
HAL Id: hal-01305027
https://hal.science/hal-01305027

Submitted on 20 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Retro-ingénierer les métriques topologiques dans les
algorithmes de peer-ranking

Erwan Le Merrer, Gilles Trédan

To cite this version:
Erwan Le Merrer, Gilles Trédan. Retro-ingénierer les métriques topologiques dans les algorithmes de
peer-ranking. ALGOTEL 2016 - 18èmes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, May 2016, Bayonne, France. �hal-01305027�

https://hal.science/hal-01305027
https://hal.archives-ouvertes.fr

Retro-ingénierer les métriques topologiques
dans les algorithmes de peer-ranking

Erwan Le Merrer1, Gilles Trédan2

1Technicolor, France 2LAAS/CNRS, France

Détecter au plus tôt les utilisateurs importants dans les réseaux sociaux est un problème majeur. Les services de clas-
sement d’utilisateurs (peer ranking) sont maintenant des outils bien établis, par des sociétés comme PeerIndex, Klout
ou Kred. Leur fonction est de “classer” les utilisateurs selon leur influence. Cette notion est néanmoins abstraite, et les
méthodes algorithmiques de ces services pour obtenir ce classement sont opaques (les métriques et paramétrages utilisés
sont des recettes internes dissimulées). Suivant le récent intérêt pour les outils permettant une plus grande transparence
du web, nous proposons d’explorer le problème du retro-ingéniering de l’influence topologique dans ces services de
classement. Comme ces services exploitent l’activité en ligne des utilisateurs pour inférer leur influence (dont leur
connectivité sur les réseaux sociaux), nous proposons une approche permettant d’estimer précisément l’influence d’un
ensemble de métriques topologiques (ou centralités) et leur taux de prise en compte dans le résultat final (classement
utilisateur). Pour ce faire, nous modélisons l’algorithme de classement comme une boite noire, avec laquelle nous in-
teragissons via des modifications topologiques, afin d’inférer quelles sont les centralités en jeu dans l’évolution du
résultats de classement. Nous montrons que dans certains cas il est possible de déterminer quelles sont ces métriques,
et ceci via des opérations sur la topologie par un utilisateur souhaitant connaitre ces paramètres.

Mots-clefs : Reverve-engineering ; centrality metrics ; social graphs ; ranking functions

As personal information concentrates in the cloud, so does the exploitation of this data. The need for
an increased transparency in the functioning of web-services has recently arised, motivated by various use
cases such as privacy or copyright control. For example, work such as [4] proposes to retrieve which piece
of information of a user-profile triggered advertisement to that user. Goal is thus to infer the internals of
black-box services provided by companies on the web. Klout or PeerIndex propose to rank users based
on their behavior on social networks (using their social connectivity and activity). They nevertheless keep
secret the algorithms and parameters used for this ranking. This motivated some users to try reversing
their internals [2]. Sometimes information leaks about some ingredients of those hidden recipes ; CEO
of PeerIndex admitted to use Pagerank (and thus graph topological-metrics), as a part of their ranking
algorithm, to compute user influence.

Reverse engineering such black-box is a challenging task. Indeed, in this web-service paradigm, the user
only has access to the output of the algorithm, and cannot extract any side-information. Moreover, in many
cases such as peer ranking services, the user is only aware and able to act on a limited part of the algorithm
input. Motivated by this challenge for transparency, we thus ask the following questions : can a user infer,
from the results returned by such peer-ranking algorithms, what are the topological metrics in use,
and if possible to what extent ? How difficult is such an attack ?

We first introduce the service we consider and model our actions, before warming-up on a toy example.
We then generalize our approach, and illustrate it on a concrete attack example. We finally give perspectives.

1 Model and Warm Up : Reversing the Use of a Single Centrality
We model the problem through an observable “ranking” black-box function f , that takes a graph as input

(noted G∞) and returns a ranking >r of all graph nodes such that : ∀i, j ∈V (G∞)
2, i >r j iff ”node i is more

important than node j”.
As warm up, let us assume that f is one of the following classic centralities Cbase = {degree, eccentricity,

betweeness, Pagerank, closeness} [3]. To determine which is the used centrality, one attacker wants to build

Erwan Le Merrer, Gilles Trédan

G∞

a1

a2 a3

a4 a5

(a) A small attack graph GA, solving the single
centrality reverse-engineering problem

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2

4

6

1 2 3 4 5
Real Coeff.

E
st

im
at

ed
 C

oe
ff.

attackSize
●

●

●

●

●

20
30
40
50
60

(b) Reversing a f with hidden coefficients from 1 to 5, with
various attack sizes (node creations)

a small attack graph GA, attached G∞ (then G∞ = G∞ ∪GA, as being the giant social network), in order to
reverse f . She has at her disposal means to edit the social graph, by adding nodes and edges. In practice,
this consists in opening false accounts on the social network, and to link those (with e.g., “friend” requests).
To get rid of the non-topological metrics that may be used in f , the attacker creates nodes ∈ GA that are
strictly identical up to their connectivity (e.g., they have not Tweeted or posted any comment, etc).

Lemma 1. A small attack graph, of 5 nodes, is sufficient to reverse a function f that is based on a single
centrality in Cbase, relatively to the other centralities in the same set Cbase. Graph is depicted on Figure 1a.

Proof Sketch. The proof requires showing that such GA is able to discriminate the centralities considered
in the set Cbase. Consider graph G∞ ∪GA on Figure 1a. GA nodes are given the following ranking, for
centralities in Cbase : < degree, [a1 =r a2 >r a3 =r a4 =r a5] >, < eccentricity, [a1 >r a2 =r a3 >r a4 =r
a5] >, < betweenness, [a1 >r a2 >r a3 =r a4 =r a5] >, < Pagerank, [a2 >r a1 >r a4 =r a5 >r a3] >, <
closeness, [a1 >r a2 >r a3 >r a4 =r a5]>. All rankings are indeed unique, thus allowing to discriminate the
centrality used, by simple observation at GA nodes’ rankings produced by f .

Note that this does not constitute a proof that a graph of size 5 is the minimal attack graph for such a
problem and this centrality set Cbase, or that this is the unique graph solving this problem. The interest of
minimizing the size of the constructed attack graph is for the attacker twofold : first, constructing a bigger
graph requires a longer time, especially if actions on the service platform are rate limited. Second, the bigger
the attack, the easier it can be detected by the targeted service, which can then react accordingly.

For instance the graph GA \n5, of size 4 is not a solution, as degree and betweenness produce the same
[a1 >r a2 >r a3 =r a4] ranking, as for both fringe nodes a3 and a4, betweenness is 0, and degree is 1. Sketch
for a formal proof is to find of pairs of centralities over certain attack graphs that produce equivalent ranking
to discard them, until reaching one particular graph where such a pair cannot be found. Following a possible
set of centrality definitions, one attacker then designs an attack graph that is minimal.

2 A General Reverse-Engineering Approach
We now propose a reversing method for extending to a f that is a linear combination of centralities. Note

that we also extend the notion of centrality to the one presented in [1], that is of any node-level measure.

Rationale The objective of the attack is to reverse-engineer f ’s internals, that is, to determine which cen-
tralities are used, and what is their relative importance in the linear combination that provides the ranking.
G∞ is not known to the attacker. As a social network user, she is able (through API calls) to create profiles,
perform operations on these profiles, and observe the consequence of these operations on rankings in the
peer-ranking service. As the space of possible centralities is theoretically infinite, we assume the attacker
takes a bet on a list of d centralities in a set C, that are potentially involved in f .

In a nutshell, the attack proceeds as follows. The attacker leverages an arbitrary node a, already present
in G∞. She then creates d identical nodes and connects them to a ; those d nodes end up with the same
ranking. She applies to each node a different serie of API calls (i.e., topological updates, attaching them
one node for instance). After each serie of API calls, ranking of those nodes is expected to change. Based

Retro-ingénierer les métriques topologiques dans les algorithmes de peer-ranking

Data: G∞, a target node a ∈V (G∞), operations {u1, . . . ,ud}
Result: An estimate of h (i.e., the vector containing the weight of each centrality in f)

1 //initialization
2 Let k be a vector of size d−1 initialized to 0;
3 for 1≤ i≤ d do
4 //attach an attack node to an existing node, and conduce operations over it
5 Create node ai : V (G∞)←V (G∞)∪{ai};
6 Add edge (ai,a) : E(G∞)← E(G∞)∪{(ai,a)};
7 Apply ui(ai);

8 W.l.o.g. assume ud is the operation with the highest impact (that is ∀ j < d,u j <r ud);
9 (Reorder otherwise);

10 for i = 1 to d−1 do
11 //identify operation thresholds
12 ki← maxx≥1(ux

i (ai)<r ud(ad));

13 //J is the matrix where each element (i, j) is the impact of ki applications of ui on the jth centrality of node ai,
minus the impact of operation ud on ad;

14 Let Ji, j = c j(uki
i (ai))− c j(ud(ad)) ;

15 Set Jd,. = 0d ;
16 //find h s.t. J.h = 0, thus is solution to the reverse-engineering of f
17 return Ker(J)

FIGURE 2: General reverse-engineering algorithm : estimation of linear weight combination of f

on those observed changes, she is able to sort the impact of those calls, and thus to describe the impact of
one given call by a composition of smaller effect calls. This allows her to retrieve the weights assigned by
f to the d centralities in set C, by solving a linear equation system.

Lets consider the following image : imagine you have an old weighing scale (that only answers ”left is
heavier than right” or vice-versa) and a set of fruits (say berries, oranges, apples and melons) you want to
weigh. Since no ”absolute” weighing system is available, the solution is to weighs the fruits relatively to
each other, for instance by expressing each fruit as a fraction of the heaviest fruit, the melon. One straight-
forward approach is to directly test how many of each fruit weigh one melon. This is the approach adopted
here. However, to continue on the analogy, the problem here is that in general, we are not able to indivi-
dually weigh each fruit (centrality). Instead, we have a set of d different fruit salads. This is not a problem
since the composition of each salad (i.e., the impact of API calls) is known ; one has to solve a linear system
using d different combinations of coefficients yielding an equal impact.

A reverse-engineering algorithm For demonstration purposes, let us assume that f relies on some cen-
tralities included in set C of size d. Let ci ∈ Rd be the d dimensional column vector representing each of
the d involved centrality values for node i. We assume that f is linear in all directions (i.e., f is a weighted
mean of all centralities) : ∃h∈Rd s.t. f (i) = ci.h. Reverse-engineering the topological impact over the final
ranking thus boils down to find h (and therefore directly obtain f).

The attacker performs operations on G∞ through API calls (or user operations). For instance, the follo-
wing operation u1 : G∞(V,E), i→u (V ∪{a},E ∪{(i,a)}) simply adds a neighbor to i (we refer to it as
u1(i)). Each operation u(i) impacts i’s topological position, and therefore it’s ranking by f . Let u ∈ Rd be
this impact on each centrality in C : cu(i) = ci +u. We assume the attacker is able to find d different ope-
rations denoted {u1, . . . ,ud} that respect the following properties : i) she is able to determine the result of
each ui’s impact on the target node’s centrality values (i.e., compute uk

i (i),∀i≤ d, where k > 0 is the number
of applications of the operation). And ii) the d operations are mutually independent : each operation has a
unique impact on set of considered centralities.

The attack proceeds as shown on Figure 2, where notations are defined. First, observe that by construction
matrix J has not a full rank. The last update ud is our reference against which we compare other updates.
Line 12 records the maximum number of same ui operation applications that lead to the same rank (or close)
than a single ud operation : that is the number of ui operations needed to ”negate” the effects of ud .

Consider a line i of J. Since at the end ui =r ud (or close), we have (cai +uki
i (ai))h = (cad +ud(ad))h±

Erwan Le Merrer, Gilles Trédan

ui(ai).h. Since by construction cai = cad , therefore we seek h s.t. uki
i (ai)h− ud(ai)h = 0. Or as matrix

notation : J.h = 0 : h is in the kernel of J.
Intuitively, the fact that we get infinitely many solutions (α.h,∀α ∈ R+) comes from our observation

method : we are never able to observe actual scores, but rather rankings. Since multiplying h by a constant
does not change the final ranking, any vector co-linear to, e.g., h/||h|| is a solution.

One important remark is that one cannot precisely claim that one centrality metric is not in use in C with
our attack. Assume for instance that one centrality, say number of tweets, is 106 times less important than
another, say degree. Then we will not be able to witness its effect unless we produce 106 tweets. And after
k < 106 tweets, the only possible conclusion is : number of tweets is at least k times less important that
degree. One can reasonably assume that such an imbalance in practice means that one service operator will
not compute a possibly costly centrality to use it to such a low extent in f ; this thus makes our attack able
to discard barely or not used centralities in C. To limit the detectability of the attack however, the maximal
ki after which ui is considered to have a negligible impact should be carefully chosen.

Finally, one interesting complexity metric is the total number of calls to the API. Let cost(ui) be the
number of calls issued by operation ui. Then the total number of operations is cost(ud)+∑

d−1
i=1 ki.cost(ui).

The precision of this estimation can be improved, but this approach is omitted due to space limitations.

An Illustration To illustrate our approach, let us assume a ranking function whose internals use a com-
bination of c1 : clustering centrality and c2 : degree. W.l.o.g, assuming the coefficient for degree in h is
h1 = 1, we seek the corresponding coefficient h2 = h. Let us consider the following two operations : u1 that,
applied to node a1, adds a new node and connects it to all the neighbors of a1 (i.e., modifies clustering), and
u2 that only adds a new node at each call (i.e., grows a star graph around a2, thus modifying a2’s degree).
The attacker can compute the value of uk−1

1 (a1) and uk−1
2 (a2) at any time.

We simulated the attack with a G∞ being a 1,000 nodes Barabási-Albert graph with an average degree of
5, estimating h using u1 and u2 operations. Figure 1b presents the obtained results : a point (x,y) means the
real value of h is x and was estimated by the attack (using the algorithm presented on Figure 2) as y. Black
dots plot the real coefficient values of h. Each colored area represents the estimated (reverse-engineered)
coefficients, while each color represents the number of applications of the operations (refered to as the
“attack size”). The larger the attack, the more precise the reverse-engineered results. We note that if the
real values of coefficients to be estimated are bigger (e.g., 4 or 5 on the x-axis), estimations show lower
precision (larger areas). Despite this remark, estimations are always correct.

3 Conclusion
The will for web-services transparency starts to trigger new research works. XRay [4] for instance pro-

poses a correlation algorithm, that aims at inferring to which data input is associated a personalized output
to the user. This Bayesian-based algorithm returns data that are the cause of received ads, while we seek
in this paper to retrieve the internals of a hidden ranking function, in order to assess what is the effect of
topology on the output peer-ranking. We have presented a general framework. Based on the centralities that
might be used by the ranking function, there remain work for the attacker, to find operations (i.e., topologi-
cal updates) that will make the reverse-engineering possible. We also find this to be an interesting challenge
for future research.

Références
[1] S. P. Borgatti and M. G. Everett. A graph-theoretic perspective on centrality. Social networks, 2006.

[2] S. Golliher. How i reverse engineered klout score to an r2 = 0.94. blog post, 2011.

[3] D. Koschützki, K. A. Lehmann, L. Peeters, S. Richter, D. Tenfelde-Podehl, and O. Zlotowski. Network Analysis :
Methodological Foundations, chapter Centrality Indices, pages 16–61. Springer, 2005.

[4] M. Lécuyer, G. Ducoffe, F. Lan, A. Papancea, T. Petsios, R. Spahn, A. Chaintreau, and R. Geambasu. Xray :
Enhancing the web’s transparency with differential correlation. In USENIX Security Symposium, 2014.

