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Three-dimensional instabilities of pantographic sheets with
parabolic lattices: numerical investigations

Daria Scerrato, Ivan Giorgio and Nicola Luigi Rizzi

Abstract. In this paper, we determine numerically a large class of equilibrium configurations of an
elastic two-dimensional continuous pantographic sheet in three-dimensional deformation consisting
of two families of fibers which are parabolic prior to deformation. The fibers are assumed: i) to
be continuously distributed over the sample, ii) to be endowed of bending and torsional sti↵nesses
and iii) tied together at their points of intersection to avoid relative slipping by means of internal
(elastic) pivots. This last condition characterizes the system as a pantographic lattice [1, 2, 34, 35].
The model that we employ here, developed by Steigmann and dell’Isola [108] and first investigated
in [55], is applicable to fiber lattices in which three dimensional bending, twisting and stretching
are significant as well as a resistance to shear distortion, i.e. to the angle change between the
fibers. Some relevant numerical examples are exhibited in order to highlight the main features of
the model adopted: in particular buckling and post-buckling behavior of pantographic parabolic
lattices is investigated. The fabric of the metamaterial presented in this paper has been conceived
to resist more e↵ectively in the extensional bias tests by storing more elastic bending energy and
less energy in the deformation of elastic pivots: a comparison with a fabric constituted by beams
which are straight in the reference configuration shows that the proposed concept is promising.

Keywords. Non-linear elasticity, Second gradient models, Woven fabrics.

1. Introduction

Design and synthesis of new materials that satisfy some required specific characteristics is a very
attractive challenge that researchers have tackled since many years in di↵erent branches of Physics as
Electromagnetism, Optics or Mechanics. Those assumptions which usually are accepted to be valid
while modeling ‘natural’ materials lead to useful simplifications on which many engineering appli-
cations have been based up to now. In particular two-dimensional and three-dimensional continuum
models have been formulated based on so-called Cauchy assumptions, which lead to the classical
definition of stress and strain states. However, and based on purely logical considerations, already
Gabrio Piola (see [39, 33]) clearly proved that not all conceivable materials can be modeled under the
simplifying assumptions put forward by Cauchy, Poisson and Navier (for a discussion of this point see
e.g. [33, 40] and references there quoted).

1.1. Higher gradient continuum models for metamaterials

Already Piola considered the possibility to include in the deformation energy of three-dimensional
continua together with the first gradient of placement also its second and possibly higher gradients,
and he bases his argument on the eventual need to include in these models the description of long
range interaction between the material particles. Piola’s point of view has been recovered, many years
later, for instance by Mindlin and Toupin [73, 111]. When dealing with two-dimensional continua the
classical models due to Love and Kirchho↵ do include higher gradient of transverse displacements
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as independent variables in the constitutive equation for deformation energy but, when considering
tangential displacements, they restrict the attention to the particular case of dependence on first
gradient of aforementioned tangential displacements. In the more recent papers [3, 5, 4, 45] and
[41, 55, 109, 108, 107] this last restriction is removed and so-called geodesic bending is taken into
account for the determination of deformation energy. The more general models thus formulated allow
for the theoretical framing of more sophisticated models which are able to describe the behavior of a
large class of metamaterials, as those considered in the present paper.

Indeed when fabrics are constituted at micro-level by highly inhomogeneous materials and are
formed by microscopically complex geometric patterns then the modeling assumptions accepted after
Cauchy must be generalized if macroscopic homogenized models need to be introduced (see e.g. [40]).
More and more often such fabrics are attracting the attention of the researchers in material sciences:
indeed so-called tailored or architectured or optimized or smart materials are more and more often
being conceived and studied because of their specific and unconventional behavior (for more details
on this subject see e.g. [31, 17, 38] and the references there cited).

The word metamaterials is a neologism which was constructed from the Greek word meta-,
(meaning to go beyond) composed with the Latin root materia. Metamaterials are materials designed
and engineered in order to have properties which have not yet been observed in nature, which go
beyond those materials which are already known. One has to remark, however, that if a property was
not observed yet in nature may simply mean that nobody looked for it, due to the lack of suitable
theoretical tools of investigation and modeling and that with a careful search one can find even natural
materials having such an exotic property.

It seems to us that, in the context of Mechanical Sciences, this new concept focused on the design
and synthesis of new materials, rather than on the analysis of common materials already employed, is
quite little exploited when compared with what is done in the other fields of Physics already mentioned.

It also seems to us that the introduction of higher gradient models may be of help in the investiga-
tion and design of a large class of metamaterials, although we are aware of the fact that more generally
microstructured continua [50, 51] may be necessary: in this context, the results presented in [104, 2, 1]
prove rigorously that for a particular class of micro-fabrics the macro-models must be second gradient
continua. The controversy about the relevance of higher gradient continua seems to have been solved
by several results proving that many systems showing microscopic complexity can be modeled, at
a suitably large scale, by higher gradient continua (see e.g. [1, 12, 17, 24, 43, 44, 57, 65, 84, 93]).
Actually an exhaustive review on the conceptual bases of higher gradient continuum theories may be
found in [40] while interesting applications are found in [87, 88, 94, 117, 116, 102, 28]. Remark also
that nonlinear higher gradient elasticity is necessary also when the correct frame for continua having
energetic boundaries is looked for (see e.g. [67]).

1.2. Range of applicability for generalized continuum models

In technological applications many and di↵erent micro-fabrics are considered to form micro-architectured
metamaterials. The di↵erent mechanical parts constituting these fabrics may be fibers, micro-beams,
micro-plates or any other kinds of structural element. All considered structural elements may be con-
strained by suitable elastic or perfect constraints and their mechanical properties may be extremely
di↵erent each other. A possible way for assembling fibers could be to weave them: in this case the
constraint is obtained by means of friction forces whose e↵ectiveness may depend on the state of stress
at the contact interface between di↵erent fibers. In this case a particular attention must be paid to
frictional slip (as done for instance in [75]) while other peculiar properties of several kind of composite
materials [77, 78, 103, 66] have also been taken into account.

In the literature many di↵erent generalized continuum models have been proposed for mechanical
systems including inextensible and extensible fibers: see e.g. [109, 107, 55, 37, 35] and references
there cited. To our knowledge, however, it has not been addressed yet the problem of studying the
deformation of second gradient plates having two families of extensible material curves having non-
vanishing referential curvature and being capable of storing deformation energy when their curvature
is changing. Some relevant results in the formulation of the needed theories can be found in [46, 47, 48]
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where local symmetry properties for elastic generalized shells are studied and in [3, 5, 4, 45] where some
theories of plates and shells with microstructure are presented. Remark that the problems addressed
in the present paper are static. A dynamical analysis of second gradient plates needs to be developed
and for the first results in this context presented the reader is referred e.g. to [36, 34, 52, 106]. Besides,
considering that the system under study is very light, applications in which there is a fluid-structure
interaction could show an unexpected behavior which seems worthy of study (see, e.g., [79, 76, 13,
80, 82] for more details on this issue). It has also to be remarked that non-standard and exotic
dynamical behavior can be described in some particular micromorphic continua [91] and in multi-
physics metamaterials, as those conceived to exploit piezoelectric transduction see e.g. [98, 92, 29, 81]
and the references there cited.

Finally it has to be remarked that microscopically complex systems are not designed by engineers
only: indeed Nature, and in particular evolution, produced many tissues whose microscopic fabric is
very complex: some e↵orts are being directed towards the formulation of generalized continuum models
in this context: some relevant works are [11, 49, 110, 54, 58, 63, 64, 69, 90, 102].

The presented method features also the possibility of describing buckling and post-buckling
phenomena, as in its deformation energy some non-quadratic terms depending on some deformation
energies are introduced. The buckling and post-buckling analysis performed here is purely numerical:
we are aware of the fact that only via suitable analytical or semi-analytical studies (those presented
in [101, 85, 86, 95, 96, 53, 97, 6], [71, 72, 14] and [27, 115, 26] seem to us relevant in our context) it
will become possible a complete classification of such behaviors.

1.3. Experimental and numerical characterization of higher gradient constitutive parameters

In order to use the introduced second gradient model to get e↵ective predictions of considered meta-
materials (as done in [38]) one has to identify macroscopic constitutive parameters in terms of the
specific micro-structure under consideration. In this paper we have used for obtaining such identi-
fication the semi-analytical results presented in [89]. We are aware that this analysis needs to be
improved and generalized. We intend, in future investigations, to use to this aim several numerical
and experimental methodologies: the most relevant in this context seem to be e.g. those presented
in [112, 105] where the problem of the identification of macro-properties of structures is addressed
or those in [42, 70] where viscosity e↵ects are introduced in the picture. Remark that pantographic
structures considered here include small elements in which a relatively larger amount of deformation
energy may be stored: therefore, experimental non invasive detection of damage methods based on
dynamic features as natural frequency, eigen-modes may be used (see e.g. [30]) together with dynamic
characterization and vibration absorption methods (see e.g. [15, 100, 99, 16, 18]) or even the more
sophisticated impact analysis (see e.g. [9, 10, 8, 7]).

While experimental evidence is the ultimate check for every modeling e↵ort, also in the context
of microscopically complex fabrics, it can be useful to get quantitative and qualitative results about
their behavior by resorting to micro-models and intensive numerical simulations, based on simpler
mechanical models valid at lower length scales. In this context isogeometric numerical analysis (see
e.g. [113, 21, 22, 60, 62]) or other numerical methods (see e.g. [23, 20, 19, 114, 59, 61, 25]) have
been successfully applied to very similar mechanical problems. Remark that recently some alternative
methods ( see e.g. [32, 68, 74]) based on generalized cellular automata calculations have been proposed
which seems suitable to describe numerically the time evolution of higher gradient continua.

1.4. Organization of the paper and the main result presented

In this paper, we want to explore the possibility of designing new fabric sheets with a particular
arrangement of the fibers to obtain specific and uncommon mechanical features di↵erent from the
usual woven fabrics in which the fibers are straight lines.

Herein, we focus on the following key idea: to use the fibers having a parabolic form in the
reference configuration and resisting to variations of curvature. In this way we intend to exploit
the benefit of the greater resistance given by curved beams to improve the extensional strength of
the designed metamaterial. The model used here in order to describe this class of fabrics employs
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two-dimensional second gradient continuum theory of elastic surfaces to model three-dimensional
placements and deformations of fibered pantographic sheets: this model has been recently developed
by Steigmann and dell’Isola [108]. The results which we present indicate that the same amount of the
same material can be re-organized at micro-level in order to form micro-structures whose extensional
resistance is nearly one order of magnitude greater.

The paper is organized as follows:

• Section 2 describes the features of the model employed in this paper; more specifically in sub-
sect. 2.1 the kinematics of the considered 2D continuum is specified, together with its material
symmetry class; in subsect. 2.2 the deformation measures are decomposed in order to take into
account the material symmetry properties of a parabolic pantographic sheet; in subsect. 2.3 a
suitable deformation energy is postulated. All equilibrium configurations will be determined by
minimization methods.

• Section 3 shows the most relevant numerical simulations which we have obtained. In particular,
we show that: i) the force exerted in extensional bias test (in a suitably chosen optimal direc-
tion relative to fiber orientation) in parabolic pantographic sheet is larger than in the case of
micro-structure formed by straight lines; ii) interesting out-of-plane buckling and post-buckling
phenomena may occur beyond suitable thresholds in extension tests; iii) interesting wrinkling
out-of-plane shapes are formed in the case of imposed planar shear and compression boundary
displacements. The numerical integration scheme must be based on intensive application of Ar-
gyris planar finite element, as the space in which the minimization problem for second gradient
energies is formed by the set of functions having integrable second order weak derivatives. This
is the reason for which isogeometric methods (applied in very similar contexts in [60, 62, 21])
seems suitable to supply a very e�cient numerical tool.

• Section 4 concludes the paper by indicating the novel properties of considered parabolic panto-
graphic sheets. They include: i) higher extensional resistance in specific directions, ii) relatively
low mass/resistance ratio, iii) localized patterns of deformation energy and iv) capability of
producing specific wrinkling out-of-plane patterns.

2. 2D Pantographic sheets with initially parabolic fibers

2.1. Kinematics

We consider a plane sheet formed from two families of fibers that initially are curved and lie parallel
to the coordinate lines of a two-dimensional orthogonal coordinate system, i.e. confocal parabolas. We
treat the sheet as a 2D continuum, so that introducing the parabolic coordinates {', } every line in
which ' or  are constant in the initial rectangular domain B is regarded as a fiber. Specifically, in a
Cartesian coordinate system {X1, X2}, the fibers are defined by the curves of constant '

2X2 =
X2

1

'2
� '2 (1)

and the curves of constant  

2X2 = �X2
1

 2
+  2 (2)

When a deformation occurs, the material particle that initially is at the point X = (X1, X2) 2 B
goes to the point in 3D space whose place is indicated by the map r(X1, X2) : B ⇢ R2 7! R3. By
introducing the components of displacement ui along the three unit vectors of the Cartesian coordinate
system {ei}, we can express the placement map as

r(X↵) = X↵e↵ + ui(X↵)ei (3)

with Latin indexes ranging from 1 to 3 and Greek indexes from 1 to 2. The derivatives of r are denoted
by

a↵ = r,↵ (4)



Three-dimensional instabilities of pantographic sheets with parabolic lattices 5

The deformation gradient F = rr, thus can be write as

F = a↵ ⌦ e↵ (5)

Therefore, the Cauchy-Green deformation tensor is given by

C = F>F = C↵� e↵ ⌦ e� (6)

As a result, the strain tensor E, in terms of its components, becomes

E↵� =
1

2
(C↵� � �↵�) with C↵� = ri,↵ri,� (7)

with �↵� the Kronecker delta. Here we consider also the second gradient of the deformation, rF =
rrr, i.e. the third-order tensor rF = F ,↵ ⌦ e↵, in order to describe the fiber curvatures and
twist [41, 108].

2.2. Fiber decompositions

Let {L(X),M(X)} be orthogonal families of unit vectors in the plane of B defining the fiber directions
in the reference configuration. Assuming the fibers to be material curves with no relative slipping and
tied together at their points of intersection, we can represent the fibers directions after the deformation
with the families of unit vectors {l(X),m(X)} given by

�l = FL, µm = FM (8)

where � and µ are the fiber stretches. As a result, we may use {l,m} spanning the deformed tangent
plane at the material point X to define the fiber shear angle � by

sin � = l ·m (9)

For a parabolic net, from Eq. (1) we obtain

'2 = 2 (kXk �X2) (10)

choosing the root of Eq. (1) that is always positive, and then we may evaluate its gradient

r' =
1

'

✓
X

kXk � e2

◆
(11)

and, therefore, the vectors L(X) and M(X) as

L(X) =
r'
kr'k and M(X) = e3 ⇥L(X) (12)

Employing the fiber decomposition proposed in [108], the gradient of deformation may be represented
as

F = �l⌦L+ µm⌦M (13)

and thus the Cauchy-Green deformation tensor is

C = �2L⌦L+ µ2M ⌦M + �µ sin � (L⌦M +M ⌦L) (14)

while the second gradient of the deformation can be written as [108]

rrr = (gl +KLn)⌦L⌦L+ (gm +KMn)⌦M ⌦M + (�+ Tn)⌦ (L⌦M +M ⌦L), (15)

with
gl = �2⌘l p+ (L ·r�) l, gm = µ2⌘m q + (M ·rµ)m (16)

and
� = (L ·rµ)m+ �µ�m q = (M ·r�) l+ �µ�l p, (17)

in which ⌘l and ⌘m are the geodesic curvatures of the deformed fibers, �l and �m are the so-called
Tchebychev curvatures, and

p = n⇥ l, q = n⇥m and l⇥m = | cos �|n (18)

define the orthogonal directions of the fibers on the deformed surface, while

KL = �2l, KM = µ2m and T = �µ⌧, (19)
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where l and m are the normal curvatures of the deformed fibers and ⌧ measures the twist of the
deformed surface. These are non-zero if the deformation is such as to generate a curvature of the surface
in 3D space. Accordingly, they describe those parts of the fiber curvatures that can be attributed to
surface flexure, whereas the geodesic curvatures represent the components of fiber curvatures in the
tangent planes of the deformed surface.

2.3. Strain Energy

In this paper, as done in [56], we postulate the first term of the elastic stored energy as follows

W I("L, "M , J) =
1

2
YL"

2
L +

1

2
YM"

2
M �GLM [ln(J) + 1� J ] (20)

where YL, YM and GLM are positive material constants and suitable strain measures (see e.g. [108, 56])
are employed

"L = E↵�L↵L� =
1

2

�
�2 � 1

�

"M = E↵�M↵M� =
1

2

�
µ2 � 1

�

J = kL↵M�r,↵ ⇥ r,�k = k�l⇥ µmk

(21)

Indeed, "L and "M are measures of fiber extension along L and M directions, respectively and J is
the area stretch. The second energy term may be assumed as follows

W II = 1
2 (AL |gl|

2 +AM |gm|2 +A� |�|2 + kLK
2
L + kMK2

M + kTT
2), (22)

Therefore, a simple strain-energy function incorporating the curvilinear orthotropic symmetry associ-
ated with the initial fiber geometry is

W = W I("L, "M , J) +W II(gl, gm,�,KL,KM , T ) (23)

3. Numerical Examples

In this section, we show some numerical examples employing the model sketched above and proposed
in [108], adopting a rectangular domain whose edges are in ratio 1:3 and consisting of a parabolic fiber
net; in all the cases analyzed, it is assumed that the samples have the same arrangement of the fibers
unless otherwise specified. The FE analysis is performed by using COMSOL Multiphysics, a software
flexible enough to allow us to insert any kind of non-standard strain energies not necessarily included
in its libraries. Specifically, we utilize Eq. (23) which is characterized by a term depending on the
second gradient of displacement. For this reason, we adopt the Argyris element which is an element
of class C1 and thus, particularly suitable to approximate the solution of the problem under study.

In what follows, the above formulation is recast in a non-dimensional form by normalizing the
elastic energy (23) with respect to a reference sti↵ness while the lengths are normalized with respect
to the shorter edge. Non-dimensional quantities are denoted by a superimposed tilde.

The constitutive parameters assumed in the current analysis are listed below:

ỸL = 100, ỸM = 100, G̃LM = 0.2,

ÃL = k̃L = 0.01, ÃM = k̃M = 0.01, Ã� = k̃T = 0.1
(24)

In the first case, we examine the standard bias extension test in which one of the shorter side is
fixed and on the other a uniform displacement is imposed which is equal to 0.8 and orthogonal to the
same side. In particular, Fig. 1 displays the arrangement of the fibers in the reference configuration
(Fig. 1a), the equilibrium shape of the sample after the deformation and the new disposition of the net
(Fig. 1b), the measure of the shear strain � (Fig. 1c), and the second gradient energy (Fig. 1d). The
plot of � in Fig. 1c shows the presence of two distinct areas separated by a transition zone because of
the presence of a second gradient energy term. This behavior is quite standard for a bias extension test
of fabric sheets (see e.g. [56]). However, in the common bias test performed on sheets with straight
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(a) Reference fiber pattern (b) Actual fiber pattern

(c) Fiber shear angle � (d) Second gradient energy

Figure 1. Bias extension test - case I.

fibers, three regions characterized by a uniform fiber shear angle can be easily recognized. In our
parabolic case, instead only two areas with almost constant shear angle are detected, one with a fiber
shear angle � almost nil and the other with an angle decrease of about 60 degrees. Besides, in Fig. 1d a
localization of a second gradient energy in a narrow region along the largest parabolic fibers inscribed
in the sample can be observed.

In the bias test considered, the displacement imposed on the sample under test along the di-
rection of X1-axis, due to the particular arrangement of the parabolic fibers, induces a compression
of the straight fibers parallel to the vector e2 and therefore a buckling phenomenon occurs in corre-
spondence of a critical displacement. This last-mentioned has been evaluated as ũ1 = 0.8984. Fig. 2
displays the buckling mode related to this critical displacement; the colors indicate the out-of-plane
component of displacement, ũ3. To determine an equilibrium shape related to the buckling mode, we
take geometrical and mechanical imperfections into account by imposing on short sides the additional
boundary condition on the derivatives of the displacement out-of-plane of the pantographic sheet and,
in particular we set ũ3,↵⌫↵ = 2⇥10�4, where ⌫ is the unit vector normal to the edge and on the plane
determined by the vectors e1 and e2.

In order to explore the features of the fiber arrangement considered, we compare two kind of
samples: one constituted by a straight and orthogonal lattice of fibers and the other characterized by
a parabolic net as it has been already analyzed. Specifically, we investigate the behavior of these two
arrangements in the cases of a bias extensional test and a shear displacement imposed.

In the former case, we plot the equilibrium shapes for three imposed displacements along the
direction of the X1-axis, ũ1 = {0.31, 0.62, 0.85}; in Fig. 3, the colors indicate the distribution of the
shear angle � while in Fig. 4 they are related to the total strain energy density. We can observe that
the maximum value of the shear angle � is almost the same for the two fiber dispositions, but the
stored strain energy is much greater in the case of parabolic fibers.



8 D. Scerrato, I. Giorgio and N. L. Rizzi

Figure 2. Bias extension test - case I: buckling shape related to the critical displacement.

Similar considerations apply in the latter case when one short edge is fixed and a displacement
is imposed in the direction of the X2-axis on the opposite side (see Fig. 5). Finally, for a quantitative
comparison we show the overall constraint reactions by varying the imposed displacement in the two
tests under examination (see Fig. 9) and once again, it is confirmed that the arrangement of the
parabolic net is much sti↵er than the one with straight fibers.

Afterwards, the standard bias extension test is applied to a specimen with a di↵erent initial
arrangement of the fibers (see Fig. 6). The considered sheet is deformed by fixing it at one shorter
edge and assigning a uniform displacement of amplitude 1 at the opposite boundary so as to move
away these two sides. Fig. 6 exhibits from left to right the fiber pattern prior to deformation, the
equilibrium shape of the sample after the deformation and the new disposition of the net, the measure
of the shear strain �, and the second gradient energy. Similarly to the previous case, two main zones
kept separate from transition regions can be noticed, i.e. one with a fiber shear angle � close to zero
and the other with an angle increase of about 75 degrees (see Fig. 6). This time, it is much more
evident that the localization of the second gradient energy occurs along the transition regions.

In the next example, we impose a relative rotation and translation to the opposite shorter bound-
aries in order to cause bending, stretching and twisting in three dimensions. In more detail, we fix one
edge and assign the following displacement field on the other edge

8
><

>:

ũ1 = 0.3

ũ2 =
�
s� 1

2

�
(cos#� 1)

ũ3 =
�
s� 1

2

�
sin#

(25)

where s is a parameter which varies from 0 to 1 and # is a rotation angle with respect to the longitudinal
axis of rectangle, here assumed to be equal to ⇡/3. Fig. 7 shows: the equilibrium shape (Fig. 7a), where
colors indicate the out-of-plane component of displacement, ũ3 and the fiber pattern is highlighted;
the fiber shear angle � (Fig. 7b); the first gradient energy (Fig. 7c); and the second gradient energy
(Fig. 7d).

Also in this case, we can observe a localization of both energies of first and second gradient near
the largest parabolic fibers.
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Figure 3. Comparison between straight and parabolic fibers: bias extensional test
with imposed displacement {0.31, 0.62, 0.85}. The colors indicate the shear angle �.

We complete this gallery of examples with a case of buckling in which compressive and shear
displacements, respectively ũ2 = �0.2 and ũ1 = 0.5, are imposed on one of the long sides; the opposite
edge is fixed, and the short sides are left free. In addition, on the moving long side we assign the extra-
constraint: ũ3,�⌫� =

�
1⇥ 10�4

�
s, where � = {1, 2}, s is a parameter which varies from 0 to 1 and ⌫

is the unit vector normal to the edge and on the plane determined by the vectors e1 and e2. Fig. 8
exhibits the fiber pattern and the equilibrium shape (Fig. 8a), where colors indicate the out-of-plane
component of displacement, ũ3; the fiber shear angle � (Fig. 8b); the first gradient energy (Fig. 8c);
and the second gradient energy (Fig. 8d). It should be noted that at the central area of the sample a
geodesic buckling appears in the plane of the fabric sheet.

4. Conclusions

In modern engineering there are three features which are more and more frequently demanded to novel
materials: i) the capability to resist in an elastic way in large deformation regimes, ii) the capability
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Figure 4. Comparison between straight and parabolic fibers: bias extensional test
with imposed displacement {0.31, 0.62, 0.85}. The colors indicate the total strain-
energy density.

to resist to applied load also when damage phenomena start to occur, iii) the capability of localizing
deformation energy so that the parts of the system to be checked in order to assess its integrity are
determined a priori.

In this paper, we try to prove the applicability and feasibility of the following concept: given a
mass of an elastic material it is possible to arrange it in order to form a network of beams connected by
cylinders (playing the role of elastic pivots) to get a fabric which is able to undergo large deformations
remaining in elastic regimes and is capable to sustain externally applied loads even when some damage
phenomenon occurs.

The presented analysis did not consider any model for damage onset and evolution: however we
could verify that in the most relevant deformation patterns the conceived fabric actually shows high
concentration of deformation energy: it is therefore likely that damage onset will be localized in these
regions. Future investigations will address the relevant related modeling issues.
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Figure 5. Test with shear displacement imposed: Equilibrium shapes related to
straight fibers (left), parabolic fibers (right). The colors indicate the total strain-
energy density.

Figure 6. Bias extension test - case II, in the given order: reference and actual fiber
patterns; the fiber shear angle �; second gradient energy.

An aspect of the micro-structure introduced here concerns the shape of the involved beams in
the stress-free reference configuration: we have assumed it is parabolic. Indeed, we assumed that a
parabolic system of coordinated in the reference configuration characterizes the material symmetries
of the considered fabric. The enhanced bending deformation of such fibers (when comparing the
performances of the present fabric with that constituted by straight lines) produces a greater sti↵ness
in extensional bias test without changing the capability of undergoing large deformations in elastic
regimes (see Fig. 9).

Indeed to use interconnected fibers having a parabolic form in the reference configuration allows
us to exploit the benefit of the greater resistance to deformation given by pre-curved beams. The
designed metamaterial results to have an improved extensional strength.
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(a) Equilibrium shape and fiber pattern (b) Fiber shear angle �

(c) First gradient energy (d) Second gradient energy

Figure 7. Test with stretching (ũ1 = 0.3) and twist (# = 60 degrees)

The model used here in order to describe parabolic pantographic sheets is based on the second
gradient continuum theory of elastic surfaces which can undergo three-dimensional large placements
and deformations recently developed by Steigmann and dell’Isola [108].

As a byproduct of performed numerical simulations, we prove that many wrinkling shapes of
considered pantographic sheets are assumed in equilibrium conditions even when purely plane bound-
ary displacements are imposed. These buckling phenomena are expected but not yet described in the
literature together with their post-buckling evolution. We intend to systematically investigate these
phenomena by means of the perturbative methods described in [83].

A more di�cult problem consists in looking for optimized micro-structures which are able to
perform some assigned tasks: we claim that it can be of use the introduction of generalized continuum
models in this kind of investigations.

Acknowledgments. The authors thank Professors David Steigmann and Francesco dell’Isola for helpful
comments and advice through the study.
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(a) Equilibrium shape and fiber pattern (b) Fiber shear angle �

(c) First gradient energy (d) Second gradient energy

Figure 8. Example of buckling with shear (ũ1 = 0.5) and compressive (ũ2 = -0.2)
displacement imposed.
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(left), test with shear displacement imposed (right).
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