
HAL Id: hal-01304025
https://hal.science/hal-01304025v2

Preprint submitted on 29 Apr 2016 (v2), last revised 12 Oct 2018 (v8)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

UP versus NP
Frank Vega

To cite this version:

Frank Vega. UP versus NP. 2016. �hal-01304025v2�

https://hal.science/hal-01304025v2
https://hal.archives-ouvertes.fr

UP versus NP

Frank Vega

Abstract

The class equivalent-P contains those languages that are ordered-pairs of instances of two specific
problems in P, such that the elements of each ordered-pair have the same solution, which means,
the same certificate. The class equivalent-UP has almost the same definition, but in each case we
define the pair of languages explicitly in UP. In addition, we define the class double-NP as the
set of languages that contain each instance of another language in NP, but in a double way, that
is, in form of a pair with two identical instances. We show that UP = NP using these classes.

Keywords: P, UP, NP, logarithmic space
2000 MSC: 68-XX, 68Qxx, 68Q15

Introduction

P versus NP is a major unsolved problem in computer science [1]. This problem was intro-
duced in 1971 by Stephen Cook [2]. It is considered by many to be the most important open
problem in the field [1]. It is one of the seven Millennium Prize Problems selected by the Clay
Mathematics Institute to carry a US$1,000,000 prize for the first correct solution [1].

In 1936, Turing developed his theoretical computational model [2]. The deterministic and
nondeterministic Turing machines have become in two of the most important definitions related
to this theoretical model for computation. A deterministic Turing machine has only one next
action for each step defined in its program or transition function [3]. A nondeterministic Turing
machine could contain more than one action defined for each step of its program, where this one
is no longer a function, but a relation [3].

Another huge advance in the last century has been the definition of a complexity class. A
language over an alphabet is any set of strings made up of symbols from that alphabet [4]. A
complexity class is a set of problems, which are represented as a language, grouped by measures
such as the running time, memory, etc [4].

In the computational complexity theory, the class P contains those languages that can be
decided in polynomial time by a deterministic Turing machine [5]. The class NP consists on
those languages that can be decided in polynomial time by a nondeterministic Turing machine
[5].

The biggest open question in theoretical computer science concerns the relationship between
these classes:

Is P equal to NP?

Email address: vega.frank@gmail.com (Frank Vega)

Preprint submitted to Journal of Computer and System Sciences April 29, 2016

Another major complexity class is UP. The class UP has all the languages that are decided in
polynomial time by a nondeterministic Turing machines with at most one accepting computation
for each input [6]. The nondeterministic Turing machines which decide the languages in the class
UP are called unambiguous Turing machines [3]. It is obvious that P ⊆ UP ⊆ NP [3]. Whether
P = UP is another fundamental question that it is as important as it is unresolved [3]. All efforts
to solve the P versus UP problem have failed [3]. Nevertheless, we prove that UP = NP.

1. Theoretical notions

Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings over
Σ [2]. A Turing machine M has an associated input alphabet Σ [2]. For each string w in Σ∗ there
is a computation associated with M on input w [2]. We say that M accepts w if this computation
terminates in the accepting state [2]. Note that M fails to accept w either if this computation ends
in the rejecting state, or if the computation fails to terminate [2].

The language accepted by a Turing machine M, denoted L(M), has associated alphabet Σ and
is defined by

L(M) = {w ∈ Σ∗ : M accepts w}.

We denote by tM(w) the number of steps in the computation of M on input w [2]. For n ∈ N we
denote by TM(n) the worst case run time of M; that is

TM(n) = max{tM(w) : w ∈ Σn}

where Σn is the set of all strings over Σ of length n [2]. We say that M runs in polynomial time if
there exists k such that for all n, TM(n) ≤ nk + k [2].

Definition 1.1. A language L is in class P if L = L(M) for some deterministic Turing machine
M which runs in polynomial time [2].

We state the complexity class NP using the following definition.

Definition 1.2. A verifier for a language L is a deterministic Turing machine M, where

L = {w : M accepts 〈w, c〉 for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier
runs in polynomial time in the length of w [7]. A verifier uses additional information, represented
by the symbol c, to verify that a string w is a member of L. This information is called certificate.

Definition 1.3. NP is the class of languages that have polynomial time verifiers [7].

A function f : Σ∗ → Σ∗ is a polynomial time computable function if some deterministic
Turing machine M, on every input w, halts in polynomial time with just f (w) on its tape [7].
Let {0, 1}∗ be the infinite set of binary strings, we say that a language L1 is polynomial time
reducible to a language L2, written L1 ≤p L2, if there exists a polynomial time computable
function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f (x) ∈ L2.

An important complexity class is NP–complete [5]. A language L ⊆ {0, 1}∗ is NP–complete if
2

1. L ∈ NP, and
2. L′ ≤p L for every L′ ∈ NP.

Furthermore, if L is a language such that L′ ≤p L for some L′ ∈ NP–complete, then L is in
NP–hard [4]. Moreover, if L ∈ NP, then L ∈ NP–complete [4]. If any single NP–complete prob-
lem can be solved in polynomial time, then every NP problem has a polynomial time algorithm
[4]. No polynomial time algorithm has yet been discovered for an NP–complete problem [1].

A principal NP–complete problem is S AT [8]. An instance of S AT is a Boolean formula φ
which is composed of

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT),⇒(implication),⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. A
satisfying truth assignment is a truth assignment that causes φ to be evaluated as true. A formula
with a satisfying truth assignment is a satisfiable formula. The problem S AT asks whether a
given Boolean formula is satisfiable [8].

Another NP–complete language is 3CNF satisfiability, or 3S AT [4]. We define 3CNF satis-
fiability using the following terms. A literal in a Boolean formula is an occurrence of a variable
or its negation [4]. A Boolean formula is in conjunctive normal form, or CNF, if it is expressed
as an AND of clauses, each of which is the OR of one or more literals [4]. A Boolean formula is
in 3-conjunctive normal form or 3CNF, if each clause has exactly three distinct literals [4].

For example, the Boolean formula

(x1∨⇁ x1∨⇁ x2) ∧ (x3 ∨ x2 ∨ x4) ∧ (⇁ x1∨⇁ x3∨⇁ x4)

is in 3CNF. The first of its three clauses is (x1∨⇁ x1∨⇁ x2), which contains the three literals
x1, ⇁ x1, and ⇁ x2. In 3S AT , it is asked whether a given Boolean formula φ in 3CNF is
satisfiable.

It can be demonstrated that many problems belong to NP–complete using the polynomial
time reduction from 3S AT [8]. For example, the well-known problem 1–IN–3 3SAT which is
defined as follows: Given a Boolean formula φ in 3CNF, is there a truth assignment such that
each clause in φ has exactly one true literal?

Another special case is the class of problems where each clause contains XOR (i.e. exclusive
or) rather than (plain) OR operators. This is in P, since a XOR SAT formula can also be viewed
as a system of linear equations mod 2, and can be solved in cubic time by Gaussian elimination
[9]. We represent the XOR function inside a Boolean formula as ⊕. The problem XOR 3SAT is
similar to XOR SAT, but the clauses in the Boolean formula have exactly three distinct literals.
Since a⊕ b⊕ c is evaluated as true if and only if exactly 1 or 3 members of {a, b, c} are true, then
each solution of the problem 1–IN–3 3SAT for a given 3CNF formula is also a solution of the
problem XOR 3SAT and in turn each solution of XOR 3SAT is a solution of 3S AT .

In addition, a Boolean formula is in 2-conjunctive normal form, or 2CNF, if it is in CNF
and each clause has exactly two distinct literals. There is a well-known problem called 2S AT .
In 2S AT , it is asked whether a given Boolean formula φ in 2CNF is satisfiable. This language is
in P [10].

3

2. Class equivalent-P

Definition 2.1. We say that a language L belongs to ≡ P if there exist two languages L1 ∈ P and
L2 ∈ P and two deterministic Turing machines M1 and M2, where M1 and M2 are the polynomial
time verifiers of L1 and L2 respectively, such that

L = {(x, y) : ∃z such that M1(x, z) = “yes” and M2(y, z) = “yes”}.

We call the complexity class ≡ P as “equivalent–P”. We represent this language L in ≡ P as
(L1, L2). The order in the pairs of strings of a problem in ≡ P is really important.

A logarithmic space transducer is a Turing machine with a read-only input tape, a write-only
output tape, and a read/write work tape [7]. The work tape may contain O(log n) symbols [7].
A logarithmic space transducer M computes a function f : Σ∗ → Σ∗, where f (w) is the string
remaining on the output tape after M halts when it is started with w on its input tape [7]. We
call f a logarithmic space computable function [7]. We say that a language L1 is logarithmic
space reducible to a language L2, written L1 ≤l L2, if there exists a logarithmic space computable
function f : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗,

x ∈ L1 if and only if f (x) ∈ L2.

The logarithmic space reduction is frequently used for P and below [3]. There is a different kind
of reduction for ≡ P: the e–reduction.

Definition 2.2. Given two languages L1 and L2, where the instances of L1 and L2 are ordered-
pairs of strings, we say that the language L1 is e–reducible to the language L2, written L1 ≤≡ L2,
if there exist two logarithmic space computable functions f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ →
{0, 1}∗ such that for all x ∈ {0, 1}∗ and y ∈ {0, 1}∗,

(x, y) ∈ L1 if and only if (f (x), g(y)) ∈ L2.

Lemma 2.3. The e–reduction is a logarithmic space reduction.

Proof. We can construct a logarithmic space transducer M that computes an arbitrary e–reduction
which receives as input an ordered-pair of string 〈x, y〉 and outputs 〈 f (x), g(y)〉 where f and g are
the two logarithmic space computable functions of this e–reduction. Suppose we use a delimiter
symbol for the strings x and y. For example, let’s take the blank symbol t as delimiter [3]. Since
f is a logarithmic space computable function, then we can simulate f on M using a logarithmic
amount of space in its read/write work tape. In the meantime, M is printing the string f (x) to the
output without wander off after the symbol t that separates x from y on the input tape. When
the simulation of f halts, then M starts to simulate g from the other string y. At the same time,
M outputs the result of g(y) using only a logarithmic space in its work tape, since g is also a
logarithmic space computable function. Finally, we obtain the output 〈 f (x), g(y)〉 from the input
〈x, y〉 using the logarithmic space transducer M. Since we take an arbitrary e–reduction, then we
prove the e–reduction is also a logarithmic space reduction.

Theorem 2.4. If A ≤≡ B and B ≤≡ C, then A ≤≡ C.

Proof. This is a consequence of Lemma 2.3, because the logarithmic space reduction is transitive
[3].

4

We say that a complexity class C is closed under reductions if, whenever L1 is reducible to
L2 and L2 ∈ C, then L1 ∈ C [3].

Theorem 2.5. ≡ P is closed under reductions.

Proof. Let L and L′ be two arbitrary languages, where their instances are ordered-pairs of strings.
Suppose that L ≤≡ L′ where L′ is in ≡ P. We will show that L is in ≡ P too.

By definition of ≡ P, there are two languages L′1 ∈ P and L′2 ∈ P, such that for each (v,w) ∈ L′

we have that v ∈ L′1 and w ∈ L′2. Moreover, there are two deterministic Turing machines M′1 and
M′2 which are the polynomial time verifiers of L′1 and L′2 respectively. For each (v,w) ∈ L′, there
will be a succinct certificate z, such that M′1(v, z) = “yes” and M′2(w, z) = “yes”. Besides, by
definition of e–reduction, there are two logarithmic space computable functions f : {0, 1}∗ →
{0, 1}∗ and g : {0, 1}∗ → {0, 1}∗ such that for all x ∈ {0, 1}∗ and y ∈ {0, 1}∗,

(x, y) ∈ L if and only if (f (x), g(y)) ∈ L′.

Based on this preliminary information, we can support that there exist two languages L1 ∈ P and
L2 ∈ P, such that for each (x, y) ∈ L we have that x ∈ L1 and y ∈ L2. Indeed, we can define L1
and L2 as the ordered-pairs of strings (f −1(v), g−1(w)), such that f −1(v) ∈ L1 and g−1(w) ∈ L2 if
and only if v ∈ L′1 and w ∈ L′2. Certainly, for all x ∈ {0, 1}∗ and y ∈ {0, 1}∗, we can decide in
polynomial time whether x ∈ L1 or y ∈ L2 just verifying that f (x) ∈ L′1 or g(y) ∈ L′2 respectively,
since L′1 ∈ P, L′2 ∈ P, and SPACE(log n) ⊆ P [3].

Furthermore, there are two deterministic Turing machines M1 and M2 which are the polyno-
mial time verifiers of L1 and L2 respectively. For each (x, y) ∈ L, there will be a succinct certifi-
cate z such that M1(x, z) = “yes” and M2(y, z) = “yes”. Indeed, we can know whether M1(x, z) =

“yes” and M2(y, z) = “yes” just verifying whether M′1(f (x), z) = “yes” and M′2(g(y), z) = “yes”.
Certainly, for every triple of strings (x, y, z), we can define the polynomial time computation
of the verifiers M1 and M2 as M1(x, z) = M′1(f (x), z) and M2(y, z) = M′2(g(y), z), since we
can evaluate f (x) and g(y) in polynomial time because of SPACE(log n) ⊆ P [3]. In addition,
max(| f (x)|, |g(y)|) is polynomially bounded by min(|x|, |y|) where | . . . | is the string length func-
tion, due to the logarithmic space transducers of f and g cannot output an exponential amount
of symbols in relation to the size of the input. Consequently, |z| is polynomially bounded by
min(|x|, |y|), because |z| will be polynomially bounded by min(| f (x)|, |g(y)|). Hence, we have just
proved the necessary properties to state that L is in ≡ P.

3. Class double-NP

It has been observed that most of the transformations used in proving NP–completeness are
also logarithmic space transformations [8]. Thus the class of languages that are “logarithmic
space complete for NP” is at least a large subclass of the NP–complete problems [8]. We define
a complexity class which has a close relation to this property.

Definition 3.1. We say that a language L belongs to 2NP if there exists a language L′ ∈ NP,
such that

L = {(x, x) : x ∈ L′}.

We call the complexity class 2NP as “double–NP”. We represent this language L in 2NP as
(L′, L′).

5

We define the completeness of 2NP using the e–reduction.

Definition 3.2. A language L ⊆ {0, 1}∗ is 2NP–complete if

1. L ∈ 2NP, and
2. L′ ≤≡ L for every L′ ∈ 2NP.

Furthermore, if L is a language such that L′ ≤≡ L for some L′ ∈ 2NP–complete, then L is in
2NP–hard. Moreover, if L ∈ 2NP, then L ∈ 2NP–complete. The basis of the definitions of
2NP–complete and 2NP–hard are based on the result of Theorem 2.4.

We define double–1–IN–3 3SAT as follows,

double–1–IN–3 3SAT = {(φ, φ) : φ ∈ 1–IN–3 3SAT}.

Theorem 3.3. double–1–IN–3 3SAT ∈ 2NP–complete.

Proof. double–1–IN–3 3SAT is in 2NP, because 1–IN–3 3SAT is in NP. We already know that
the language 1–IN–3 3SAT has been defined in NP–complete using logarithmic space reductions
[8]. Certainly, we can reduce any instance of a language in NP to S AT , and this other instance
of S AT in 3S AT , and finally, the last instance in 3S AT to 1–IN–3 3SAT just using in each case
a reduction in logarithmic space [8]. Since the logarithmic space reduction is transitive, then
double–1–IN–3 3SAT ∈ 2NP–complete.

Definition 3.4. 3XOR–2SAT is a problem in ≡ P, where every instance (ψ, ϕ) is an ordered-pair
of Boolean formulas, such that if (ψ, ϕ) ∈ 3XOR–2SAT, then ψ ∈ XOR 3SAT and ϕ ∈ 2S AT. By
the definition of ≡ P, this language is the ordered-pairs of instances of XOR 3SAT and 2S AT
such that they will have the same satisfying truth assignment using the same variables.

Theorem 3.5. 3XOR–2SAT ∈ 2NP–hard.

Proof. Given an arbitrary Boolean formula φ in 3CNF of m clauses, we iterate for i = 1, 2, . . . ,m
over each clause ci = (x ∨ y ∨ z) in φ, where x, y and z are literals, just creating the following
formulas,

Qi = (x ⊕ y ⊕ z)

Pi = (⇁ x∨⇁ y) ∧ (⇁ y∨⇁ z) ∧ (⇁ x∨⇁ z).

Since Qi is evaluated as true if and only if exactly 1 or 3 members of {x, y, z} are true and Pi

is evaluated as true if and only if exactly 1 or 0 members of {x, y, z} are true, then we obtain
the clause ci has exactly one true literal if and only if both formulas Qi and Pi have the same
satisfying truth assignment.

Hence, we can construct the Boolean formulas ψ and ϕ as the conjunction of Qi or Pi for
every clause ci in φ, that is, ψ = Q1 ∧ . . . ∧ Qm and ϕ = P1 ∧ . . . ∧ Pm. Finally, we obtain that,

(φ, φ) ∈ double–1–IN–3 3SAT if and only if (ψ, ϕ) ∈ 3XOR–2SAT.

Moreover, there are two logarithmic space computable functions f : {0, 1}∗ → {0, 1}∗ and g :
{0, 1}∗ → {0, 1}∗ such that f (〈φ〉) = 〈ψ〉 and g(〈φ〉) = 〈ϕ〉. Indeed, we only need a logarithmic
space to analyze every time each clause ci in the instance φ and generate Qi or Pi to the output,
since the complexity class SPACE(log n) does not take the length of the content on the input
and output tapes into consideration [3]. Then, we have proved that double–1–IN–3 3SAT ≤≡
3XOR–2SAT. Consequently, we obtain that 3XOR–2SAT ∈ 2NP–hard.

6

Theorem 3.6. 2NP ⊆≡ P.

Proof. Since 3XOR–2SAT is hard for 2NP, thus all language in 2NP reduce to ≡ P. Since ≡ P
is closed under reductions, it follows that 2NP ⊆≡ P.

4. Class equivalent-UP

Definition 4.1. We say that a language L belongs to ≡ UP if there exist two languages L1 ∈ UP
and L2 ∈ UP and two deterministic Turing machines M1 and M2, where M1 and M2 are the
polynomial time verifiers of L1 and L2 respectively, such that

L = {(x, y) : ∃z such that M1(x, z) = “yes” and M2(y, z) = “yes”}.

We call the complexity class ≡ UP as “equivalent–UP”. We represent this language L in ≡ UP
as (L1, L2). The order in the pairs of strings of a problem in ≡ UP is really important.

Theorem 4.2. ≡ UP ⊆ UP.

Proof. Let’s take an arbitrary language L ∈≡ UP defined from the two languages L1 ∈ UP and
L2 ∈ UP and the two deterministic Turing machines M1 and M2 such that L = (L1, L2) where
M1 and M2 are the polynomial time verifiers of L1 and L2 respectively. We can construct a non-
deterministic Turing machine M such that M can decide every instance (x, y) of L in polynomial
time with at most one accepting computation for each input. Certainly, since UP ⊆ NP, then
every certificate z of the instances x ∈ L1 or y ∈ L2 can be polynomially bounded using a single
constant c such that |z| < |x|c or |z| < |y|c where | . . . | is the string length function.

We define M in the following way: on input (x, y),

1. we nondeterministically generate a single string z with at most max(|x|, |y|)c symbols from
the alphabets of M1 and M2 in unambiguous way,

2. then, we accept the instance (x, y) if M1(x, z) = “yes” and M2(y, z) = “yes” otherwise we
reject.

For every instance x of L1 if there exists a string z for x such that this proves the membership
in L1, then z is the only certificate that has x because L1 ∈ UP. The same happens with every
instance y in L2: if there exists a certificate z for y that proves y ∈ L2, then this is the only one
for y. If x < L1 or y < L2, then there will not be another succinct certificate z for x or y. Indeed,
UP should not be confused with the class US of problems that ask whether a given instance has
a unique solution [3]. Hence, for every instance (x, y), there will be at most one polynomially
bounded string z such that M1(x, z) = “yes” and M2(y, z) = “yes” if and only if (x, y) ∈ L.

Since the Turing machines M1 and M2 are deterministic and the generation of z can be done
in unambiguous way, then we can support that M has at most one accepting computation for
every instance (x, y) of L. In addition, the Turing machine M is nondeterministic due to the
nondeterministic steps in the selection of the string z. Consequently, we obtain that L ∈ UP.
Since we took L ∈≡ UP in an arbitrary way, then ≡ UP ⊆ UP.

Lemma 4.3. ≡ P ⊆≡ UP.

Proof. Since P ⊆ UP, then we can support that ≡ P ⊆≡ UP as a direct consequence of the
Definitions 2.1 and 4.1 [3].

7

Theorem 4.4. UP = NP.

Proof. As result of the Theorems 3.6 and 4.2 with the Lemma 4.3, we can also support that
2NP ⊆ UP. In addition, we can reduce in logarithmic space every language in L ∈ NP to
another language (L, L) ∈ 2NP just using a logarithmic space transducer that copies the content
on its input tape to the output twice. Since every language in 2NP is in UP and UP is closed
under logarithmic space reductions, then every language in NP is in UP too [3]. Consequently,
we obtain that NP ⊆ UP. However, we already know that UP ⊆ NP [3]. Since we have that
NP ⊆ UP and UP ⊆ NP, then UP = NP [4].

Conclusions

There is a previous known result which states that P = UP if and only if there are no one-
way functions [3]. Indeed, for many years it has been accepted the P versus UP question as the
correct complexity context for the discussion of the cryptography and one-way functions [3]. For
that reason, the proof of Theorem 4.4 negates this accepted idea and also the belief that UP = NP
is a very unlikely event. In addition, this demonstration might be a shortcut to prove P = NP,
because if somebody proves that P = UP, then he will be proving the outstanding and difficult P
versus NP problem too [1]. Furthermore, if we have a possible proof of P , NP, then this work
would also contribute to prove that P , UP.

References

[1] L. Fortnow, The Golden Ticket: P, NP, and the Search for the Impossible, Princeton University Press. Princeton,
NJ, 2013.

[2] S. A. Cook, The P versus NP Problem, available at http://www.claymath.org/sites/default/files/pvsnp.pdf (April
2000).

[3] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 2nd Edition, MIT Press, 2001.
[5] O. Goldreich, P, Np, and Np-Completeness, Cambridge: Cambridge University Press, 2010.
[6] L. G. Valiant, Relative Complexity of Checking and Evaluating, Inf. Process. Lett. 5 (1976) 20–23.
[7] M. Sipser, Introduction to the Theory of Computation, 2nd Edition, Thomson Course Technology, 2006.
[8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, 1st Edition,

San Francisco: W. H. Freeman and Company, 1979.
[9] C. Moore, S. Mertens, The Nature of Computation, Oxford University Press, 2011.

[10] B. Aspvall, M. F. Plass, R. E. Tarjan, A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean
Formulas, Information Processing Letters 8 (3) (1979) 121–123. doi:10.1016/0020-0190(79)90002-4.

8

