M. Kosseva and C. Webb, Food Industry Wastes: Assessment and Recuperation of Commodities, 2013.

B. Cercado-quezada, M. Delia, and A. , Electrochemical micro-structuring of graphite felt electrodes for accelerated formation of electroactive biofilms on microbial anodes, Electrochemistry Communications, vol.13, issue.5, pp.440-443, 2011.
DOI : 10.1016/j.elecom.2011.02.015

B. Cercado-quezada, M. Delia, and A. , Testing various food-industry wastes for electricity production in microbial fuel cell, Bioresource Technology, vol.101, issue.8, pp.2748-2754, 2010.
DOI : 10.1016/j.biortech.2009.11.076

A. Elmekawy, S. Srikanth, S. Bajracharya, H. M. Hegab, P. S. Nigam et al., Food and agricultural wastes as substrates for bioelectrochemical system (BES): The synchronized recovery of sustainable energy and waste treatment, Food Research International, vol.73, pp.213-225, 2015.
DOI : 10.1016/j.foodres.2014.11.045

E. Blanchet, E. Desmond, B. Erable, A. Bridier, T. Bouchez et al., Comparison of synthetic medium and wastewater used as dilution medium to design scalable microbial anodes: Application to food waste treatment, Bioresource Technology, vol.185, pp.106-115, 2015.
DOI : 10.1016/j.biortech.2015.02.097

URL : https://hal.archives-ouvertes.fr/hal-01149751

D. Pant, D. Arslan, G. Van-bogaert, Y. A. Gallego, H. De-wever et al., Integrated conversion of food waste diluted with sewage into volatile fatty acids through fermentation and electricity through a fuel cell, Environmental Technology, vol.157, issue.13-14, pp.1935-1945, 2013.
DOI : 10.1021/es0709167

A. Tenca, R. D. Cusick, A. Schievano, R. Oberti, and B. E. Logan, Evaluation of low cost cathode materials for treatment of industrial and food processing wastewater using microbial electrolysis cells, International Journal of Hydrogen Energy, vol.38, issue.4, pp.1859-1865, 2013.
DOI : 10.1016/j.ijhydene.2012.11.103

S. Chen, G. He, A. A. Carmona-martinez, S. Agarwal, A. Greiner et al., Electrospun carbon fiber mat with layered architecture for anode in microbial fuel cells, Electrochemistry Communications, vol.13, issue.10, pp.1026-1029, 2011.
DOI : 10.1016/j.elecom.2011.06.009

K. Guo, A. H. Soeriyadi, S. A. Patil, A. Prévoteau, S. Freguia et al., Surfactant treatment of carbon felt enhances anodic microbial electrocatalysis in bioelectrochemical systems, Electrochemistry Communications, vol.39, pp.1-4, 2014.
DOI : 10.1016/j.elecom.2013.12.001

T. H. Sleutels, R. Lodder, H. V. Hamelers, and C. J. Buisman, Improved performance of porous bio-anodes in microbial electrolysis cells by enhancing mass and charge transport, International Journal of Hydrogen Energy, vol.34, issue.24, pp.9655-9661, 2009.
DOI : 10.1016/j.ijhydene.2009.09.089

S. Chen, Q. Liu, G. He, Y. Zhou, M. Hanif et al., Reticulated carbon foam derived from a sponge-like natural product as a high-performance anode in microbial fuel cells, Journal of Materials Chemistry, vol.1, issue.35, 2012.
DOI : 10.1039/c2jm33733a

S. Chen, G. He, X. Hu, M. Xie, S. Wang et al., A Three-Dimensionally Ordered Macroporous Carbon Derived From a Natural Resource as Anode for Microbial Bioelectrochemical Systems, ChemSusChem, vol.24, issue.6, pp.1059-1063, 2012.
DOI : 10.1002/cssc.201100783

S. F. Ketep, A. Bergel, A. Calmet, and B. Erable, Stainless steel foam increases the current produced by microbial bioanodes in bioelectrochemical systems, Energy & Environmental Science, vol.134, issue.5
DOI : 10.1039/c3ee44114h

M. Epifanio, S. Inguva, M. Kitching, J. Mosnier, and E. Marsili, Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells, Bioelectrochemistry, vol.106, pp.186-193, 2015.
DOI : 10.1016/j.bioelechem.2015.03.011

E. Kipf, R. Zengerle, J. Gescher, and S. Kerzenmacher, How Does the Choice of Anode Material Influence Electrical Performance? A Comparison of Two Microbial Fuel Cell Model Organisms, ChemElectroChem, vol.39, issue.11, pp.1849-1853, 2014.
DOI : 10.1002/celc.201402036

Y. Liu, F. Harnisch, K. Fricke, R. Sietmann, and U. Schröder, Improvement of the anodic bioelectrocatalytic activity of mixed culture biofilms by a simple consecutive electrochemical selection procedure, Biosensors and Bioelectronics, vol.24, issue.4, pp.1006-1011, 2008.
DOI : 10.1016/j.bios.2008.08.001

B. Erable, M. Roncato, W. Achouak, and A. , Sampling Natural Biofilms: A New Route to Build Efficient Microbial Anodes, Environmental Science & Technology, vol.43, issue.9, pp.3194-3199, 2009.
DOI : 10.1021/es803549v

A. Baudler, S. Riedl, and U. Schröder, Long-Term Performance of Primary and Secondary Electroactive Biofilms Using Layered Corrugated Carbon Electrodes, Frontiers in Energy Research, vol.16, issue.30, 2014.
DOI : 10.1002/chem.200903486

R. Rousseau, X. Dominguez-benetton, M. Délia, and A. , Microbial bioanodes with high salinity tolerance for microbial fuel cells and microbial electrolysis cells, Electrochemistry Communications, vol.33, pp.33-2013
DOI : 10.1016/j.elecom.2013.04.002

URL : https://hal.archives-ouvertes.fr/hal-00875612

R. Rousseau, C. Santaella, W. Achouak, J. Godon, A. Bonnafous et al., Correlation of the Electrochemical Kinetics of High-Salinity-Tolerant Bioanodes with the Structure and Microbial Composition of the Biofilm, ChemElectroChem, vol.9, issue.11, pp.1966-1975, 2014.
DOI : 10.1002/celc.201402153

URL : https://hal.archives-ouvertes.fr/hal-01148582