mean service rate of each job. The complexity is polynomial in the number of servers.

1 Model

We consider a cluster of S servers, each with service rate μ . Jobs arrive according to a Poisson process with intensity λ . Each incoming job is assigned d servers chosen uniformly at random, for some fixed $d \ge 2$. Each job is processed in parallel by its assigned servers, the overall service capacity being allocated according to balanced fairness [1].

There are $N = \binom{S}{d}$ classes of jobs, defined by the assigned servers. Let $\mathcal{I} = \{1, \dots, N\}$ be the set of classes. We denote by $\mathcal{S}_i \subset \{1, \dots, S\}$ the set of servers assigned to each job of class i and, for each set $\mathcal{A} \subset \mathcal{I}$ of classes, we denote by $\mathcal{S}(\mathcal{A})$ the set of servers assigned to jobs whose class belongs to \mathcal{A} . Let $x = (x_i)_{i \in \mathcal{I}}$ be the network state, where x_i is the number of ongoing class-i jobs. We denote by $\phi_i(x)$ the total service rate of class-i jobs in state x. The corresponding vector lies in the capacity set:

$$C = \left\{ \phi \in \mathbb{R}^{N}_{+} : \forall \mathcal{A} \subset \mathcal{I}, \quad \sum_{i \in \mathcal{A}} \phi_{i} \leq \mu |\mathcal{S}(\mathcal{A})| \right\},$$

where $|\mathcal{A}|$ is the cardinal of the set \mathcal{A} . The capacity set is a polymatroid, and it follows from [3] that balanced fairness is Pareto-efficient. Specifically,

$$\forall i \in \mathcal{I}, \quad \phi_i(x) = \begin{cases} \frac{\Phi(x - e_i)}{\Phi(x)} & \text{if } x_i > 0, \\ 0 & \text{otherwise,} \end{cases}$$

where the function Φ is defined by the recursion $\Phi(0) = 1$ and, using the notation $\mathcal{A}_x = \{i \in \mathcal{I} : x_i > 0\},\$

$$\forall x \in \mathbb{N}^N \setminus \{0\}, \quad \Phi(x) = \frac{\sum_{i \in \mathcal{A}_x} \Phi(x - e_i)}{\mu |\mathcal{S}(\mathcal{A}_x)|}.$$
 (1)

Under the stability condition $\lambda < S\mu$, the stationary distribution of the system state is given by

$$\forall x \in \mathbb{N}^N, \quad \pi(x) = \pi(0)\Phi(x) \left(\frac{\lambda}{N}\right)^{|x|},$$
 (2)

where $|x| = \sum_{i \in \mathcal{I}} x_i$ is the total number of jobs. This stationary distribution is insensitive to the job size distribution beyond the mean.

2 Performance

We are interested in the mean service rate, defined by

$$\gamma = \frac{\mathrm{E}(\sum_{i \in \mathcal{I}} \phi_i(X))}{\mathrm{E}(\sum_{i \in \mathcal{I}} X_i)},$$

where X is a random variable distributed according to the stationary distribution π . Observe that, by symmetry, γ is the mean service rate of any job (whatever its class), and that $\gamma \leq d\mu$. Moreover, by work conservation,

$$\gamma = \frac{\lambda}{\mathrm{E}(\sum_{i \in \mathcal{I}} X_i)}.$$
 (3)

In particular, it follows from Little's law that $1/\gamma$ in the mean job duration.

There is no explicit formula for computing γ with a low complexity. In particular, the recursive formula of de Veciana and Shah [3] does not apply because the capacity set is *not* a symmetric polymatroid. We use the recent results of Gardner et. al. [2] to derive an explicit recursive formula, whose complexity is linear in SN (thus polynomial in S). We denote the system load by

$$\rho = \frac{\lambda}{S\mu}.$$

Proposition 1 We have $\gamma = G/F$ with

$$G = \sum_{n=0}^{N} \sum_{m=0}^{S} G_{n,m}$$
 and $F = \sum_{n=0}^{N} \sum_{m=0}^{S} F_{n,m}$,

where $G_{n,m}$ and $F_{n,m}$ are given by the recursions $G_{0,0} = 1, F_{0,0} = 0$,

$$\begin{split} G_{n,m} = & \frac{\rho S}{m - n \frac{\rho S}{N}} \left(\left[\binom{m}{d} - n + 1 \right] G_{n-1,m} + \sum_{r=1}^{\min(d,m)} \binom{S - m + r}{r} \binom{m - r}{d - r} G_{n-1,m-r} \right), \\ F_{n,m} = & \frac{\rho S}{m - n \frac{\rho S}{N}} \left(\left[\binom{m}{d} - n + 1 \right] F_{n-1,m} + \sum_{r=1}^{\min(d,m)} \binom{S - m + r}{r} \binom{m - r}{d - r} F_{n-1,m-r} \right) + \frac{1}{\lambda} \frac{m}{m - n \frac{\rho S}{N}} G_{n,m} \right) \end{split}$$

if $d \le m \le S$ and $\lceil \frac{m}{d} \rceil \le n \le {m \choose d}$, $G_{n,m} = F_{n,m} = 0$ otherwise.

Proof. By symmetry, we have for any $i \in \mathcal{I}$,

$$\gamma = \frac{\lambda/N}{\mathrm{E}(X_i)}.$$

Let

$$G(\lambda_1, \dots, \lambda_N) = \sum_{x \in \mathbb{N}^N} \Phi(x) \prod_{i \in \mathcal{I}} \lambda_i^{x_i}$$

and

$$G = G\left(\frac{\lambda}{N}, \dots, \frac{\lambda}{N}\right).$$

In view of (2), we have $\gamma = G/F$, with

$$F = \frac{\partial G}{\partial \lambda_i} \left(\frac{\lambda}{N}, \dots, \frac{\lambda}{N} \right).$$

We first prove the recursion for computing G. For any $A \subset \mathcal{I}$, let

$$G_{\mathcal{A}}(\lambda_1, \dots, \lambda_N) = \sum_{x \in \mathbb{N}^N : \mathcal{A}_x = \mathcal{A}} \Phi(x) \prod_{i \in \mathcal{I}} \lambda_i^{x_i}$$

and

$$G_{\mathcal{A}} = G_{\mathcal{A}}\left(\frac{\lambda}{N}, \dots, \frac{\lambda}{N}\right).$$

Observe that

$$G = \sum_{A \subset \mathcal{T}} G_{\mathcal{A}}.$$

Now let $\mathcal{S}(\mathcal{A})$ be the set of servers that can serve jobs of classes in \mathcal{A} . Let $n = |\mathcal{A}|$ be the number of active classes and $m = |\mathcal{S}(\mathcal{A})|$ be the number of busy servers. In view of (1), we have

$$G_{\mathcal{A}} = \frac{\sum_{i \in \mathcal{A}} \frac{\lambda}{N} G_{\mathcal{A} \setminus \{i\}}}{m\mu - n\frac{\lambda}{N}}.$$
 (4)

For all n = 0, 1, ..., N and m = 0, 1, ..., S, let

$$G_{n,m} = \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} G_{\mathcal{A}}.$$

Observe that

$$G = \sum_{n=0}^{N} \sum_{m=0}^{S} G_{n,m}$$

Moreover, $G_{0,0} = 1$ and $G_{n,m} = 0$ unless $d \leq m \leq S$ and $\lceil \frac{m}{d} \rceil \leq n \leq \binom{m}{d}$. For such a pair n, m, we deduce from (4) that

$$G_{n,m} = \frac{\frac{\rho S}{N}}{m - n \frac{\rho S}{N}} \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A} \setminus \{i\}}.$$
 (5)

We can rewrite the sum as follows:

$$\begin{split} \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A} \backslash \{i\}} &= \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A}, \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} G_{\mathcal{A} \backslash \{i\}}, \\ &= \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{B} \subset \mathcal{I}, i \notin \mathcal{B}, \\ |\mathcal{B}| = n - 1, |\mathcal{S}(\mathcal{B} \cup \{i\})| = m}} G_{\mathcal{B}}, \\ &= \sum_{r = 0} \sum_{\substack{\mathcal{B} \subset \mathcal{I}, \\ |\mathcal{B}| = n - 1, \\ |\mathcal{S}(\mathcal{B})| = m - r}} G_{\mathcal{B}}, \\ &= \left[\binom{m}{d} - n + 1 \right] G_{n - 1, m} + \sum_{r = 1}^{\min(d, m)} \binom{S - m + r}{r} \binom{m - r}{d - r} G_{n - 1, m - r}, \right] G_{n - 1, m - r}, \end{split}$$

which is the announced result.

We now show the recursion for F. For any $\mathcal{A} \subset \mathcal{I}$ and $i \in \mathcal{I}$, let

$$F_{\mathcal{A}} = \frac{\partial G_{\mathcal{A}}}{\partial \lambda_i} \left(\frac{\lambda}{N}, \dots, \frac{\lambda}{N} \right).$$

Observe that

$$F = \sum_{A \subset \mathcal{T}} F_{\mathcal{A}}.$$

For all $n=0,1,\ldots,N$ and $m=0,1,\ldots,S,$ we can define by symmetry,

$$F_{n,m} = \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A}, \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} F_{\mathcal{A}} = \frac{1}{N} \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A}, \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} F_{\mathcal{A}}$$

and we have

$$F = \sum_{n=0}^{N} \sum_{m=0}^{S} F_{n,m}.$$

Similarly, $F_{0,0} = 0$ and $F_{n,m} = 0$ unless $d \le m \le S$ and $\left\lceil \frac{m}{d} \right\rceil \le n \le {m \choose d}$. For any $i \in \mathcal{I}$ and $\mathcal{A} \subset \mathcal{I}$ with $|\mathcal{A}| = n$ and $|\mathcal{S}(\mathcal{A})| = m$, we have

$$F_{\mathcal{A}} = \frac{1}{\mu \left(m - n \frac{S\rho}{N} \right)} \left\{ G_{\mathcal{A}} + G_{\mathcal{A} \setminus \{i\}} + \frac{\lambda}{N} \sum_{j \in \mathcal{A}, j \neq i} F_{\mathcal{A} \setminus \{j\}} \right\}$$

so that

$$F_{n,m} = \frac{1}{N} \frac{1}{\mu \left(m - n \frac{\rho S}{N}\right)} \left\{ \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} G_{\mathcal{A}} + \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} G_{\mathcal{A} \setminus \{i\}} + \frac{\lambda}{N} \sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} \sum_{j \in \mathcal{A}, j \neq i} F_{\mathcal{A} \setminus \{j\}}. \right\}$$

$$(6)$$

The first term of the sum is

$$\sum_{\substack{\mathcal{A} \subset \mathcal{I} \\ |\mathcal{A}| = n \\ |\mathcal{S}(\mathcal{A})| = m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A}} = n \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\ |\mathcal{A}| = n \\ |\mathcal{S}(\mathcal{A})| = m}} G_{\mathcal{A}} = nG_{n,m}.$$

By equation (5), the second term of the sum is

$$\sum_{i \in \mathcal{I}} \sum_{\substack{\mathcal{A} \subset \mathcal{I}, i \in \mathcal{A} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} G_{\mathcal{A} \setminus \{i\}} = \sum_{\substack{\mathcal{A} \subset \mathcal{I} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} \sum_{i \in \mathcal{A}} G_{\mathcal{A} \setminus \{i\}} = \frac{m - n \frac{S\rho}{N}}{\frac{\rho S}{N}} G_{n,m}.$$

Thus the first two terms of equation (6) are equal to

$$nG_{n,m} + \frac{m - n\frac{\rho S}{N}}{\frac{\rho S}{N}}G_{n,m} = \frac{mN}{\rho S}G_{n,m}.$$

Now the third term of (6) is

$$\begin{split} &\sum_{i \in \mathcal{I}} \sum_{\substack{A \subset \mathcal{I}, i \in \mathcal{A} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} \sum_{j \in \mathcal{A}, j \neq i} F_{\mathcal{A} \backslash \{j\}}, \\ &= \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}, j \neq i} \sum_{\substack{A \subset \mathcal{I}, i, j \in \mathcal{A} \\ |\mathcal{A}| = n, |\mathcal{S}(\mathcal{A})| = m}} F_{\mathcal{A} \backslash \{j\}}, \\ &= \sum_{i \in \mathcal{I}} \sum_{j \in \mathcal{I}, j \neq i} \sum_{\substack{B \subset \mathcal{I}, i \in \mathcal{B}, j \notin \mathcal{B} \\ |\mathcal{B}| = n - 1, |\mathcal{S}(\mathcal{B} \cup \{j\})| = m}} F_{\mathcal{B}}, \\ &= \sum_{r = 0} \sum_{i \in \mathcal{I}} \sum_{\substack{B \subset \mathcal{I}, i \in \mathcal{B} \\ |\mathcal{B}| = n - 1, |\mathcal{S}(\mathcal{B})| = m - r}} \sum_{j \in \mathcal{I} \backslash \mathcal{B}, |\mathcal{B}| = m - r} F_{\mathcal{B}}, \\ &= \sum_{i \in \mathcal{I}} \sum_{\substack{B \subset \mathcal{I}, i \in \mathcal{B} \\ |\mathcal{B}| = n - 1, |\mathcal{S}(\mathcal{B})| = m}} \left[\binom{m}{d} - n + 1 \right] F_{\mathcal{B}}, \\ &+ \sum_{r = 1} \sum_{i \in \mathcal{I}} \sum_{\substack{B \subset \mathcal{I}, i \in \mathcal{B} \\ |\mathcal{B}| = n - 1, |\mathcal{S}(\mathcal{B})| = m - r}} \binom{m - r}{d - r} \binom{S - m + r}{r} F_{\mathcal{B}}, \\ &= N \left[\binom{m}{d} - n + 1 \right] F_{n - 1, m} + N \sum_{r = 1} \frac{min(d, m)}{d - r} \binom{M - r}{d - r} \binom{S - m + r}{r} F_{n - 1, m - r}. \right] \\ \end{split}$$

Summing the two parts of equation (6) gives the announced result.

References

[1] T. Bonald, L. Massoulié, A. Proutière, and J. Virtamo. A queueing analysis of max-min fairness, proportional fairness and balanced fairness. *Queueing Syst.*, 53(1-2):65–84, 2006.

- [2] K. Gardner, S. Zbarsky, M. Harchol-Balter, and A. Scheller-Wolf. Analyzing response time in the redundancy-d system. Technical report, Technical Report CMU-CS-15-141, 2015.
- [3] V. Shah and G. de Veciana. Performance evaluation and asymptotics for content delivery networks. In *Proceedings of IEEE Infocom.* IEEE, 2014.