UP versus NP
Frank Vega

To cite this version:

Frank Vega. UP versus NP. 2016. hal-01304025v2

HAL Id: hal-01304025
https://hal.archives-ouvertes.fr/hal-01304025v2
Submitted on 29 Apr 2016 (v2), last revised 12 Oct 2018 (v8)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
UP versus NP

Frank Vega

Abstract

The class equivalent-P contains those languages that are ordered-pairs of instances of two specific problems in P; such that the elements of each ordered-pair have the same solution, which means, the same certificate. The class equivalent-UP has almost the same definition, but in each case we define the pair of languages explicitly in UP. In addition, we define the class double-NP as the set of languages that contain each instance of another language in NP, but in a double way, that is, in form of a pair with two identical instances. We show that UP = NP using these classes.

Keywords: P, UP, NP, logarithmic space
2000 MSC: 68-XX, 68Qxx, 68Q15

Introduction

P versus NP is a major unsolved problem in computer science [1]. This problem was introduced in 1971 by Stephen Cook [2]. It is considered by many to be the most important open problem in the field [1]. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [1].

In 1936, Turing developed his theoretical computational model [2]. The deterministic and nondeterministic Turing machines have become in two of the most important definitions related to this theoretical model for computation. A deterministic Turing machine has only one next action for each step defined in its program or transition function [3]. A nondeterministic Turing machine could contain more than one action defined for each step of its program, where this one is no longer a function, but a relation [3].

Another huge advance in the last century has been the definition of a complexity class. A language over an alphabet is any set of strings made up of symbols from that alphabet [4]. A complexity class is a set of problems, which are represented as a language, grouped by measures such as the running time, memory, etc [4].

In the computational complexity theory, the class P contains those languages that can be decided in polynomial time by a deterministic Turing machine [5]. The class NP consists on those languages that can be decided in polynomial time by a nondeterministic Turing machine [5].

The biggest open question in theoretical computer science concerns the relationship between these classes:

Is P equal to NP?
Another major complexity class is \(UP \). The class \(UP \) has all the languages that are decided in polynomial time by a nondeterministic Turing machines with at most one accepting computation for each input [6]. The nondeterministic Turing machines which decide the languages in the class \(UP \) are called unambiguous machines [3]. It is obvious that \(P \subseteq UP \subseteq NP \) [3]. Whether \(P = UP \) is another fundamental question that it is as important as it is unresolved [3]. All efforts to solve the \(P \) versus \(UP \) problem have failed [3]. Nevertheless, we prove that \(UP = NP \).

1. Theoretical notions

Let \(\Sigma \) be a finite alphabet with at least two elements, and let \(\Sigma^* \) be the set of finite strings over \(\Sigma \) [2]. A Turing machine \(M \) has an associated input alphabet \(\Sigma \) [2]. For each string \(w \) in \(\Sigma^* \) there is a computation associated with \(M \) on input \(w \) [2]. We say that \(M \) accepts \(w \) if this computation terminates in the accepting state [2]. Note that \(M \) fails to accept \(w \) either if this computation ends in the rejecting state, or if the computation fails to terminate [2].

The language accepted by a Turing machine \(M \), denoted \(L(M) \), has associated alphabet \(\Sigma \) and is defined by

\[
L(M) = \{ w \in \Sigma^* : M \text{ accepts } w \}.
\]

We denote by \(t_M(w) \) the number of steps in the computation of \(M \) on input \(w \) [2]. For \(n \in \mathbb{N} \) we denote by \(T_M(n) \) the worst case run time of \(M \); that is

\[
T_M(n) = \max\{t_M(w) : w \in \Sigma^n\}
\]

where \(\Sigma^n \) is the set of all strings over \(\Sigma \) of length \(n \) [2]. We say that \(M \) runs in polynomial time if there exists \(k \) such that for all \(n \), \(T_M(n) \leq n^k + k \) [2].

Definition 1.1. A language \(L \) is in class \(P \) if \(L = L(M) \) for some deterministic Turing machine \(M \) which runs in polynomial time [2].

We state the complexity class \(NP \) using the following definition.

Definition 1.2. A verifier for a language \(L \) is a deterministic Turing machine \(M \), where

\[
L = \{ w : M \text{ accepts } (w, c) \text{ for some string } c \}.
\]

We measure the time of a verifier only in terms of the length of \(w \), so a polynomial time verifier runs in polynomial time in the length of \(w \) [7]. A verifier uses additional information, represented by the symbol \(c \), to verify that a string \(w \) is a member of \(L \). This information is called certificate.

Definition 1.3. \(NP \) is the class of languages that have polynomial time verifiers [7].

A function \(f : \Sigma^* \to \Sigma^* \) is a polynomial time computable function if some deterministic Turing machine \(M \), on every input \(w \), halts in polynomial time with just \(f(w) \) on its tape [7]. Let \(\{0, 1\}^* \) be the infinite set of binary strings, we say that a language \(L_1 \) is polynomial time reducible to a language \(L_2 \), written \(L_1 \leq_p L_2 \), if there exists a polynomial time computable function \(f : \{0, 1\}^* \to \{0, 1\}^* \) such that for all \(x \in \{0, 1\}^* \),

\[
x \in L_1 \text{ if and only if } f(x) \in L_2.
\]

An important complexity class is \(NP\text{-complete} \) [5]. A language \(L \subseteq \{0, 1\}^* \) is \(NP\text{-complete} \) if
1. \(L \in NP \), and
2. \(L' \leq_p L \) for every \(L' \in NP \).

Furthermore, if \(L \) is a language such that \(L' \leq_p L \) for some \(L' \in NP–complete \), then \(L \) is in \(NP–hard \) [4]. Moreover, if \(L \in NP \), then \(L \in NP–complete \) [4]. If any single \(NP–complete \) problem can be solved in polynomial time, then every \(NP \) problem has a polynomial time algorithm [4]. No polynomial time algorithm has yet been discovered for an \(NP–complete \) problem [1].

A principal \(NP–complete \) problem is \(SAT \) [8]. An instance of \(SAT \) is a Boolean formula \(\phi \) which is composed of

1. Boolean variables: \(x_1, x_2, \ldots, x_n \);
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such as \(\land \) (AND), \(\lor \) (OR), \(\lnot \) (NOT), \(\rightarrow \) (implication), \(\leftrightarrow \) (if and only if);
3. and parentheses.

A truth assignment for a Boolean formula \(\phi \) is a set of values for the variables in \(\phi \). A satisfying truth assignment is a truth assignment that causes \(\phi \) to be evaluated as true. A formula with a satisfying truth assignment is a satisfiable formula. The problem \(SAT \) asks whether a given Boolean formula is satisfiable [8].

Another \(NP–complete \) language is \(3CNF \) satisfiability, or \(3S\text{AT} \) [4]. We define \(3CNF \) satisfiability using the following terms. A literal in a Boolean formula is an occurrence of a variable or its negation [4]. A Boolean formula is in conjunctive normal form, or \(CNF \), if it is expressed as an AND of clauses, each of which is the OR of one or more literals [4]. A Boolean formula is in 3-conjunctive normal form or \(3CNF \), if each clause has exactly three distinct literals [4].

For example, the Boolean formula

\[
(x_1 \lor \lnot x_1 \lor \lnot x_2) \land (x_3 \lor x_2 \lor x_4) \land (\lnot x_1 \lor \lnot x_3 \lor \lnot x_4)
\]

is in \(3CNF \). The first of its three clauses is \((x_1 \lor \lnot x_1 \lor \lnot x_2)\), which contains the three literals \(x_1 \), \(\lnot x_1 \), and \(\lnot x_2 \). In \(3\text{SAT} \), it is asked whether a given Boolean formula \(\phi \) in \(3CNF \) is satisfiable.

It can be demonstrated that many problems belong to \(NP–complete \) using the polynomial time reduction from \(3\text{SAT} \) [8]. For example, the well-known problem \(1–IN–3\text{SAT} \) which is defined as follows: Given a Boolean formula \(\phi \) in \(3CNF \), is there a truth assignment such that each clause in \(\phi \) has exactly one true literal?

Another special case is the class of problems where each clause contains \(\text{XOR} \) (i.e. exclusive or) rather than (plain) \(\text{OR} \) operators. This is in \(P \), since a \(\text{XOR SAT} \) formula can also be viewed as a system of linear equations mod 2, and can be solved in cubic time by Gaussian elimination [9]. We represent the \(\text{XOR} \) function inside a Boolean formula as \(\oplus \). The problem \(\text{XOR 3SAT} \) is similar to \(\text{XOR SAT} \), but the clauses in the Boolean formula have exactly three distinct literals.

Since \(a \oplus b \oplus c \) is evaluated as true if and only if exactly 1 or 3 members of \(\{a, b, c\} \) are true, then each solution of the problem \(1–IN–3\text{SAT} \) for a given \(3CNF \) formula is also a solution of the problem \(\text{XOR 3SAT} \) and in turn each solution of \(\text{XOR 3SAT} \) is a solution of \(3\text{SAT} \).

In addition, a Boolean formula is in 2-conjunctive normal form, or \(2CNF \), if it is in \(CNF \) and each clause has exactly two distinct literals. There is a well-known problem called \(2\text{SAT} \). In \(2\text{SAT} \), it is asked whether a given Boolean formula \(\phi \) in \(2CNF \) is satisfiable. This language is in \(P \) [10].
2. Class equivalent-$\equiv P$

Definition 2.1. We say that a language L belongs to $\equiv P$ if there exist two languages $L_1 \in P$ and $L_2 \in P$ and two deterministic Turing machines M_1 and M_2, where M_1 and M_2 are the polynomial time verifiers of L_1 and L_2 respectively, such that

$$L = \{(x, y) : \exists z \text{ such that } M_1(x, z) = \text{"yes" and } M_2(y, z) = \text{"yes"}\}.$$

We call the complexity class $\equiv P$ as “equivalent–P”. We represent this language L in $\equiv P$ as (L_1, L_2). The order in the pairs of strings of a problem in $\equiv P$ is really important.

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only output tape, and a read/write work tape [7]. The work tape may contain $O(\log n)$ symbols [7]. A logarithmic space transducer M computes a function $f : \Sigma^* \rightarrow \Sigma^*$, where $f(w)$ is the string remaining on the output tape after M halts when it is started with w on its input tape [7]. We call f a logarithmic space computable function [7]. We say that a language L_1 is logarithmic space reducible to a language L_2, written $L_1 \leq_l L_2$, if there exists a logarithmic space computable function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$,

$$x \in L_1 \text{ if and only if } f(x) \in L_2.$$

The logarithmic space reduction is frequently used for P and below [3]. There is a different kind of reduction for $\equiv P$: the e–reduction.

Definition 2.2. Given two languages L_1 and L_2, where the instances of L_1 and L_2 are ordered-pairs of strings, we say that the language L_1 is e–reducible to the language L_2, written $L_1 \leq_e L_2$, if there exist two logarithmic space computable functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ and $g : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that for all $x \in \{0, 1\}^*$ and $y \in \{0, 1\}^*$,

$$(x, y) \in L_1 \text{ if and only if } (f(x), g(y)) \in L_2.$$

Lemma 2.3. The e–reduction is a logarithmic space reduction.

Proof. We can construct a logarithmic space transducer M that computes an arbitrary e–reduction which receives as input an ordered-pair of string (x, y) and outputs $(f(x), g(y))$ where f and g are the two logarithmic space computable functions of this e–reduction. Suppose we use a delimiter symbol for the strings x and y. For example, let’s take the blank symbol \sqcup as delimiter [3]. Since f is a logarithmic space computable function, then we can simulate f on M using a logarithmic amount of space in its read/write work tape. In the meantime, M is printing the string $f(x)$ to the output without wander off after the symbol \sqcup that separates x from y on the input tape. When the simulation of f halts, then M starts to simulate g from the other string y. At the same time, M outputs the result of $g(y)$ using only a logarithmic space in its work tape, since g is also a logarithmic space computable function. Finally, we obtain the output $(f(x), g(y))$ from the input (x, y) using the logarithmic space transducer M. Since we take an arbitrary e–reduction, then we prove the e–reduction is also a logarithmic space reduction. \(\square\)

Theorem 2.4. If $A \leq_\equiv B$ and $B \leq_\equiv C$, then $A \leq_\equiv C$.

Proof. This is a consequence of Lemma 2.3, because the logarithmic space reduction is transitive [3]. \(\square\)
We say that a complexity class C is closed under reductions if, whenever L_1 is reducible to L_2 and $L_2 \in C$, then $L_1 \in C$ [3].

Theorem 2.5. $\equiv P$ is closed under reductions.

Proof. Let L and L' be two arbitrary languages, where their instances are ordered-pairs of strings. Suppose that $L \leq_c L'$ where L' is in $\equiv P$. We will show that L is in $\equiv P$ too.

By definition of $\equiv P$, there are two languages $L'_1 \subseteq P$ and $L'_2 \subseteq P$, such that for each $(v, w) \in L'$ we have that $v \in L'_1$ and $w \in L'_2$. Moreover, there are two deterministic Turing machines M'_1 and M'_2 which are the polynomial time verifiers of L'_1 and L'_2 respectively. For each $(v, w) \in L'$, there will be a succinct certificate z, such that $M'_1(v, z) = \text{"yes"}$ and $M'_2(w, z) = \text{"yes"}$. Besides, by definition of e-reduction, there are two logarithmic space computable functions $f : [0, 1]^* \rightarrow [0, 1]^*$ and $g : [0, 1]^* \rightarrow [0, 1]^*$ such that for all $x \in [0, 1]^*$ and $y \in [0, 1]^*$,

$$(x, y) \in L \text{ if and only if } (f(x), g(y)) \in L'.$$

Based on this preliminary information, we can support that there exist two languages $L_1 \subseteq P$ and $L_2 \subseteq P$, such that for each $(x, y) \in L$ we have that $x \in L_1$ and $y \in L_2$. Indeed, we can define L_1 and L_2 as the ordered-pairs of strings $(f^{-1}(v), g^{-1}(w))$, such that $f^{-1}(v) \in L_1$ and $g^{-1}(w) \in L_2$ if and only if $v \in L'_1$ and $w \in L'_2$. Certainly, for all $x \in [0, 1]^*$ and $y \in [0, 1]^*$, we can decide in polynomial time whether $x \in L_1$ or $y \in L_2$ just verifying that $f(x) \in L'_1$ or $g(y) \in L'_2$ respectively, since $L'_1 \subseteq P$, $L'_2 \subseteq P$, and $\text{SPACE}(\log n) \subseteq P$ [3].

Furthermore, there are two deterministic Turing machines M_1 and M_2 which are the polynomial time verifiers of L_1 and L_2 respectively. For each $(x, y) \in L$, there will be a succinct certificate z such that $M_1(x, z) = \text{"yes"}$ and $M_2(y, z) = \text{"yes"}$. Indeed, we can know whether $M_1(x, z) = \text{"yes"}$ and $M_2(y, z) = \text{"yes"}$ just verifying whether $M'_1(f(x), z) = \text{"yes"}$ and $M'_2(g(y), z) = \text{"yes"}$. Certainly, for every triple of strings (x, y, z), we can define the polynomial time computation of the verifiers M_1 and M_2 as $M_1(x, z) = M'_1(f(x), z)$ and $M_2(y, z) = M'_2(g(y), z)$, since we can evaluate $f(x)$ and $g(y)$ in polynomial time because of $\text{SPACE}(\log n) \subseteq P$ [3]. In addition, $\max(\|f(x)\|, \|g(y)\|)$ is polynomially bounded by $\min(\|x\|, \|y\|)$ where $[\ldots]$ is the string length function, due to the logarithmic space transducers of f and g cannot output an exponential amount of symbols in relation to the size of the input. Consequently, $\|z\|$ is polynomially bounded by $\min(\|x\|, \|y\|)$, because $\|z\|$ will be polynomially bounded by $\min(\|f(x)\|, \|g(y)\|)$. Hence, we have just proved the necessary properties to state that L is in $\equiv P$.

3. **Class double-NP**

It has been observed that most of the transformations used in proving NP-completeness are also logarithmic space transformations [8]. Thus the class of languages that are "logarithmic space complete for NP" is at least a large subclass of the NP-complete problems [8]. We define a complexity class which has a close relation to this property.

Definition 3.1. We say that a language L belongs to $2NP$ if there exists a language $L' \in NP$, such that

$$L = \{(x, x) : x \in L'\}.$$

We call the complexity class $2NP$ as "double–NP". We represent this language L in $2NP$ as (L', L').

5
We define the completeness of $2NP$ using the e-reduction.

Definition 3.2. A language $L \subseteq \{0, 1\}^*$ is $2NP$-complete if

1. $L \in 2NP$, and
2. $L' \leq_{e} L$ for every $L' \in 2NP$.

Furthermore, if L is a language such that $L' \leq_{e} L$ for some $L' \in 2NP$-complete, then L is in $2NP$-hard. Moreover, if $L \in 2NP$, then $L \in 2NP$-complete. The basis of the definitions of $2NP$-complete and $2NP$-hard are based on the result of Theorem 2.4.

We define double–1–IN–3 $3SAT$ as follows,

\[
double–1–IN–3 \text{ } 3SAT = (\langle \phi, \phi \rangle : \phi \in 1–IN–3 \text{ } 3SAT).
\]

Theorem 3.3. double–1–IN–3 $3SAT \in 2NP$-complete.

Proof. double–1–IN–3 $3SAT$ is in $2NP$, because $1–IN–3$ $3SAT$ is in NP. We already know that the language $1–IN–3$ $3SAT$ has been defined in NP-complete using logarithmic space reductions [8]. Certainly, we can reduce any instance of a language in NP to $S AT$, and this other instance of $S AT$ in $3SAT$, and finally, the last instance in $3SAT$ to $1–IN–3$ $3SAT$ just using in each case a reduction in logarithmic space [8]. Since the logarithmic space reduction is transitive, then double–1–IN–3 $3SAT \in 2NP$-complete. \hfill \Box

Definition 3.4. $3XOR$–$2SAT$ is a problem in $\equiv P$, where every instance (ψ, φ) is an ordered-pair of Boolean formulas, such that if $(\psi, \varphi) \in 3XOR$–$2SAT$, then $\psi \in XOR$ $3SAT$ and $\varphi \in 2SAT$. By the definition of $\equiv P$, this language is the ordered-pairs of instances of XOR $3SAT$ and $2SAT$ such that they will have the same satisfying truth assignment using the same variables.

Theorem 3.5. $3XOR$–$2SAT \in 2NP$-hard.

Proof. Given an arbitrary Boolean formula ϕ in $3CNF$ of m clauses, we iterate for $i = 1, 2, \ldots, m$ over each clause $c_i = (x \lor y \lor z)$ in ϕ, where x, y and z are literals, just creating the following formulas,

\[
Q_i = (x \oplus y \oplus z)
\]

\[
P_i = (\neg x \lor \neg y) \land (\neg y \lor \neg z) \land (\neg x \lor \neg z).
\]

Since Q_i is evaluated as true if and only if exactly 1 or 3 members of $\{x, y, z\}$ are true and P_i is evaluated as true if and only if exactly 1 or 0 members of $\{x, y, z\}$ are true, then we obtain the clause c_i has exactly one true literal if and only if both formulas Q_i and P_i have the same satisfying truth assignment.

Hence, we can construct the Boolean formulas ψ and φ as the conjunction of Q_i or P_i for every clause c_i in ϕ, that is, $\psi = Q_1 \land \ldots \land Q_m$ and $\varphi = P_1 \land \ldots \land P_m$. Finally, we obtain that,

\[
(\psi, \varphi) \in \text{double–1–IN–3 $3SAT$ if and only if } (\psi, \varphi) \in 3XOR$–$2SAT.
\]

Moreover, there are two logarithmic space computable functions $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ and $g : \{0, 1\}^* \rightarrow \{0, 1\}^*$ such that $f((\phi)) = \langle \psi \rangle$ and $g((\phi)) = \langle \psi \rangle$. Indeed, we only need a logarithmic space to analyze every time each clause c_i in the instance ϕ and generate Q_i or P_i to the output, since the complexity class $SPACE(\log n)$ does not take the length of the content on the input and output tapes into consideration [3]. Then, we have proved that double–1–IN–3 $3SAT \leq_{e} 3XOR$–$2SAT$. Consequently, we obtain that $3XOR$–$2SAT \in 2NP$-hard. \hfill \Box
Theorem 3.6. \(2\text{NP} \subseteq \text{P}\).

Proof. Since 3XOR–2SAT is hard for 2NP, thus all language in 2NP reduce to \(\equiv \text{P}\). Since \(\equiv \text{P}\) is closed under reductions, it follows that \(2\text{NP} \subseteq \text{P}\). \(\square\)

4. Class equivalent-UP

Definition 4.1. We say that a language \(L\) belongs to \(\equiv \text{UP}\) if there exist two languages \(L_1 \in \text{UP}\) and \(L_2 \in \text{UP}\) and two deterministic Turing machines \(M_1\) and \(M_2\), where \(M_1\) and \(M_2\) are the polynomial time verifiers of \(L_1\) and \(L_2\) respectively, such that

\[L = \{(x, y) : \exists z \text{ such that } M_1(x, z) = \text{"yes" and } M_2(y, z) = \text{"yes"}\}.
\]

We call the complexity class \(\equiv \text{UP}\) as “equivalent–UP”. We represent this language \(L\) in \(\equiv \text{UP}\) as \((L_1, L_2)\). The order in the pairs of strings of a problem in \(\equiv \text{UP}\) is really important.

Theorem 4.2. \(\equiv \text{UP} \subseteq \text{UP}\).

Proof. Let’s take an arbitrary language \(L \equiv \text{UP}\) defined from the two languages \(L_1 \in \text{UP}\) and \(L_2 \in \text{UP}\) and the two deterministic Turing machines \(M_1\) and \(M_2\) such that \(L = (L_1, L_2)\) where \(M_1\) and \(M_2\) are the polynomial time verifiers of \(L_1\) and \(L_2\) respectively. We can construct a nondeterministic Turing machine \(M\) such that \(M\) can decide every instance \((x, y)\) of \(L\) in polynomial time with at most one accepting computation for each input. Certainly, since \(\text{UP} \subseteq \text{NP}\), then every certificate \(z\) of the instances \(x \in L_1\) or \(y \in L_2\) can be polynomially bounded using a single constant \(c\) such that \(|z| < |x|^c\) or \(|z| < |y|^c\) where \(|\ldots|\) is the string length function.

We define \(M\) in the following way: on input \((x, y)\),

1. we nondeterministically generate a single string \(z\) with at most \(\max(|x|, |y|)^c\) symbols from the alphabets of \(M_1\) and \(M_2\) in unambiguous way,
2. then, we accept the instance \((x, y)\) if \(M_1(x, z) = \text{"yes"}\) and \(M_2(y, z) = \text{"yes"}\) otherwise we reject.

For every instance \(x\) of \(L_1\) if there exists a string \(z\) for \(x\) such that that proves the membership in \(L_1\), then \(z\) is the only certificate that has \(x\) because \(L_1 \in \text{UP}\). The same happens with every instance \(y\) in \(L_2\): if there exists a certificate \(z\) for \(y\) that proves \(y \in L_2\), then this is the only one for \(y\). If \(x \not\in L_1\) or \(y \not\in L_2\), then there will not be another succinct certificate \(z\) for \(x\) or \(y\). Indeed, \(\text{UP}\) should not be confused with the class \(\text{US}\) of problems that ask whether a given instance has a unique solution [3]. Hence, for every instance \((x, y)\), there will be at most one polynomially bounded string \(z\) such that \(M_1(x, z) = \text{"yes"}\) and \(M_2(y, z) = \text{"yes"}\) if and only if \((x, y) \in L\).

Since the Turing machines \(M_1\) and \(M_2\) are deterministic and the generation of \(z\) can be done in unambiguous way, then we can support that \(M\) has at most one accepting computation for every instance \((x, y)\) of \(L\). In addition, the Turing machine \(M\) is nondeterministic due to the nondeterministic steps in the selection of the string \(z\). Consequently, we obtain that \(L \in \text{UP}\).

We took \(L \equiv \text{UP}\) in an arbitrary way, then \(\equiv \text{UP} \subseteq \text{UP}\). \(\square\)

Lemma 4.3. \(\equiv \text{P} \subseteq \text{UP}\).

Proof. Since \(\equiv \text{P} \subseteq \text{UP}\), then we can support that \(\equiv \text{P} \subseteq \text{UP}\) as a direct consequence of the Definitions 2.1 and 4.1 [3]. \(\square\)
Theorem 4.4. $UP = NP$.

Proof. As result of the Theorems 3.6 and 4.2 with the Lemma 4.3, we can also support that $2NP \subseteq UP$. In addition, we can reduce in logarithmic space every language in $L \in NP$ to another language $(L, L) \in 2NP$ just using a logarithmic space transducer that copies the content on its input tape to the output twice. Since every language in $2NP$ is in UP and UP is closed under logarithmic space reductions, then every language in NP is in UP too [3]. Consequently, we obtain that $NP \subseteq UP$. However, we already know that $UP \subseteq NP$ [3]. Since we have that $NP \subseteq UP$ and $UP \subseteq NP$, then $UP = NP$ [4].

Conclusions

There is a previous known result which states that $P = UP$ if and only if there are no one-way functions [3]. Indeed, for many years it has been accepted the P versus UP question as the correct complexity context for the discussion of the cryptography and one-way functions [3]. For that reason, the proof of Theorem 4.4 negates this accepted idea and also the belief that $UP = NP$ is a very unlikely event. In addition, this demonstration might be a shortcut to prove $P = NP$, because if somebody proves that $P = UP$, then he will be proving the outstanding and difficult P versus NP problem too [1]. Furthermore, if we have a possible proof of $P \neq NP$, then this work would also contribute to prove that $P \neq UP$.

References