Dynamic nuclear polarization at 40 kHz magic angle spinning - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Physical Chemistry Chemical Physics Année : 2016

Dynamic nuclear polarization at 40 kHz magic angle spinning

Résumé

DNP-enhanced solid-state NMR spectroscopy under magic angle spinning (MAS) is rapidly developing into a powerful analytical tool to investigate the structure of a wide range of solid materials, because it provides unsurpassed sensitivity gains. Most developments and applications of DNP MAS NMR were so far reported at moderate spinning frequencies (up to 14 kHz using 3.2 mm rotors). Here, using a 1.3 mm MAS DNP probe operating at 18.8 T and ∼100 K, we show that signal amplification factors can be increased by up to a factor two when using smaller volume rotors as compared to 3.2 mm rotors, and report enhancements of around 60 over a range of sample spinning rates from 10 to 40 kHz. Spinning at 40 kHz is also shown to increase 29Si coherence lifetimes by a factor three as compared to 10 kHz, substantially increasing sensitivity in CPMG type experiments. The contribution of quenching effects to the overall sensitivity gain at very fast MAS is evaluated, and applications are reported on a functionalised mesostructured organic–inorganic material.

Dates et versions

hal-01304650 , version 1 (20-04-2016)

Identifiants

Citer

Sachin R Chaudhari, Pierrick Berruyer, David Gajan, Christian Reiter, Frank Engelke, et al.. Dynamic nuclear polarization at 40 kHz magic angle spinning . Physical Chemistry Chemical Physics, 2016, 18 (15), pp.10616-10622. ⟨10.1039/C6CP00839A⟩. ⟨hal-01304650⟩
171 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More