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Modeling of Optimal Targeted Therapies using
Drug-Loaded Magnetic Nanoparticles for the Liver

Cancer
Lyès Mellal, David Folio, Karim Belharet and Antoine Ferreira

Abstract—To enhance locoregional therapies for liver cancer
treatment, we propose in this study a mathematical model to op-
timize the transcatheter arterial delivery of therapeutical agents.
To maximize the effect of the treatment and minimize adverse
effects on the patient, different mathematical models of the tumor
growth are considered in this study to find the optimal number
of the therapeutic drug-loaded magnetic nanoparticles to be
administered. Three types of therapy models are considered, e.g.
angiogenesis inhibition therapy, chemotherapy and radiotherapy.
We use state-dependent Riccati equations (SDRE) as an optimal
control methodology framework to the Hahnfeldt’s tumor growth
formulation. Based on this, design optimal rules are derived
for each therapy to reduce the growth of a tumor through the
administration of appropriate dose of anti-angiogenic, radio- and
chemo-therapeutic agents. Simulation results demonstrate the
validity of the proposed optimal delivery approach, leading to
reduced intervention time, low drug administration rates and
optimal targeted delivery.

Index Terms—Magnetic Resonance Navigation; Tumor Growth
model; Optimal Tumor Control; Optimal drug delivery; Locore-
gional therapies.

I. INTRODUCTION

Cancer is known as one of the major causes of morbidity
and death worldwide. Especially, the liver cancer continues
to be a major cause of mortality, and its incidence is still
increasing [1]. Due to a lack of donors, it is even more rarely
possible to perform a liver transplantation or to consider sur-
gical procedures [2], [3]. Therefore, transarterial locoregional
interventions, such as transcatheter arterial chemoembolization
(TACE) or radioembolization (TARE), are procedures that
provide a significant survival benefit [2]–[4]. These minimally
invasive procedures aim to restrict a tumor’s blood supply (em-
bolization) together with a drug delivery (radioembolization
or chemoembolization) into an artery supplying a tumor. In
particular, the use of drug eluting beads (microspheres) that
carry the chemotherapeutic agent ensures the delivery a lower
side-effect than systemic chemotherapy [5], [6]. The success
of both TACE or TARE procedures requires a critical mass
of drug eluting beads or radioactive Yttrium-90 microspheres
to implant in vessels at the tumor periphery, as illustrated in
Fig. 1. Due to anatomical size constraints the delivery catheter
is limited in terms of accessibility, improper catheter place-
ment and insufficient extrahepatic artery embolization. As a
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Fig. 1. Schematic representation of the principle locoregional therapy for
the liver cancer. Access is gained from the femoral artery, and the catheter is
passing through the abdominal aorta to the hepatic (liver) artery for delivering
the therapeutic agents (drug eluting beads) close to the tumor. Then, the beads
are cutting off the blood supply (embolization), as well as delivering the
drugs to the tumor (chemo- or radio-therapy). Without proper control some
therapeutic agents could end up in the systemic flow and cause injuries.

consequence, the current procedures demonstrated insufficient
deposition results close to the tumor vessels promoting tumor
growth. Furthermore, some therapeutic agents end up in the
systemic flow, and destroy healthy liver tissue via ischemia,
radiation damage and/or drug inflammation [7], [8] .

Recently, magnetic navigation using a clinical magnetic
resonance imaging (MRI) scanner has been introduced as a
novel technique to improve the above mentioned loco regional
procedures. It consists to serially steer single magnetic agents
(delivered through the catheter tip) to the disease site to
reach a given drug dose or radioactive isotope concentra-
tion (Fig. 1). As example, radioactive magnetic biodegradable
nanoparticles that incorporate both magnetite and the β-emitter
90Y have demonstrated efficient tumor targeting by using
the superconducting magnet provided by MRI scanner [9].
In the same way, Martel et al. have proposed the use of an
upgraded clinical MRI scanner to enable magnetic resonance
navigation (MRN) of therapeutic agents to realize direct tumor
targeting [10]–[12]. In their experiments, the authors have
used FeCo magnetic particles to carry doxorubicin (cytotoxic
drug) coated with a biodegradable polymer (PLGA) [11].
These preliminary trials point out the need to know precisely
the number, the size, the shape and the steering properties
of the therapeutic agents to be injected with respect to the
developmental stage of the tumor [13]. In this study, to
maximize the effect of the treatment and to minimize adverse
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effects on the patient, mathematical models of the tumor
growth are considered to find the number of magnetic agents
to be administered. Indeed, an ultimate goal in the clinical
setting is to use models to help design optimal therapeutic
strategies. Actually, mathematical modeling offers interesting
tools that could give insights into a better understanding and
control of these open clinical problems. In particular, modeling
of cancer behavior is an active research field for biologists,
mathematicians and engineers. Different approaches are used
in the mathematical modeling of cancer and its control [14]–
[23]. For instance, some researchers investigated the tumor
growth model by using cellular automata which can include
very specific characteristics of the tumor, patient and drug
effectively in the model [24], [25]. Most of mathematical
formulations are mainly constructed using ordinary differential
equations (ODE) to exhibit the cancer dynamics and their
response to the therapeutic agents [15]–[22]. Therefore, the
modeling of tumor treatment is realized for chemotherapy
[20], [21], immunotherapy [22], anti-angiogenic therapy [15]–
[17], radiotherapy [17] as well as a combination of the above
[17]–[19]. For example, de Pillis and Radunskaya [22] set
out an ODE system to depict the dynamics of tumor growth
by means of the populations of tumor, normal and immune
cells. To the best of the author’s knowledge, no studies have
investigated the mathematical modeling of locoregional pro-
cedures. This is mainly due to modeling difficulties. First, as
the tumor behavior (avascular, vascular, and metastatic stages)
and medication level are highly patient-dependent, different
therapeutical materials may be considered as navigable agents,
e.g. drug eluting microspheres, biologically active agents,
chemical mediators of cell function, viral vectors or genetic
material. Second, a large dispersion of the therapeutic agents
occurs along the feeding vessels to the tumor(s) that endup
in the systemic flow. It renders difficult the estimation of
drug concentration deposited within the tumor. Third, the
tolerability of conventional locoregional therapies seems to
be affected by the type of regimen and the frequency of the
treatment. The model should take into account constraints
on drug delivery rates and state of the patient by solving
an optimization problem at regular time intervals. This work
aims to fill this gap by extending conventional therapy models
for the transcatheter tumor therapy using MRN procedure
for hepatocellular carcinoma (HCC). This paper is organized
as follows: first, Section 2 presents the mathematical model
framework for cancer therapy. Then, Section 3 proposes an
optimal direct targeting therapy optimization problem. Section
4 demonstrates the applicability of the design framework in
the context of MRN-assisted procedures. Finally, Section 5
discusses the main limitations when translating the theoretical
results to practical experiments.

II. MATHEMATICAL MODELING OF CANCER

A. Background
Cancer is a group of diseases involving basically abnormal

cell growth (neoplasia). With over 100 different known forms
that could affect all human organs, cancer is not a unique
pathology. Hence, cancers are classified by the type of malig-
nant cell, such as blastoma, carcinoma, sarcoma, lymphoma
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Fig. 2. Representation of the liver cancer stages: (i)avascular stage: the tumor
is small and found in one part of the liver without connection with the blood
vessels or lymph nodes; (ii) vascular stage: tumor has grown into the blood
vessels of the liver; (iii) metastases stage: tumor has spread into other organs.

and leukemia. Therefore, many treatments against cancer
exist, including surgery, chemotherapy, radiation therapy, or
palliative care. The chosen treatment(s) depends on the type,
location, and grade of the cancer as well as the person’s states.

Thus, the understanding of the cancer evolution is a main
issue in its fight. To this aim, it is mandatory to investigate the
neoplasia process. Actually, neoplasia commonly forms a mass
that is referred as tumor. Basically, a tumor evolution could
be described in three stages, as illustrated in Fig. 2. First, a
tumor appears and starts to grow to obtain its nutriments from
its immediate environment. At this step, known as avascular
growth, it is usually difficult to detect it through medical
screening. The tumor could then continue to expand by seeking
additional resources that allows it entering to the second
stage: the vascular growth. At this step, the body provides
new nutriments, and endothelial cells migrate to the tumor to
form new microvascular networks. This process, referred as
angiogenesis, allows the tumor to continue its development.
In this vascular stage, symptoms may appear and the tumor
becomes detectable on medical images. Finally, the tumor
could evolve to the third step: the metastasis stage. In this
step, the tumor cells are spread to other organs, and it becomes
more difficult to treat them.

B. Tumor Growth Models

Different cancer models have been proposed [14]–[23].
One key aspect in the cancer evolution is the angiogenesis
process. Commonly, in this context, the Hahnfeldt’s tumor
growth model [15] is considered, as it could be applied for
different cancer therapies [17]–[19]. Specifically, the under-
lying diffusion of tumor and endothelial cells that stimulate
and inhibit angionesis are incorporated into a system of
ordinary differential equation (ODE). Different extensions of
the original Hahnfeldt’s model have been proposed [16]–[19].
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Fig. 3. (a) Tumor growth rate changes at different stages of the liver cancer. Evolution of the tumor and endothelial volumes without drug administered: (b)
vascular growth from c0 = 20mm3 and e0 = 20mm3; (c) vascular step from the avascular equilibrium point cavasc.,∞ = eavasc.,∞ = 625mm3; and (d)
metastasis stage simulation from the vascular equilibrium point cvasc.,∞ = evasc.,∞ = 17 346.5mm3.

Let c denotes the volume of cancer cells, and e the volume
of endothelial cells that supplies the tumor with nutriments.
The tumor angiogenesis evolution could be then described by
the following ODE system:

ċ(t) = −λcc(t) log
(
c(t)

e(t)

)
(1)

ė(t) = bc(t)− dc(t)2/3e(t) (2)

with λc the tumor growth rate; b the vascular endothelial cells
birth rate; and d the vascular endothelial cells death rate.

Especially, the tumor follows a Gompertzian law [15]:
its growth saturates at a maximal volume, and we get the
following steady-state:

c∞ = e∞ =

(
b

d

)3/2

(3)

The endothelial cell birth (b) and death (d) rate depend
mainly on the type of tumor and the patient. Obviously, the
system model states that the tumor cannot increase over c∞
volume, and then does not take into account the evolution to
the metastasis stage. As the system model (1)-(2) is mainly
devoted to the vascular stage, to take into account the other
stages the endothelial birth rate b could be considered as
piece-wise continuous. To understand the tumor dynamics, it
is important to analyze its growth. The growth parameters
set {λc, b, d} has been identified by Hahnfeldt et al. [15]
from experimental data with mice diseased with lung cancer
(Lewis lung-carcinoma, LLC) for the vascular stage, and the

TABLE I
ANGIOGENESIS TUMOR GROWTH PARAMETERS SET.

Param. Value [15] Units

λc 0.192/ log(10) day−1

d 8.73× 10−3 day−1 mm−2

b 0.638 day−1

(a)

Stage Avasc. Vasc. [15] Met. Units

b 0.638 5.85 8 day−1

(b)

corresponding values are reported in Table I. Fig. 3a shows
the evolution of the tumor and endothelial volume growth
for each stage. First, we consider that a malignant neoplasm
appears with an initial volume c0 = 20mm3. We assume
that nutriments sought by the tumor from its immediate
environment could be equivalent to an initial volume of
endothelial cells of e0 = 20mm3. Hence, in the avascular
stage the endothelial state simulates the resources absorbed by
the tumor (see Fig. 3b). The tumor volume increases with a
Gompertzian curve, and after 100 days reaches the equilibrium
value: cavasc.,∞ = eavasc.,∞ = 625mm3, predicted by (3).
After 200 days, endothelial cell migrates to the tumor to form
a microvasculature networks around the tumor. The avascular
equilibrium values is used as the initial condition of the
vascular stage (cf. Fig. 3c). Once again, an equilibrium is
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reached: cvasc.,∞ = evasc.,∞ = 17 346.5mm3. If no treatment
is administered or it fails to block the growth of the tumor,
the metastasis stage could occur (cf. Fig. 3d).

C. Cancer Therapy Modeling

This section addresses the mathematical modeling of tar-
geted therapy for optimal administration of drug-loaded mag-
netic nanoparticles, namely therapeutic vectors. When a
therapeutic vector is delivered to a host, two different types of
processes are involved: pharmacokinetics (PK) and pharma-
codynamics (PD). The PK model characterizes what the body
does with the agent, and is commonly modeled through the
concentration of the therapeutic agents δ(t), in the sampled
fluid (e.g. plasma or blood). The agent concentration expres-
sion is [15]:

δ(t) =

∫ t

0

u(s) exp (−λδ (t− s)) ds (4)

where u is the rate of administration of the therapeutic agent,
and λδ is the elimination rate. The PD describes the effects of
the agent to the body, and is related to the concentration δ(t)
provided by the PK model. The classic PD model is the log-
kill effect [15], [22]. The following presents how the PK and
PD are related to the tumor growth, according to considered
cancer therapy.

1) Angiogenesis Inhibition Treatment: Basically, for such
treatment only the endothelial growth (2) will be antagonized
by an anti-angiogenic agent, such as endostatin, whose plasma
concentration is δa(t), leading to its new formulation [15]:

ė(t) = bc(t)− dc(t)2/3e(t)− kaδa(t)e(t) (5)

with ka the angiogenic drug killing parameter. Table III shows
the PK parameters of the endostatin.

2) Chemotherapy Treatment: The literature provides dif-
ferent mathematical formulations of the tumor functioning and
response to chemotherapy [19]–[21]. Here, to model the effect
of a cytotoxic chemotherapeutic agent of concentration δx(t)
the angiogenesis model is used [19], and is extended as:

ċ(t) = −λcc(t) log
(
c(t)

e(t)

)
− kcx c(t)δx(t) (6)

ė(t) = bc(t)− dc(t)2/3e(t)− kex e(t)δx(t) (7)

with kcx and kex the PD log-kill parameters. The case kex = 0
means that the cytotoxic drug does not have any effects on the
endothelial cells. Contrarily to angiogenesis inhibition model,
no PK-PD parameters {kcx, kex, λδ} characterized from ex-
perimental data are available in the literature.

3) Radiotherapy Treatment: Classically, the so-called tu-
mor linear-quadratic (LQ) model [17], [18], [26] is used to
characterize the effects of ionizing radiation on the tumor and
endothelial cells. Thus, the damage of radiation on a cell x is
modeled in the following form [17], [18], [26]:

−x(t)
(
αx + βx

∫ t

0

(u(s) exp (−µ(t− s)) ds)
)
u(t) (8)

where u(t) represents the fractionation schedule of radiation;
αx and βx are positive gains related to the tumor-LQ param-
eters; and µ is the cell repair rate. As the radiation damage

the tumor and the endothelial cells, the model for radiotherapy
could be expressed with the following ODE set [18]:

ċ = −c
(
λc log

( c
e

)
+ (αc + βcr)u

)
(9)

ė = bc− e
(
dc2/3 + (αe + βer)u

)
(10)

with r(t) the concentration of the radiation.

III. OPTIMAL DIRECT TARGETING THERAPY

In traditional treatment regimes the amount of administered
therapeutic agents is very important for patient’s survival.
Actually, the therapy does not treat only the tumor, it often
kills some healthy tissues or causes them serious damage.
Hence, the dosage of the therapy must be carefully adjusted
to minimize side-effects, while maximizing the capability to
destroy the tumor. To address this issue, control theory is
basically employed [27]. In particular, optimal control tech-
niques have been applied for antiangiogenic therapy [16], [17],
chemotherapy [21], [22], [28] or radiotherapy [17] to define
the optimal treatment and drug dose. This section presents an
adaptation of conventional therapies [15]–[19] to the case of
magnetically controlled drug-loaded nanoparticles.

A. Optimal Control Design

Optimal control deals with the problem of finding a regu-
lator such that a certain optimality criterion is achieved [29],
[30]. Given cancer models presented in Section II, the issue
is to find an optimal control input u to decrease the tu-
mor size while minimizing total drug administered. However,
the different therapy models exhibit a highly nonlinear and
complex nature. Thus, different optimization techniques have
been used for stabilizing tumor growth while minimizing the
administered therapeutic agent [19], [21], [23], [28]. One of
these approaches consider the state-dependent Riccati equa-
tions (SDRE) framework [28], [30], [31]. Actually, SDRE has
emerged as an interesting strategy for direct synthesis of non-
linear controllers [30], [31]. This optimal control methodology
has been applied with the de Pillis et al. cancer model [22]
in [28]. However, to the authors’ knowledge, this optimal
framework has not been applied to the Hahnfeldt’s tumor
growth formulation [15] or its extension [16]–[19].

1) SDRE Optimal Regulation: Let us consider a system
represented by the following pseudo-linear equations in state-
depend coefficient (SDC) form:

ẋ = A(x)x+B(x)u (11)

where x ∈ Rn is the time-dependent state vector, with n the
number of states; u ∈ Rm is the (drug) control input (m = 1
for monotherapy); A(x) ∈ Rn×n and B(x) ∈ Rn×m are state-
dependent matrices. In infinite horizon, the continuous-time
SDRE optimization problem is then to minimize the following
quadratic cost functional [29], [30]:

J =

∫ (
xTQx+ uTRu

)
dt (12)

where the weights (design parameters) are state-dependent,
such that Q ∈ Rn×n is positive-definite and R ∈ Rm×m.



1536-1241 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNB.2016.2535380, IEEE
Transactions on NanoBioscience

IEEE TRANSACTIONS ON NANOBIOSCIENCE 5

Thus, the optimal control law that minimizes this criterion is
given by:

u = −R−1(x)B>(x)P(x) x (13)

with P(x) is the unique, symmetric, positive-definite solution
of the algebraic state-dependent Riccati equation (SDRE) [30],
[31]:

PA+A>P−PBR−1B>P+Q = 0 (14)

Let us notice that the SDRE control design is similar to the
well known linear quadratic regulator (LQR), where each of
the above matrices are state-dependent.

2) Pseudolinearization: The nonlinear ordinary differential
equation (ODE) of the considered cancer therapy could be ex-
pressed in the following general nonlinear dynamical system:

ẋ(t) = f(x) + g(x)u(t) (15)

To apply the above SDRE methodology, the so-called pseudo-
linearized form (11) of the nonlinear system (15) has to be
computed. More precisely, the state matrix is obtained from
f(x) = A(x)x by mathematical factorization. This state-
dependent parametrization of the nonlinear system is not
unique [30]. Among the alternatives, the chosen pseudo-
linearization should ensure point-wise controllability condi-
tion, where the so-called state-dependent controllability matrix
has full rank, that is:

C =
[
B(x) A(x)B(x) . . .An−1(x)B(x)

]
(16)

rank(C) = n (17)

B. Control of Angiogenesis Inhibitor

The objective here is to apply the SDRE optimal control
strategy to reduce the growth of a tumor through the ad-
ministration of appropriate dose of anti-angiogenic agents. As
mentioned, the drug-free equilibrium is given by (3). Thus, the
state vector x is designed to shift the equilibrium point to the
origin, that is:

x = (x1 = (c− c∞); x2 = (e− e∞); x3 = δa)
> (18)

where c∞ = e∞ = x∞ are the drug-free volume steady-
state (3). A state-dependent parametrization of the angiogene-
sis inhibition treatment could be then written as:

A(x) =

a11 λc
x1

x2
a13

a21 a22 a23
0 0 −λδ

 , and B(x) =

00
1

 (19)

with

a11 = −λc
(
1 + log

(
x1 + x∞
x2 + x∞

)(
1 +

x∞
x1

))
(20)

a13 = 0 (21)

a21 = b

(
1 +

x∞
x1

)
− x∞

x1
d (x1 + x∞)

2/3 (22)

a22 = −d (x1 + x∞)
2/3 − kax3 (23)

a23 = −kax∞ (24)

This pseudolinearization is used to apply the SDRE control of
the amount of anti-angiogenetic agent by considering R = 103
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Fig. 4. Continuous infusion angiogenesis inhibition therapies: decreasing of
(a) tumor volume and (b) endothelial over time with (c) optimal input drug.

and Q = diag (50, 0, 0). This Q and R values are chosen to
take into account the volume of the tumor, while preventing
high doses. Especially, the drug intake u has to be saturated
to an upper limit umax.

TABLE III
ENDOSTATIN PK-PD PARAMETERS [15], [32].

Param. Unit
ka day−1 conc−1 0.66
λg day−1 1.7 1.37 0.97 0.57 0.17 0.017
umax conc day−1 15 13 11 8 5 2

Fig. 4 illustrates optimal angiogenesis inhibition therapies
of a tumor at a vascular stage. Actually, tumors could be
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Fig. 5. Angiogenesis inhibition therapies with a session of 30min every 7
days: (a) evolution of the tumor volume with (b) an optimal input drug.

detected mainly from this step, and the treatment is applied at
the beginning of this stage (Fig. 3). Let us recall that our main
motivation is to propose a direct targeted drug delivery using
magnetic boluses. Therefore, our drug intake approach differs
significantly than the original subcutaneous injection technique
investigated by Hahnfeldt et al. [15]. The direct targeting could
be modeled through the drug clearance rate λδ . Obviously, by
varying λδ the amount of drug that is not filtered out of the
blood and delivered to the tumor can be modeled. Similarly
to the works achieved in [15]–[17], endostatin antiangiogenic
agents is considered here. The elimination rate of endostatin
is varying from 1.7 day−1 for a subcutaneous injection [15]
to 0.017 day−1 [32], which corresponds to the efficiency of
the drug in targeted treatment. The different values of PK-
PD models parameters of endostatin are summarized in the
Table III based on the results given in [15], [32]. The Fig. 4a
and 4b show that for a clearance of λδ = 0.017 day−1 the
tumor and the endothelial volumes vanish in about 60 days.
In contrast, for λδ = 1.7 day−1 the volumes reach a steady-
state of c∞ = e∞ = 476.5mm3.

However, the Fig. 4c illustrates that a continuous adminis-
tration of endostatin has to be realized. For instance, a reliable
therapy procedure would be a session of 30min every 7 days.
Nevertheless, due to the endostatin limit umax, it is not pos-
sible to treat the tumor with such treatment sequence. Indeed,
Fig. 5 shows the evolution of the tumor and the corresponding
endostatin intake (without the upper bound). As one can see,

only a low elimination rate λδ enables a noticeable decrease of
the tumor volume. These results exhibit that the angiogenesis
inhibition could be significantly improved thanks to direct
targeting.

C. Chemotherapeutic Agents Direct Delivery

The same reasoning as above is used here to design op-
timal chemotherapy. Especially, the chemotherapy treatment
model is similar to the angiogenesis inhibition model. Hence,
the same state vector (18) and state-dependent parametriza-
tion (19) could be considered, where only {a13, a22, a23}
parameters are modified as follows:

a13 = −kcx (x1 + x∞) (25)

a22 = −d (x1 + x∞)
2/3 − kexx3 (26)

a23 = −kexx∞ (27)

SDRE method is then applied to control the amount of
cytotoxic drug. The optimal controller parameters are defined
here as: R = 104 and Q = diag (1, 0, 0).

Contrarily to the anti-angiogenetic model, there are not PK-
PD parameters based on experimental data for the model pre-
sented in paragraph II-C2. Actually, most previous works [16],
[17], [19] have considered experiments only. In this work the
PK-PD parameters reported in Table IV are proposed based on
d’Onofrio et al. analysis [19] to fit the DEB-TACE procedure
pharmacokinetics [6]. This choice allows to address direct
targeting (low clearance) with a highly cytotoxic drug (e.g.
doxorubicin) combined with embolization of the microvascular
network feeding in nutriments the tumor (kex > 0).

TABLE IV
CYTOTOXIC AGENT PK-PD PARAMETERS.

Param. Value Units
λδ 0.009 day−1

kcx 2 day−1 conc−1

kex 1 day−1 conc−1

A tumor at vascular stage is then treated thanks to the
cytotoxic agent (e.g. doxorubicin), and the results are depicted
in Fig. 6. Here, the sampling time is settled to 1 h. In particular,
the therapy schedule is a session of 30min every 7 days. To
limit the amount of cytotoxic drug, the intake is saturated to
umax = 2.5 conc/day, that is 0.0417 (mg/kg)/day per session.
Hence, after 6 sessions of drug administration the tumor
vanish under a volume of c∞ = 12.67mm3. demonstrating
the efficiency of cytotoxic agents.

D. Direct Delivery of Radioisotope

Based on the same modeling, the optimal control of radio-
therapy is designed on the same previous formulation. Hence,
the same state vector (18) and the state matrix A(x) proposed
in (19) could be considered, where only {a13, a22, a23} pa-
rameters are modified as follows:

a13 = 0 (28)

a22 = −d (x1 + x∞)
2/3 (29)

a23 = 0 (30)
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Fig. 6. Cytotoxic agent direct delivery: decreasing of (a) tumor volume and
endothelial over time with optimal input drug (b).

However, the state-dependent input matrix is now given by:

B(x) =

− (αc + βcr) (x1 + x∞)
− (αe + βer) (x2 + x∞)

1

 (31)

The optimal amount of radioisotope is computed using the
following SDRE controller parameters: Q = diag (1, 0, 1) and
R = 103. The tumor-LQ model is used to characterize the
effects of radiation on the tumor and endothelial cells [17],
[18], [26]. For the sake of simplicity, similar numerical values
of the tumor-LQ parameters proposed in [17] are considered,
and summarized in Table V. As previously, we consider a
cancer at vascular stage. Fig. 6 illustrates the corresponding
radiotherapy treatment. To limit the amount of radiation, the
radioisotope dose is saturated to umax = 10Gy. Once again,
the radiotherapy schedule is a session of 30min every 7 days.
Thus, after 10 sessions the tumor vanish under a volume of
c∞ = 0.195mm3. As expected, radiotherapy is able to cure
efficiently the cancer but the required number of sessions is
higher compared to chemotherapy.

TABLE V
RADIOISOTOPE TUMOR-LQ MODEL PARAMETERS.

Param. Value Units Param. Value Units
αc 0.7 Gy−1 βc αc/10 Gy−2

αe 0.136 Gy−1 βe αe/2.5 Gy−2

µ 11.09 day−1
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Fig. 7. Radioisotope direct delivery: decreasing of (a) tumor volume and
endothelial over time with optimal input drug (b).

Fig. 8. Magnetic bolus model embedding aggregates of iron-oxides mi-
croparticles. (a) General design and (b) oil-based ferrofluid bolus.

IV. OPTIMAL DELIVERY OF THERAPEUTIC AGENTS

A. Structure

In standard transcatheter tumor delivery using MRN, the
therapeutic agents are constituted by magnetic boluses of
microagglomerations of iron-oxide nanoparticles and drug
loadings (shown in Fig. 8). The optimal size and shape of
the magnetic magnetic microcarriers have been determined in
[13] through simulations and experiments. Spherical boluses
of 500 µm of diameter composed of SPIO particles (BioMag
BM547, Bang Laboratories, Inc.) of 8 µm in size were chosen.
To be controllable, the bolus has its optimal nondimensional
magnetophoretic number Cmt ratio greater than 1. The reader
may refer to [13] for optimal size selection.

The effective drug load Vδ of a single bolus is a fraction
of the total volume defined as Vδ = (1 − τm)V with τm the
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so-called magnetization rate. When injected in the vascular
phantom placed in the tunnel of the MRI scanner, the magnetic
bolus will take the form of a prolate sphere due to the strong
dipole-to-dipole interactions between the nanoparticles. Due to
the B0 field of the scanner, the equivalent magnetization Ms of
the aggregates is aligned with the B0 field. We consider here
that the magnetic material (Vm) is saturated to its maximal
value Ms = 56 emu/g under a magnetic field B0 = 3.0 Tesla.
The injected magnetic volume τmV is computed as a tradeoff
between the encapsulated drug volume and the necessary
steering force. Finally, the number of magnetic boluses is
estimated from

Nb =

⌈
u m

Vδρδ

⌉
(32)

where u is the rate of administration of the therapeutic agent;
m is the patient weight (considered as m = 60 kg hereafter);
and ρδ is the agent load density.

B. Endostatin Angiogenesis Inhibitor

The objective is to determine the amount Nb of required
boluses to reduce the tumor size by administrating an anti-
angiogenic agent. In paragraph III-B endostatin agent is used
as angiogenesis inhibitor. Endostatin is a naturally occurring
20 kDa polypeptide, identified as a C-terminal fragment of
collagen (type 18). Commonly, endostatin agent is available in
solution concentration of 1mg ml−1. Hence, considering the
upper limit umax given in Table III, the Table VI presents the
maximum of required number of magnetic boluses that have
been to be conveyed continuously. Even in the low clearance
case with λδ = 0.017 day−1 where the endostatin administra-
tion rate is lower (umax = 2 conc day−1), Nb = 4661 magnetic
boluses have to be injected continuously to administrate the
daily dose.

TABLE VI
REQUIRED MAGNETIC BOLUSES THAT CARRY ENDOSTATIN TO TREAT A

PATIENT OF AVERAGE WEIGHT m = 60 kg.

Param. Unit
umax conc day−1 15 13 11 8 5 2
Dose mg day−1 750 650 550 400 250 100
Nb 1× 103 34.95 30.29 25.63 18.64 11.65 4.66

Similarly, if the considered scheduling of one session every
week is applied (cf. Fig. 5), Nb = 1.398× 104 boluses have
to be administered at the first session.

C. Cytotoxic Drug (doxorubicin)

Chemotherapy is achieved by direct targeting of highly
cytotoxic drug, such as doxorubicin. Doxorubicin is an anthra-
cycline tumor antibiotic that works by intercalating DNA. This
drug has already shown its efficiency in DEB-TACE procedure
since a decade [5], [6]. The drug eluting beads (DEB) have
been easily loaded with doxorubicin to a recommended level
of 25mg ml−1, with a maximum loading of 45mg ml−1 [5].
Here, we assume that the doxorubicin PK-PD model param-
eters is close to the cytotoxic agent given in Table IV. For
a patient of average weight m = 60 kg a maximum dose of

120mg has to be conveyed per session (cf. Fig. 6). Therefore,
a maximum of Nb = 1036 magnetic boluses have to be
administered.

D. Radioisotope (Yttrium)

The radiotherapy consists to administrate microspheres
containing a radioisotope. Usually, yttrium-90 (90Y) micro-
spheres are administered in directed cancer radiotherapy [4].
90Y is a high-energy beta-emitting isotope with no primary
gamma emission and a half-life of 2.67 days. For instance,
TheraSphere (MDS Nordion, Canada) are biocompatible and
nonabsorbable glass microspheres loaded with 90Y. The radius
of TheraSphere beads is about rp = 12.5 ± 2.5µm, and then
one magnetic bolus could embed up to 3147 radioisotope
microspheres. Each 90Y bead contains an activity of 2500Bq,
leading to 7.8675× 10−3 GBq per bolus. Assuming an uni-
form distribution, the radiation dose intake is computed from

[4] u =
49.67A

ml
with A the radioisotope activity (in GBq),

and ml the mass of the liver (in kg). Therefore, the number
of magnetic boluses that carries 90Y beads is obtained from:

Nb =

⌈
u ·ml

49.67× 3147× 2.5× 10−6

⌉
(33)

We consider that the radioisotope tumor-LQ model parameters
given in Table V corresponds to TheraSphere. For a typical
patient with a liver mass of ml = 2 kg, a maximum of Nb = 52
boluses have to be administered in one session to carry the
upper limit of 10Gy (cf. Fig. 7).

V. DISCUSSION

Locoregional therapies are considered as the best treatments
in patients with unresectable hepatocellular carcinoma (HCC).
The various mathematical models of cancer therapies for
HCC that have been evaluated so far describe some interac-
tions between tumor cells and blood vessels. However, the
internal cell behavior is not explicitly expressed, whereas
further sources of complexity arise from its internal cell-to-
cell cooperative and competitive interactions [17]. Especially,
due to the use of ODE system the model also does not
include the spatial characteristic of the tumor growth along the
surrounding tissue. Particularly, this work considers medically
reasonable parameters set given in Table I-to-V taken from
the literature. Actually, only few data are available to estimate
the parameter sets, especially in the case of human models
[16], [17], [22]. Mathematically modeling the dynamics of
a tumor allows us to better understand tumor activity by
considering critical biological influences, time delays, human
intervention and tumor adaptation. Our model parameters are
computed on the basis of experimental data given in [15].
The environmental factors such as habits, smoking, alcohol
consumption, and infections, have a profound influence on
cancer development. As example, it is possible to regulate
the nuclear transcription factor, NF-kB, by controlling the
vascular endothelial cells birth rate, b, expressed in the model
[33]. Furthermore, the control of the drug input u offers
the possibility to model the drug overdose and/or toxicity.
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In the proposed direct targeting therapy, the drug input is
saturated to umax values which should be related to the upper
bound of the drug concentration umax. For instance, the most
commonly used dosage of doxorubicin is to not exceed δmax
= 2 mg/kg to have a very low risk of overdose. Finally, the
theoretical simulation results point out some benefits when
considering MRN-assisted locoregional therapy. At an earlier-
stage disease, TACE and TARE treatments are commonly
used. Actual TACE treatments with doxorubicin at baseline
(cTACE) or doxorubicin-loaded eluting beads (DEB-TACE)
deliver a high dose of drug over a longer period of time (3
months) into the tumor. The schedule of treatment is settled
to 3 months, 6 months, and then every 6 months thereafter.
The size of DEB is chosen according to the particular study,
usually with smaller particles (100-to-300 µm) being selected
first, followed by larger particles (500-to-700 µm). When
performing MRN-assisted procedure using embolic magnetic
boluses releasing doxorubicin, similar benefits (drug rate and
frequency of treatment) are found but the technique may
prevent bile duct injury by avoiding overembolization that
will relentlessly lead to nontarget embolization. In the case of
embolic radioembolization in TARE treatment, glass or resine
microspheres of 20-to-30 µm in size are used. A high number
of aggregated spheres (glass: 1.2 million microspheres/3 GBq;
resin: 40-to-60 millions of microspheres/3 GBq) are required
leading to deposition in the liver as a large number of
discrete clusters. The use of MRN could significantly improve
the technique by reducing the number and the timeless of
sequences, and most importantly, by providing heterogeneous
radiation dose distribution patterns. At an advanced-stage
disease, Sorafenib, a multikinase inhibitor with antiangiogenic
properties of Sorafenib, in combination with locoregional
therapy if of increased interest to specialists who care for
patients with unresectable hepatocellular carcinoma [18]. To
demonstrate the feasibility of MRN-assisted procedure, Bigot
et al. [12] have demonstrated that the propulsion of Nb = 1530
magnetic boluses inside a multi-bifurcation phantom required
33min of duration. These experiments are in agreement with
our simulation results concerning TACE and TARE treatments
since only 1036 and 52 magnetic boluses are required.

VI. CONCLUSION

The paper described an optimal design strategy for innova-
tive transcatheter arterial magnetic bolus delivery using MRN
procedure. To maximize the effect of the treatment and mini-
mize adverse effects on the patient, a mathematical model has
been developed to find the number of magnetic boluses with
respect to the growth of a tumor and the carried therapeutic
agent. The application of such mathematical design framework
is the optimization of anti-cancer treatment modalities by its
optimal use with locoregional tumor therapies. Indeed, the
preliminary results demonstrate that MRN may improve the
conventional TACE and TARE treatments by increasing the
local drug concentration, reducing the number and duration of
treatment sequences, and decreasing the side-effects related
to toxicity in healthy tissues. Undergoing work considers
the locoregional magnetic bolus delivery of various sizes of
aggregates in small animals.

REFERENCES

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics, 2015,” CA:
a cancer journal for clinicians, vol. 65, no. 1, pp. 5–29, 2015.

[2] J. M. Llovet, M. I. Real, X. Montaa, R. Planas, S. Coll, J. Aponte,
C. Ayuso, M. Sala, J. Muchart, R. Sol, J. Rods, and J. Bruix, “Arte-
rial embolisation or chemoembolisation versus symptomatic treatment
in patients with unresectable hepatocellular carcinoma: a randomised
controlled trial,” The Lancet, vol. 359, no. 9319, pp. 1734–1739, 2002.

[3] A. Forner, J. M. Llovet, and J. Bruix, “Hepatocellular carcinoma,” The
Lancet, vol. 379, no. 9822, pp. 1245–1255, 2012.

[4] A. Kennedy, S. Nag, R. Salem, R. Murthy, A. J. McEwan, C. Nutting,
A. Benson III, J. Espat, J. I. Bilbao, R. A. Sharma et al., “Recommen-
dations for radioembolization of hepatic malignancies using yttrium-
90 microsphere brachytherapy: a consensus panel report from the
radioembolization brachytherapy oncology consortium,” International
Journal of Radiation Oncology* Biology* Physics, vol. 68, no. 1, pp.
13–23, 2007.

[5] A. L. Lewis, M. V. Gonzalez, A. W. Lloyd, B. Hall, Y. Tang, S. L. Willis,
S. W. Leppard, L. C. Wolfenden, R. R. Palmer, and P. W. Stratford, “DC
bead: in vitro characterization of a drug-delivery device for transarterial
chemoembolization,” Journal of vascular and interventional radiology,
vol. 17, no. 2, pp. 335–342, 2006.

[6] M. Varela, M. I. Real, M. Burrel, A. Forner, M. Sala, M. Brunet,
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