R. L. Siegel, K. D. Miller, and A. , Cancer statistics, 2015, CA: A Cancer Journal for Clinicians, vol.61, issue.3, pp.5-29, 2015.
DOI : 10.3322/caac.21254

J. M. Llovet, M. I. Real, X. Montaa, R. Planas, S. Coll et al., Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial, The Lancet, vol.359, issue.9319, pp.1734-1739, 2002.
DOI : 10.1016/S0140-6736(02)08649-X

A. Forner, J. M. Llovet, and J. Bruix, Hepatocellular carcinoma, The Lancet, vol.379, issue.9822, pp.1245-1255, 2012.
DOI : 10.1016/S0140-6736(11)61347-0

URL : https://hal.archives-ouvertes.fr/hal-01134844

A. Kennedy, S. Nag, R. Salem, R. Murthy, A. J. Mcewan et al., Recommendations for Radioembolization of Hepatic Malignancies Using Yttrium-90 Microsphere Brachytherapy: A Consensus Panel Report from the Radioembolization Brachytherapy Oncology Consortium, International Journal of Radiation Oncology*Biology*Physics, vol.68, issue.1, pp.13-23, 2007.
DOI : 10.1016/j.ijrobp.2006.11.060

A. L. Lewis, M. V. Gonzalez, A. W. Lloyd, B. Hall, Y. Tang et al., DC Bead: In Vitro Characterization of a Drug-delivery Device for Transarterial Chemoembolization, Journal of Vascular and Interventional Radiology, vol.17, issue.2, pp.335-342, 2006.
DOI : 10.1097/01.RVI.0000195323.46152.B3

M. Varela, M. I. Real, M. Burrel, A. Forner, M. Sala et al., Chemoembolization of hepatocellular carcinoma with drug eluting beads: Efficacy and doxorubicin pharmacokinetics, Journal of Hepatology, vol.46, issue.3, pp.474-481, 2007.
DOI : 10.1016/j.jhep.2006.10.020

T. Matsumoto, J. Endo, K. Hashida, H. Ichikawa, S. Kojima et al., Balloonoccluded transarterial chemoembolization using a 1.8-french coaxial microballoon catheter for hcc: Tehnical and safety considerations, Minimally Invasive Therapy Allied Technologies, pp.94-100, 2015.

R. Salem and K. Thurston, Radioembolization with 90Yttrium Microspheres: A State-of-the-Art Brachytherapy Treatment for Primary and Secondary Liver Malignancies, Journal of Vascular and Interventional Radiology, vol.17, issue.8, pp.1251-1278, 2006.
DOI : 10.1097/01.RVI.0000233785.75257.9A

U. Hafeli, S. Sweeney, B. Beresford, J. Humm, and R. Macklis, Effective targeting of magnetic radioactive90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results, Nuclear Medicine and Biology, vol.22, issue.2, pp.147-155, 1995.
DOI : 10.1016/0969-8051(94)00124-3

J. Mathieu, G. Beaudoin, and S. Martel, Method of Propulsion of a Ferromagnetic Core in the Cardiovascular System Through Magnetic Gradients Generated by an MRI System, IEEE Transactions on Biomedical Engineering, vol.53, issue.2, pp.292-299, 2006.
DOI : 10.1109/TBME.2005.862570

P. Pouponneau, J. Leroux, G. Soulez, L. Gaboury, and S. Martel, Co-encapsulation of magnetic nanoparticles and doxorubicin into biodegradable microcarriers for deep tissue targeting by vascular MRI navigation, Biomaterials, vol.32, issue.13, pp.3481-3486, 2011.
DOI : 10.1016/j.biomaterials.2010.12.059

A. Bigot, C. Tremblay, G. Soulez, and S. Martel, Magnetic Resonance Navigation of a Bead Inside a Three-Bifurcation PMMA Phantom Using an Imaging Gradient Coil Insert, IEEE Transactions on Robotics, vol.30, issue.3, p.7, 2014.
DOI : 10.1109/TRO.2014.2300591

L. Mellal, K. Belharet, D. Folio, and A. Ferreira, Optimal structure of particles-based superparamagnetic microrobots: application to MRI guided targeted drug therapy, Journal of Nanoparticle Research, vol.10, issue.17, pp.1-18, 2015.
DOI : 10.1007/s11051-014-2733-3

URL : https://hal.archives-ouvertes.fr/hal-01112036

B. Ribba, N. Holford, P. Magni, I. Trocóniz, I. Gueorguieva et al., A review of mixedeffects models of tumor growth and effects of anticancer drug treatment used in population analysis, CPT: pharmacometrics & systems pharmacology, p.113, 2014.

P. Hahnfeldt, D. Panigrahy, J. Folkman, and L. Hlatky, Tumor development under angiogenic signaling a dynamical theory of tumor growth, treatment response, and postvascular dormancy, Cancer research, vol.59, issue.19, pp.4770-4775, 1999.

A. Onofrio and A. Gandolfi, Tumour eradication by antiangiogenic therapy: analysis and extensions of the model by Hahnfeldt et al. (1999), Mathematical Biosciences, vol.191, issue.2, pp.159-184, 1999.
DOI : 10.1016/j.mbs.2004.06.003

A. Ergun, K. Camphausen, and L. M. Wein, Optimal Scheduling of Radiotherapy and Angiogenic Inhibitors, Bulletin of Mathematical Biology, vol.65, issue.3, pp.407-424, 2003.
DOI : 10.1016/S0092-8240(03)00006-5

U. Ledzewicz, A. , and H. Schttler, Tumor Development Under Combination Treatments with Anti-angiogenic Therapies, Mathematical Methods and Models in Biomedicine, ser. Lecture Notes on Mathematical Modelling in the Life Sciences, pp.311-337, 2013.
DOI : 10.1007/978-1-4614-4178-6_11

A. Onofrio, U. Ledzewicz, H. Maurer, and H. Schättler, On optimal delivery of combination therapy for tumors, Mathematical Biosciences, vol.222, issue.1, pp.13-26, 2009.
DOI : 10.1016/j.mbs.2009.08.004

S. Sanga, J. P. Sinek, H. B. Frieboes, M. Ferrari, J. P. Fruehauf et al., Mathematical modeling of cancer progression and response to chemotherapy, Expert Review of Anticancer Therapy, vol.6, issue.10, pp.1361-1376, 2006.
DOI : 10.1586/14737140.6.10.1361

L. G. De-pillis, W. Gu, K. R. Fister, T. A. Head, K. Maples et al., Chemotherapy for tumors: An analysis of the dynamics and a study of quadratic and linear optimal controls, Mathematical Biosciences, vol.209, issue.1, pp.292-315, 2007.
DOI : 10.1016/j.mbs.2006.05.003

L. G. De-pillis and A. Radunskaya, The dynamics of an optimally controlled tumor model: A case study, Mathematical and Computer Modelling, vol.37, issue.11, pp.1221-1244, 2003.
DOI : 10.1016/S0895-7177(03)00133-X

L. Kovács, A. Szeles, J. Sápi, D. A. Drexler, I. Rudas et al., Model-based angiogenic inhibition of tumor growth using modern robust control method, Computer Methods and Programs in Biomedicine, vol.114, issue.3, pp.98-110, 2014.
DOI : 10.1016/j.cmpb.2014.01.002

A. Kansal, S. Torquato, G. Harsh, E. Chiocca, and T. Deisboeck, Simulated Brain Tumor Growth Dynamics Using a Three-Dimensional Cellular Automaton, Journal of Theoretical Biology, vol.203, issue.4, pp.367-382, 2000.
DOI : 10.1006/jtbi.2000.2000

P. Gerlee and A. R. Anderson, An evolutionary hybrid cellular automaton model of solid tumour growth, Journal of Theoretical Biology, vol.246, issue.4, pp.583-603, 2007.
DOI : 10.1016/j.jtbi.2007.01.027

J. F. Fowler, The linear-quadratic formula and progress in fractionated radiotherapy, The British Journal of Radiology, vol.62, issue.740, pp.679-694, 1989.
DOI : 10.1259/0007-1285-62-740-679

G. W. Swan, Role of optimal control theory in cancer chemotherapy, Mathematical Biosciences, vol.101, issue.2, pp.237-284, 1990.
DOI : 10.1016/0025-5564(90)90021-P

Y. Batmani and H. Khaloozadeh, Optimal chemotherapy in cancer treatment: state dependent Riccati equation control and extended Kalman filter, Optimal Control Applications and Methods, vol.213, issue.1, pp.562-577, 2013.
DOI : 10.1002/oca.2039

K. Zhou, J. C. Doyle, and K. Glover, Robust and optimal control, 1996.

C. P. Mracek and J. R. Cloutier, Control designs for the nonlinear benchmark problem via the state-dependent Riccati equation method, International Journal of Robust and Nonlinear Control, vol.8, issue.4-5, pp.4-5, 1998.
DOI : 10.1002/(SICI)1099-1239(19980415/30)8:4/5<401::AID-RNC361>3.0.CO;2-U

S. Shin, H. Cho, J. Merchan, J. Zhang, K. Kovacs et al., Targeted Delivery of an Antibody-Mutant Human Endostatin Fusion Protein Results in Enhanced Antitumor Efficacy, Molecular Cancer Therapeutics, vol.10, issue.4, pp.603-614, 2011.
DOI : 10.1158/1535-7163.MCT-10-0804

P. Anand, A. B. Kunnumakara, C. Sundaram, K. B. Harikumar, S. T. Tharakan et al., Cancer is a preventable disease that requires major lifestyle changes, pp.2097-2116, 2008.