
HAL Id: hal-01304157
https://hal.science/hal-01304157

Submitted on 19 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Key-escrow resistant ID-based authentication scheme for
IEEE 802.11s mesh networks

Aymen Boudguiga, Maryline Laurent

To cite this version:
Aymen Boudguiga, Maryline Laurent. Key-escrow resistant ID-based authentication scheme for IEEE
802.11s mesh networks. WCNC 2011 : IEEE Wireless Communications and Networking Conference,
Mar 2011, Cancun, Mexico. pp.784 - 789, �10.1109/WCNC.2011.5779232�. �hal-01304157�

https://hal.science/hal-01304157
https://hal.archives-ouvertes.fr

Key-escrow Resistant ID-based Authentication
Scheme for IEEE 802.11s Mesh Networks

Aymen Boudguiga, Maryline Laurent
Institut TELECOM, TELECOM SudParis, CNRS Samovar UMR 5157

9 rue Charles Fourier, 91011 Evry, France
Email: {Aymen.Boudguiga, Maryline.Laurent}@it-sudparis.eu

Abstract—Nowadays, ID-based cryptography is re-
ported as an alternative to Public Key Infrastructures
(PKI). It proposes to derive the public key from the
node’s identity directly. As such, there is no need for
public key certificates, and direct benefit of this is to
remove the burdensome management of certificates.
However, the drawback is the need for a Private Key
Generator (PKG) entity which can perform a key
escrow attack. In this article, we present an ID-based
authentication scheme that is adapted to the IEEE
802.11s mesh networks and resistant against key escrow
attacks.

I. Introduction
ID-based cryptography was initially introduced by A.

Shamir [1] to provide entities with public/private key pairs
with no need for certificates, Certification Authority (CA)
and PKI. Shamir assumes that each entity uses a pair
of its identifiers as its public key. These identifiers have
to be unique. In addition, he assigned the private key
generation function to a special entity which is called
Private Key Generator (PKG). That is, before accessing
the network, every entity has to contact the PKG to get
back a smart card containing its private key. This private
key is computed so it is bound to the public key of the
entity.
During the last decade, the ID-based cryptography has
been enhanced by the use of the Elliptic Curve Cryptogra-
phy (ECC) [2]. As a consequence, new ID-based signature
schemes emerged and they differ from Shamir’s method in
that the PKG does not rely on smart cards to store the
private key and the ciphering information.
Note that ID-based cryptography requires lightweight im-
plementations on clients. Compared to PKI certificate
management, there is no need for storing certificates,
and the key revocation operation is much simpler. Key
revocation in ID-based cryptography is bound to a validity
period which is defined by the PKG. Interested readers
might refer to the article [3] for a good comparison between
PKI and ID-based cryptography.
The main problem of ID-based cryptography lies on the
PKG which fully generates the private key of every entity,
and as such, is given the knowledge to perform a key
escrow attack. With the usual strong assumption that
the PKG is a trustworthy entity like in IEEE 802.11s
mesh network standards [4], this attack has never been

considered seriously. Nonetheless, the PKG can easily
impersonate as the legitimate station (STA) or decrypt
the latter’s ciphered traffic.
In this article, we present a new ID-based authentication
mechanism for IEEE 802.11s mesh networks. The main
idea is to authenticate every station by an Authentication
Server (AS) which delegates the station key generation to
the PKG. We propose to make the PKG generate a partial
private key for every station. Then, the concerned station
uses this partial private key as a base to compute its own
private key. In the following, we show how this partial
private key generation avoids the key escrow threat of the
PKG.
The article is organised as follows. After presenting the
ID-based cryptography, we introduce the IEEE 802.11s
mesh architecture. Then we present our authentication
scheme followed by its security analysis and its possible
enhancements. Finally conclusions are given.

II. ID-based Key Generation and Signatures
When a node requires a private key, it provides the

PKG with the identity 𝐼𝐷 that it intends to use for
its private key computation. The PKG then derives the
node’s private key using some parameters which must be
defined in respect to the Bilinear Diffie-Hellman problem
[5]. In order to generate these parameters, the PKG runs
a Probabilistic Polynomial Time (PPT) algorithm which
takes as input a security parameter 𝑘 and outputs the
groups 𝐺1 and 𝐺2 and the pairing function 𝑒 from 𝐺1 ×𝐺1
in 𝐺2. 𝐺1 is an additive group of prime order 𝑞 and 𝐺2 is a
multiplicative group of the same order 𝑞. Generally, 𝐺1 is a
subgroup of the group of points of an Elliptic Curve (EC)
over a finite field and 𝐺2 is a subgroup of a multiplicative
group of a related finite field.
The pairing function 𝑒 has to be bilinear, non degenerate
and efficiently computable. The non degeneracy property
means that there exists a point 𝑃 ∈ 𝐺1 such that
𝑒(𝑃, 𝑃) ̸= 1𝐺2 . The point 𝑃 is used to compute another
point 𝑃𝑝𝑢𝑏. Practically this kind of bilinear mapping is
derived from the Weil or Tate pairing [6].
In addition to the groups definition, some hash functions
need to be defined in accordance to the ID-based signature
or encryption schemes that are going to be used. For
example a hash function 𝐻 that verifies 𝐻 : {0, 1}* → 𝐺1
is defined in order to transform the node’s identity into an

EC point. The list containing the groups 𝐺1 and 𝐺2, the
bilinear mapping 𝑒, the points 𝑃 and 𝑃𝑝𝑢𝑏 and the hash
functions forms the public elements. These public elements
are distributed by the PKG to the network users because
they are required during the public key derivation and the
signature operation.
The key derivation operation starts when the PKG re-
ceives the 𝐼𝐷 of the node that is requesting a private key.
First, the PKG computes the user’s public key as 𝑃𝑢𝑏𝐼𝐷 =
𝐻(𝐼𝐷). Then, the PKG generates the corresponding pri-
vate key using a local secret value 𝑠 ∈ Z*

𝑞 . Note that the
private key is computed as: 𝑃𝑟𝑖𝑣𝐼𝐷 = 𝑠·𝑃𝑢𝑏𝐼𝐷. The secret
value 𝑠 is also used for 𝑃𝑝𝑢𝑏 derivation from 𝑃 : 𝑃𝑝𝑢𝑏 = 𝑠·𝑃 .
It is clear from the aforementioned key derivation scheme
that the PKG is going to know every private key that it
generates. This supposes that the PKG is a trustworthy
entity which is not going to impersonate as the private key
owner by generating signature or deciphering encrypted
traffic aimed to the legitimate station. Generally, stations
must ensure that the PKG is not going to make a key
escrow attack.

A. Paterson Signature Scheme
K.G. Paterson proposed in 2002 an ID-based signature

scheme using ECC [7]. He defines three hash functions
𝐻1, 𝐻2 and 𝐻3 such that: 𝐻1 : {0, 1}* → 𝐺1, 𝐻2 :
{0, 1}* → Z*

𝑞 and 𝐻3 : 𝐺1 → Z*
𝑞 . So, Paterson public

elements are {𝐺1, 𝐺2, 𝑞, 𝑒, 𝑃, 𝑃𝑝𝑢𝑏, 𝐻1, 𝐻2, 𝐻3}. The PKG
computes the user’s public key as 𝑃𝑢𝑏𝐼𝐷 = 𝐻1(𝐼𝐷). Then,
the PKG generates the corresponding private key using a
local secret value 𝑠 ∈ Z*

𝑞 .
In order to compute the signature of a message 𝑀 , a
user generates a secret random 𝑘 ∈ Z*

𝑞 and computes its
signature as the pair (𝑅, 𝑆) ∈ 𝐺1 × 𝐺1 where: 𝑅 = 𝑘 · 𝑃 ,
𝑆 = 𝑘−1(𝐻2(𝑀) · 𝑃 + 𝐻3(𝑅) · 𝑃𝑟𝑖𝑣𝐼𝐷).
The signature verifier has only to compare 𝑒(𝑅, 𝑆) to
𝑒(𝑃, 𝑃)𝐻2(𝑀)· 𝑒(𝑃𝑝𝑢𝑏, 𝑃𝑢𝑏𝐼𝐷)𝐻3(𝑅). The two values must
be equal in order to consider the signature as valid.

B. Hess Signature Scheme
F. Hess presented its ID-based signature scheme in

2003 [8]. His signature scheme keeps the previous public
parameters definition but it replaces 𝐻2 and 𝐻3 by a new
hash function that we denote as 𝐻4 : {0, 1}* × 𝐺2 → Z*

𝑞 .
In order to sign a message 𝑀 , the user chooses an arbitrary
point 𝑃1 ∈ 𝐺*

1 and a random number 𝑘 ∈ Z*
𝑞 . In addition,

it executes the following steps:
1) 𝑟 = 𝑒(𝑃1, 𝑃)𝑘

2) 𝑣 = 𝐻4(𝑀, 𝑟)
3) 𝑈 = 𝑣 · 𝑃𝑟𝑖𝑣𝐼𝐷 + 𝑘 · 𝑃1

The signature is formed by the pair (𝑈, 𝑣) ∈ 𝐺1 × Z*
𝑞 .

The signature verifier then has to compute:
1) 𝑟 = 𝑒(𝑈, 𝑃) · 𝑒(𝑃𝑢𝑏𝐼𝐷, −𝑃𝑝𝑢𝑏)𝑣

2) The signature is accepted if and only if 𝑣 = 𝐻4(𝑀, 𝑟)
Integration of this ID-based signature scheme into an EAP
authentication method was submitted by Wenju et al. in
2009 [9].

III. IEEE 802.11s Mesh Network Architecture

The IEEE 802.11s mesh network architecture is based
on the IEEE 802.11 architecture which is formed by
Stations (STAs), Access Points (APs) and a Distribution
System (DS) [10]. In 802.11, every AP offers connectivity
to a number of STAs and forms a Basic Service Set (BSS).
The DS serves to interconnect different BSSs through a
wired network.
The IEEE 802.11s standard introduces modifications to
the 802.11 architecture. First, the wired DS is replaced
by a backbone composed of a set of wireless Mesh Points
(MPs) (called also Mesh Routers or Mesh STA - MSTA).
These wireless MPs provide multi-hop paths and peer
to peer communications between the Mesh APs (MAPs).
A MAP has the same capability as a traditional AP
combined with a mesh router function. Mesh points which
offer connectivity to external networks (either 802 LANs
or layer 3 networks) are called Mesh Portals (MPP) or
Gateways. All these components (MPs, MAPs and MPPs)
form the Mesh BSS (MBSS).
The 802.11s architecture defines new functions for some
mesh STAs in order to provide security services such
as station authentication and key derivation. The first
function is the Mesh Authenticator (MA) which acts as
a pass-through server for the supplicant mesh STA by
forwarding its authentication frames to the network Au-
thentication Server (AS). The functions of “supplicant”,
“authenticator” and “authentication server” are inherited
from the EAP standard [11]. In addition, the standard
defines the Mesh Key Distributor (MKD) as the entity
that derives the keys needed for the 4-Way Handshake
that occurs between the MA and the supplicant mesh
STA. The MKDs serve to distribute the key derivation
function that was used to be performed by the AS (in
IEEE 802.11 networks). Each MA must be connected to
an MKD because the latter is going to provide the former
with the key needed to secure the communication with the
supplicant.
When a mesh STA joins the network, it chooses a MA
which will act as a pass-through server for its EAP message
sent to the AS. The supplicant STA authenticates itself
with the AS using a 802.1X authentication [12]. It sends
EAP frames to the MA encapsulated using the EAPOL
protocol defined in [12]. The first EAP frame is the
EAPOL-start frame and the upcoming frames represent
responses to the AS requests. The MA uses the Mesh EAP
Message Transport Protocol to transport the EAP frames
to the MKD which transfers them to the AS [4]. The Mesh
EAP Message Transport Protocol was defined to provide
multi-hop EAP frame transport because EAP is a one-hop
protocol. In fact, EAP frames are traditionally exchanged
between the supplicant (e.g. a STA) and the authenticator
(e.g. an AP). Then, they are encapsulated over RADIUS
or Diameter in order to be transferred to the AS. The
Mesh EAP Message Transport Protocol uses the mesh EAP
encapsulation frame which is a multi-hop action frame.
The AS uses the reverse path to send EAP Requests to

the supplicant. When the mesh STA authentication ends
successfully, the AS delegates the key derivation to the
MKD. The MKD and the supplicant mesh STA create the
key hierarchy corresponding to the supplicant.
The standard assumes that there is a security association
between the different authentication entities: AS-MKD,
MKD-MA. In addition, another security association is
created between the MA and the supplicant mesh STA
after a successful authentication of the latter by the
AS. Figure 1 illustrates the different entities that are
used during the 802.11s station authentication and key
derivation operations. Moreover, these entities do serve our
authentication scheme presented in section IV-A.

Fig. 1. IEEE 802.11s security components.

IV. ID-based Authentication Scheme
Nowadays, most of the authentication schemes that

are being proposed for wireless networks uses the 802.1X
standard [12]. The authentication method proposed by
this standard are either based on the verification of a secret
shared between two STAs or a signature mechanism that
uses certificates to authenticate the public/private key pair
used for signing. Management of public/private key re-
quires deploying CAs to control the generation, revocation
and duration of certificates. This is disadvantageous in
wireless environments, such as ad-hoc and mesh networks,
where stations may have some power and memory con-
straints and CA reachability is not guaranteed.
To mitigate these disadvantages while keeping usage of
public/private key, we propose a new ID-based authentica-
tion scheme which permits STA to authenticate itself to an
AS when it initially joins the network. The authentication
is based on the assumption that the AS and the supplicant
STA are initialized with a shared secret (i.e. a password).
That is, the AS and the STA are using the ID-based
cryptography concepts in order to exchange this password
and to derive the keys needed to secure the exchanged
messages.
When STA (or MSTA) joins the network for the first
time, it starts an authentication with the AS. During this
authentication, the STA and the AS verify alternatively

their passwords. If the authentication is successful, the
AS orders the MKD to generate the STA private key as
described in section IV-A. For subsequent authentications,
the STA uses a signature mechanism to authenticate itself
to any peers.
While adapting the ID-based cryptography concepts to the
802.11s mesh architecture, we faced the problem of the key
escrow attack that could be performed by the MKD. In
fact, the MKD is able to deduce either the AS private key
or any STA private key because we use it as a PKG, and
by definition the PKG generates every STA private key.
As such, the MKD is able to impersonate as the AS or the
STA. To counteract these possible impersonation attacks,
we proposed a mechanism that uses a token. That is, the
MKD only generates a partial private key for the STA
while the STA generates the other part of its private key
using a secret that is bound to the information included
in the token. In addition, we enhanced the public elements
with a new EC point that is only used for the AS signature
verification. The AS secretly computes this point 𝑃𝐴𝑆 and
its corresponding private key. In fact, the AS does not rely
on the MKD for its private key computation. Furthermore,
the AS is in charge of defining the public elements and
distributing them over the different MKDs.
First, the AS runs a Probabilistic Polynomial Time (PPT)
algorithm as cited in section II. This algorithm generates
the groups 𝐺1 and 𝐺2 and the bilinear mapping 𝑒. The
AS then extends these elements with the hash functions
and the two public EC points 𝑃 and 𝑃𝑝𝑢𝑏 in order to get
the public elements which are necessary for the ID-based
cryptography usage.
The point 𝑃𝐴𝑆 is computed such that 𝑃𝐴𝑆 = 𝑠𝐴𝑆 ·𝑃 where
𝑠𝐴𝑆 ∈ Z*

𝑞 is a secret only known by AS and it verifies
𝑠𝐴𝑆 ̸= 𝑠. As such, every STA is able to verify an AS
signature which is computed using its 𝑃𝑟𝑖𝑣𝐴𝑆 . To do so,
the STA has only to replace 𝑃𝑃 𝑢𝑏 by 𝑃𝐴𝑆 in Paterson or
Hess signature schemes. The interest of introducing 𝑃𝐴𝑆

is to avoid that the MKD impersonates as the AS. Of
course, the AS entrusts the MKDs for the STAs partial
private key derivation. That is why, the AS provides MKDs
with the public elements and the secret 𝑠 used for 𝑃𝑝𝑢𝑏

computation. However, it does not provide the secret 𝑠𝐴𝑆 ,
nor it does not use the same secret 𝑠 to compute the AS
private key such that 𝑃𝑟𝑖𝑣𝐴𝑆 = 𝑠 · 𝑃𝑢𝑏𝐴𝑆 . Otherwise,
every MKD would be able to impersonate as the AS and to
recover the STAs passwords during their authentications.
The MKD generates a partial private key using the STA
public key and the secret 𝑠 received from the AS. When
receiving this partial private key, the STA has to combine
it with a secret random 𝑟 to generate its full private key
𝑃𝑟𝑖𝑣𝑆𝑇 𝐴. This random value was previously sent with
privacy to AS. In fact, the STA sends (𝑟 · 𝑃) to the AS.
The STA then requires from the AS to generate a token
that contains (𝑟 · 𝑃), the lifetime of the private key being
computed and its identity.

A. Station Initial Authentication
The initial authentication occurs when STA joins the

network for the first time or after being disconnected for
a while. To perform an ID-based authentication, the STA
must first get the public elements that are published by
the AS. Then STA authenticates itself to the AS using a
preshared secret. This secret may be a password, and is
noted as pwd in our authentication scheme.
Note that the public elements are defined accord-
ing to the selected ID-based signature scheme. If Pa-
terson signature scheme is in use, the public ele-
ments are: {𝐺1, 𝐺2, 𝑒, 𝐻1, 𝐻2, 𝐻3, 𝑃, 𝑃𝑝𝑢𝑏, 𝑃𝐴𝑆}. If Hess
signature scheme is used, the public elements are:
{𝐺1, 𝐺2, 𝑒, 𝐻1, 𝐻4, 𝑃, 𝑃𝑝𝑢𝑏, 𝑃𝐴𝑆}. These parameters are
used for signature or keys computations.
When STA initially joins the network, it receives the
Beacon frames from its one-hop neighbors. The Beacon
frame contains the Mesh Security Capability information
element [4]. This information element indicates whether
the sender of the Beacon is an MA. In addition, it indicates
the MKD domain to which this MA is connected. Based
on the configuration information carried in the received
Beacon, the newly arrived STA selects the MA which is
going to relay its authentication frames. The Beacon frame
gives the STA information about its future MA clock so
that the STA synchronizes its clock according to the MA’s
one. Clock synchronization is important in order to get
accurate timestamps. After choosing its MA, the STA
starts the authentication scheme presented in Figure 2.

∙ Message 1: this message is sent to the AS. This

Fig. 2. ID-based authentication scheme.

message is referenced as the Start-authentication message.
This first message like all the subsequent authentication
messages transits through the MA.
The supplicant STA includes a nonce 𝑛1, a timestamp
𝑡1 and its identity (𝐼𝐷𝑆𝑇 𝐴) in this message. The 𝑛1 is
chosen randomly to prove the freshness of the message
especially when it is combined with the timestamp 𝑡1.
These two values are used to prevent from replay attacks.
The identity 𝐼𝐷𝑆𝑇 𝐴 represents the identity which is going
to be used for the STA public key derivation.

In order to avoid a DoS attack on the AS, we suppose that
the MA is only accepting a certain number of requests
𝑇0 coming from the same STA during a certain period of
time. In addition, the AS does not accept more than 𝑇1
authentication requests coming from the same MA.
When the AS receives this message 1, it checks the times-
tamp 𝑡1 value in order to verify the message freshness.
Then it looks for the STA 𝑝𝑤𝑑 in its password database
using the received identity 𝐼𝐷𝑆𝑇 𝐴. The AS uses this 𝑝𝑤𝑑
for generating message 2.
∙ Message 2: it is generated by the AS as a response to
message 1. It contains a sequence number 𝑛2 such that
𝑛2 = 𝑛1 + 1, a timestamp 𝑡2, the current public elements
and an AS signature. The AS signature is computed over
the string formed by the concatenation of 𝑛2, 𝑡2, the public
elements and the STA pwd. The pwd is included in the
signature only.
When the supplicant STA receives message 2, it verifies
its freshness by checking the value of 𝑡2. In addition, it
verifies the value of 𝑛2 because it is used to bind message
2 to message 1. Then it uses the public elements to derive
the AS’s public key 𝑃𝑢𝑏𝐴𝑆 . The public key derivation
consists in hashing the identity of the AS using 𝐻1. The
STA concatenates its 𝑝𝑤𝑑 to 𝑛2, 𝑡2 and the public elements
before checking the validity of the AS signature. If the
signature verification is successful, the STA authenticates
the AS and the public elements. Else, the STA stops the
authentication processing.
∙ Message 3: the supplicant STA chooses two random
numbers 𝑟1 and 𝑟2. The random value 𝑟1 will be sent to
the AS. It will be used during the key encoding by the
MKD. However, the random value 𝑟2 is kept secret by
the STA because it will be used for the STA private key
computation in conjunction with the partial key received
from the MKD.
The supplicant STA then computes (𝑟2 · 𝑃) and gener-
ates message 3. Message 3 contains the sequence number
𝑛3 = 𝑛1 + 2, the timestamp 𝑡3, the random 𝑟1, the point
(𝑟2 ·𝑃), the 𝑝𝑤𝑑 and a validity period which represents the
STA proposed lifetime (𝐿) for its upcoming private key. All
these fields are ciphered using the AS public key 𝑃𝑢𝑏𝐴𝑆 .
When receiving this message, the AS authenticates the
STA using the 𝑝𝑤𝑑.
∙ Message 4: after successfully authenticating STA, the
AS sends 𝑟1 and a challenge 𝐶 to the MKD for partial
private key generation. These elements are sent encrypted
using 𝑃𝑢𝑏𝑀𝐾𝐷. This MKD can be identified thanks to
the identity of the MA which is attached to it. Each MA
connects only to one MKD.
When receiving message 4 from the AS, the MKD verifies
that the timestamp 𝑡4 is valid and it stores the sequence
number 𝑛4 = 𝑛1 + 3 for the upcoming message (message
5). Note that the same sequence number is going to be
used in message 5 to easily identify request and response
messages between the supplicant STA and the AS. In
addition, the MKD generates the STA partial private key
as 𝑃𝑎𝑟𝑡_𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 = 𝑠 · 𝑃𝑢𝑏𝑆𝑇 𝐴.
∙ Message 5: after generating the STA partial private

key, the MKD encodes it as 𝐸𝑛𝑐𝑃 𝑟𝑖𝑣 = 𝑃𝑎𝑟𝑡_𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 +
(𝑟1 · 𝑠 · 𝑃). Recovering 𝑃𝑎𝑟𝑡_𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 from the encoded
private key is equivalent to solving the Elliptic Curve
Discrete Logarithm Problem (ECDLP) [2]. The encoded
partial key is then signed by the MKD before being sent
in message 5 to the STA. Message 5 contains also a
timestamp 𝑡5 and the same sequence number as in message
4 (𝑛5 = 𝑛4 = 𝑛1 +3). In addition, it contains the challenge
𝐶. This challenge will be used to prove that the STA
recovery of its private key is successful.
When receiving message 5, the STA which knows 𝑟1
and 𝑃𝑝𝑢𝑏 recovers its partial private key, as follows:
𝑃𝑎𝑟𝑡_𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 = 𝑃𝑎𝑟𝑡_𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 + (𝑟1 · 𝑠 · 𝑃) − (𝑟1 ·
𝑃𝑝𝑢𝑏). Consequently, the supplicant STA becomes able
to compute its full private key as 𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 = 𝑟−1

2 ·
𝑃𝑎𝑟𝑡_𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 = 𝑟−1

2 · 𝑠 · 𝑃𝑢𝑏𝑆𝑇 𝐴.
∙ Message 6: at this point, the STA requests a token from
the AS. The STA includes the signature of the challenge 𝐶
with its 𝑃𝑟𝑖𝑣𝑆𝑇 𝐴 using one of the signature schemes that
are presented in the section IV-B. This message contains
also the sequence number 𝑛6 = 𝑛1 + 4 and a timestamp
𝑡6. Upon receiving message 6, the AS checks the values of
the sequence number and the timestamp. In addition, it
verifies the STA signature of the challenge. If the signature
is valid, the AS deduces that the supplicant STA has
successfully derived its private key. As a consequence, the
AS generates the STA token. The elements that will be
part of the token include the STA identity, the point
(𝑟2 ·𝑃), the lifetime of the STA private key (L) and the AS
timestamp 𝑡7. (token=𝑆𝑖𝑔𝑛𝑃 𝑟𝑖𝑣𝐴𝑆

{𝐼𝐷𝑆𝑇 𝐴‖𝑟2 · 𝑃‖𝑡7‖𝐿}).
∙ Message 7: it is sent by the AS to complete the
authentication and to deliver the token to the STA. It is
called the Authentication-success message. It contains the
sequence number 𝑛7 = 𝑛1 + 5, the timestamp 𝑡7 and the
signed token.
After getting its token, the STA starts communicating
with its peers. It can use one of the modified signature
schemes with its token to authenticate itself with any peer.
The modified signature schemes are Paterson and Hess
signature schemes that have been adapted to the presence
of the token as presented in the section IV-B.

B. Signature Modification
After its authentication to the AS, STA uses a signature

mechanism along with a token to authenticate itself to
its peer STAs. That is, we modified some of the existing
signature schemes so they are tightly related to the token
and especially to the value of (𝑟2 · 𝑃) and the secret 𝑟2.
As such, the signature sent by STA makes it possible for
the peer STAs to verify that the STA owns the private key
bound to the value (𝑟2 · 𝑃) given within the token.
When STA 𝐴 wants to authenticate STA 𝐵, 𝐴 sends a
challenge to 𝐵 encrypted with 𝑃𝑢𝑏𝐵 which is deduced
from the identity of 𝐵. Then, 𝐵 must respond with a
message containing its signature of the challenge and a
copy of its token. The signature validity depends on the
value of (𝑟2 ·𝑃) included in the token. In fact, the signature

modification concerns the use of the secret value 𝑟2 by
the signer and the use of (𝑟2 · 𝑃) by the verifier. So if
the signature is valid, the verifier deduces that the signer
knows the true value of the secret 𝑟2 and it was successfully
authenticated by the AS.
In the following we present the modifications that we
introduced to the different signature schemes in order to
include the use of the STA secret element 𝑟2:
∙ In Paterson signature scheme, a user computes the
signature of a message 𝑀 as the pair (𝑅, 𝑆) ∈ 𝐺1 × 𝐺1
where: 𝑅 = 𝑟2 · 𝑃, 𝑆 = 𝑟−1

2 · 𝐻2(𝑀) · 𝑃 + 𝐻3(𝑅) · 𝑃𝑟𝑖𝑣𝐼𝐷.
But only the 𝑆 is sent to the verifier because the lat-
ter gets the 𝑅 value from the token. The verification
is not changed and consists in comparing 𝑒(𝑅, 𝑆) to
𝑒(𝑃, 𝑃)𝐻2(𝑀)· 𝑒(𝑃𝑝𝑢𝑏, 𝑃𝑢𝑏𝐼𝐷)𝐻3(𝑅). The two values must
be equal in order to consider the signature as valid.
∙ When Hess signature scheme is chosen, the user picks an
arbitrary point 𝑃1 ∈ 𝐺*

1 and a random 𝑘 ∈ Z*
𝑞 . In addition,

it executes the following steps:
1) 𝑟 = 𝑒(𝑃1, 𝑃)𝑘

2) 𝑣 = 𝐻4(𝑀, 𝑟)
3) 𝑈 = 𝑣 · 𝑃𝑟𝑖𝑣𝐼𝐷 + 𝑟−1

2 · 𝑘 · 𝑃1

The signature is formed by the pair (𝑈, 𝑣) ∈ 𝐺1 × Z*
𝑞 .

The signature verifier then has to compute:
1) 𝑟 = 𝑒(𝑈, 𝑟2 · 𝑃) · 𝑒(𝑃𝑢𝑏𝐼𝐷, −𝑃𝑝𝑢𝑏)𝑣

2) The signature is accepted if and only if 𝑣 = 𝐻4(𝑀, 𝑟)
Any ID-based signature can be changed to take into
consideration the presence of the token. In fact, these
modification can be applied to any signature scheme that
relies on a pairing function 𝑒. We only have to add the
secret 𝑟2 to the signature generation process. In addition,
we have to modify the signature verification algorithm in
order to use (𝑟2 ·𝑃). The point is that 𝑟2 and 𝑟−1

2 disappear
when multiplication is used in 𝐺2.

C. Security Discussion
In this section, we present how the aforementioned

authentication protocol removes some attacks and how it
can be enhanced to remove other threats:
∙ Denial of service attack (DoS): To avoid that an attacker
makes a DoS attack against the AS by sending a big
amount of Start-authentication messages, we decided to
limit the number of authentication requests to a threshold
𝑇0 at the level of the MA and to a threshold 𝑇1 at the level
of the AS. In fact, the MA accepts only 𝑇0 authentication
requests coming from the same supplicant STA during
a certain period of time. In addition, the AS limits the
number of authentication requests coming from the same
MA to 𝑇1. When the number of authentication requests
exceeds 𝑇0 or 𝑇1, the MA or the AS drops all the upcoming
packets received from the supplicant STA or the MA
respectively.
The use of 𝑇0 at the MA level removes DoS attacks but
does not help against Distributed DoS attack (DDoS).
In fact, an attacker may control many STAs and launch
a DDoS attack against the AS by sending many Start-
authentication messages corresponding to different (zom-

bie) STAs under control. The aim of the attack is to flood
the AS with a big amount of authentication requests. That
is why, we proposed to use the second threshold 𝑇1 at the
level of the AS.
∙ Replay attack: The random number initially selected
combined with the timestamp value serve to prevent from
replay attacks. In fact, after receiving the Beacon from
its peer MA, the supplicant STA receives a timestamp
Delta value Δ. This Δ is used to verify the freshness of
the received and sent message as presented in [13]. For
example, when a supplicant STA sends its first Start-
authentication message containing a nonce 𝑛1 and a times-
tamp 𝑡1, the receiving AS compares the reception time
(𝑡𝑟𝑒𝑐𝑒𝑝) of the message to the timestamp 𝑡1 using Δ as
follows: |𝑡𝑟𝑒𝑐𝑒𝑝 − 𝑡1|< Δ. If this inequality does not hold,
the AS rejects the received message. In addition, every
STA stores the last reception time and timestamp values
received from its peers for future timestamp verification.
Even with the use of Δ, a window of vulnerability for
replay attacks exists until the timestamp expires. That is
why we introduced the nonce 𝑛1 in the first message. In
fact, as 𝑛1 is randomly selected, it adds more freshness to
the message. In addition, we impose the rule that 𝑛1 must
be renewed for every authentication request sent during
a Δ period which starts when the first authentication
request is sent. We assume that this random number is
at least 128 bit length which implies that the probability
of getting the same random number for two consecutive
authentications is equal to 1/2128. For the upcoming mes-
sage, 𝑛1 will be used to initiate a sequence number which
increases the prevention against replay attacks.
∙ Private key recovery by an attacker : Concerning the
private key recovery, an attacker needs first to recover the
partial private key of the STA. He may get the encoded
private key of a supplicant but he has to find the secret 𝑟1
in order to recover the partial private key of the supplicant.
The problem of finding 𝑟1 is equivalent to the discrete
logarithm problem over an elliptic curve group (ECDLP)
[2]. In addition, the full private recovery requires from an
attacker to guess 𝑟2 from (𝑟2 · 𝑃) value which comes also
to solve the ECDLP.
∙ Key escrow attack: In order to avoid the key escrow prob-
lem, every STA participates to the private key generation
with a secret value 𝑟2. This secret is included in the public
token but after being multiplied by the point 𝑃 . So neither
the AS nor the MKD are able to compute the private key
corresponding to (𝑟2 ·𝑃). Note that the AS can technically
generate a fake token with a fake (𝑟′

2 · 𝑃) in order to
impersonate as STA, however, this is in contradiction with
the assumption that the AS must be trustworthy.

D. Protocol enhancement
The proposed authentication mechanism can be en-

hanced to include the usage of a secret value 𝑠𝑖 correspond-
ing to each 𝑀𝐾𝐷𝑖. This implies that every MKD domain
will be differentiated by its own public elements. The
distribution of the secrets 𝑠𝑖 to the 𝑀𝐾𝐷𝑖 is controlled

by the AS. This modification may be interesting in the
case where the AS wants to localize every STA using its
key pair or to identify STA movements during handover
process.
In addition, the public key of STA may become dy-
namic by modifying the public key generation as follows:
𝑃𝑢𝑏𝐼𝐷 = 𝐻(𝐼𝐷‖𝑟2 · 𝑃). In fact, the public key becomes
bound to its corresponding private key because it will
contain (𝑟2 · 𝑃).

V. Conclusion
In this paper, we present an ID-based authentication

scheme for a mesh network station STA to authenticate
and initialize its key pair while removing the key escrow
attack. To closely match the IEEE 802.11s mesh network
needs, we adapted our authentication scheme to the IEEE
802.11s mesh architecture by assigning a specific role to
the Mesh Key Distributor (MKD). Our future works are
focusing on validating the proposed protocol and testing
its performance in terms of time and computation power.
Also evaluation of its scalability and ease of deployment
is part of our perspectives.

References
[1] A. Shamir, “Identity-based cryptosystems and signature

schemes,” in Proceedings of CRYPTO 84 on Advances in cryp-
tology. New York, NY, USA: Springer-Verlag New York, Inc.,
1985, pp. 47–53.

[2] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic
Curve Cryptography. Secaucus, NJ, USA: Springer-Verlag New
York, Inc., 2003.

[3] K. G. Paterson and G. Price, “A comparison between traditional
public key infrastructures and identity-based cryptography,”
Royal Holloway University of London, Tech. Rep., 2003.

[4] IEEE P802.11s/D2.06: Part 11: Wireless LAN MAC and Physi-
cal layer specifications. Amendment 10: Mesh networking, IEEE
Working Draft Proposed Standard, Rev. 2.06, jan 2009.

[5] J. Baek, J. Newmarch, R. Safavi-naini, and W. Susilo, “A survey
of identity-based cryptography,” in Proc. of Australian Unix
Users Group Annual Conference, 2004, pp. 95–102.

[6] D. Boneh and M. K. Franklin, “Identity-based encryption from
the weil pairing,” in CRYPTO ’01: Proceedings of the 21st
Annual International Cryptology Conference on Advances in
Cryptology. London, UK: Springer-Verlag, 2001, pp. 213–229.

[7] K. G. Paterson, “Id-based signatures from pairings on elliptic
curves,” Electronics Letters, vol. 38, no. 18, pp. 1025 – 1026, 29
2002.

[8] F. Hess, “Efficient identity based signature schemes based on
pairings,” in SAC ’02: Revised Papers from the 9th Annual
International Workshop on Selected Areas in Cryptography.
London, UK: Springer-Verlag, 2003, pp. 310–324.

[9] L. Wenju, S. Yuzhen, and W. Ze, “A wireless mesh network
authentication method based on identity based signature,” in
Wireless Communications, Networking and Mobile Computing,
2009. WiCom ’09. 5th International Conference on, 24-26 2009,
pp. 1 –4.

[10] IEEE Std 802.11-2007: Part 11: Wireless LAN MAC and Phys-
ical layer specifications, IEEE Standard, Rev. Revision of IEEE
Std 802.11-1999, jun 2007.

[11] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and
H. Levkowetz, “Extensible Authentication Protocol (EAP),”
RFC 3748 (Proposed Standard), Internet Engineering Task
Force, Jun. 2004, updated by RFC 5247. [Online]. Available:
http://www.ietf.org/rfc/rfc3748.txt

[12] IEEE Std 802.1X-2004: Port Based Network Access Control,
IEEE Standard, dec 2004.

[13] J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor
Discovery (SEND),” RFC 3971 (Proposed Standard), Mar.
2005. [Online]. Available: http://www.ietf.org/rfc/rfc3971.txt

