Neural Random Forests

Abstract : Given an ensemble of randomized regression trees, it is possible to restructure them as a collection of multilayered neural networks with particular connection weights. Following this principle, we reformulate the random forest method of Breiman (2001) into a neural network setting, and in turn propose two new hybrid procedures that we call neural random forests. Both predictors exploit prior knowledge of regression trees for their architecture, have less parameters to tune than standard networks, and less restrictions on the geometry of the decision boundaries than trees. Consistency results are proved, and substantial numerical evidence is provided on both synthetic and real data sets to assess the excellent performance of our methods in a large variety of prediction problems.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01306340
Contributeur : Erwan Scornet <>
Soumis le : lundi 2 avril 2018 - 12:17:48
Dernière modification le : jeudi 5 avril 2018 - 01:25:58

Fichiers

Identifiants

  • HAL Id : hal-01306340, version 2
  • ARXIV : 1604.07143

Collections

INSMI | UPMC | USPC | PMA | LSTA

Citation

Gérard Biau, Erwan Scornet, Johannes Welbl. Neural Random Forests. 2016. 〈hal-01306340v2〉

Partager

Métriques

Consultations de la notice

82

Téléchargements de fichiers

88