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Abstract:  

Cryo-electron microscopy (cryo-EM) of frozen-hydrated preparations of isolated 

macromolecular complexes is the method of choice to obtain the structure of complexes that 

cannot be easily studied by other experimental methods due to their flexibility or large size. 

An increasing number of macromolecular structures are currently being obtained at 

subnanometer resolution but the interpretation of structural details in such EM-derived maps 

is often difficult because of noise at these high-frequency signal components that reduces their 

contrast. In this paper, we show that the method for EM density-map approximation using 

Gaussian functions can be used for denoising of single-particle EM maps of high (typically 

subnanometer) resolution. We show its denoising performance using simulated and 

experimental EM density maps of several complexes. 

 

 

INTRODUCTION 

Cryo-electron microscopy (cryo-EM) of frozen-hydrated preparations of isolated 

macromolecular complexes is the method of choice to obtain the structure of complexes that 

cannot be easily studied by other experimental methods, such as X-ray crystallography (e.g., 

complexes with a significant degree of flexibility) or nuclear magnetic resonance (e.g., 

complexes of large size) (Frank, 2006). Recent technological advances, such as the latest 

generation of electron microscopes, direct electron detectors, software for automated 

collection of EM images and the availability of increasing computing power, combined with 

recent advances in image analysis algorithms, have eased the way to subnanometer-resolution 

structures for a wide range of macromolecular complexes (viruses, ribosomes, membrane 

proteins) (Allegretti et al., 2014; Amunts et al., 2014; Fischer et al., 2015; Gutsche et al., 

2015; Khatter et al., 2015; Liao et al., 2013; Lu et al., 2014; Vinothkumar et al., 2014; Yu et 
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al., 2008; Zhang et al., 2008). An increasing number of macromolecular structures are being 

obtained at resolutions better than 4.5 Å (for a review, see (Cheng, 2015)). However, the 

interpretation of details of EM density maps is often difficult as noise at these high-frequency 

signal components reduces the contrast that is necessary for their identification. Thus, noise in 

EM-derived maps is usually reduced by a low-pass filtering. This is sometimes done by 

setting Fourier coefficients to zero beyond the resolution of the EM density map, which may 

induce Gibbs oscillations causing artificial features, but adjusting the shape of the low-pass 

filter to the shape of the Fourier Shell Correlation (FSC) curve has also been proposed 

(Penczek, 2010). Several other methods have been proposed for EM map denoising, and the 

majority was conceived in the context of denoising electron tomography reconstructions that 

usually contain low-resolution features whose interpretation is additionally hindered by strong 

experimental noise (Bilbao-Castro et al., 2010; Fernandez and Li, 2003; Frangakis and 

Hegerl, 2001; Jiang et al., 2003; van der Heide et al., 2007; Wei and Yin, 2010). In general, 

methods developed for one type of data may be used with other data types but their results 

may be suboptimal in such cases. The reason is that each method is parametrized (a set of 

parameters is defined and their default or recommended values are chosen) so as to optimally 

deal with data analysis difficulties linked to the particular experimental technique.     

 

In this paper, we propose a denoising approach that was specifically conceived to deal with 

single-particle EM maps of high (typically subnanometer) resolution. The key concept is to 

derive an alternative sparse density-map representation, so that coefficients in this new space 

have a higher signal-to-noise ratio. To achieve it, we model the map by a linear combination 

of the same type of “atoms”, more precisely, three-dimensional (3D) Gaussian functions. In 

the function approximation terminology, these “atoms” are referred to as basis functions. In a 

simplified manner, we assume that the reconstructed density map should have the same 
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appearance as the density map that would be derived from the actual structure at atomic 

resolution. We represent the density map so that it appears similar to the atomic-resolution 

structure, using no reference atomic model during the approximation and using an optimized 

number of basis functions (Gaussian functions) that is usually smaller than the number of 

voxels. Thus, the proposed method is different from the method of convolving the density-

map with a Gaussian function, which is known as Gaussian smoothing or blurring of the EM 

map. 

 

The process of simplifying the density map description is usually referred to as coarse-

graining of density maps and the resulting coarse-grain models of EM maps are also referred 

to as pseudoatomic or bead models. While simplified models of EM density maps have been 

used for many different purposes such as studying the topology of complexes, analyzing 

conformational changes, studying hydrodynamic properties of complexes, aligning  structures 

at different resolutions, or density-map visualization improvement (Birmanns and Wriggers, 

2007; Chacon et al., 2003; Garcia de la Torre et al., 2001; Jimenez-Lozano et al., 2003; Jin et 

al., 2014; Kawabata, 2008; Nogales-Cadenas et al., 2013; Spiegel et al., 2015; Wriggers et al., 

1998), they are here used for a general task of denoising, as a preliminary step of many 

possible data analysis workflows. More precisely, the method for EM map coarse-graining 

based on the control of EM map approximation accuracy, proposed in (Jonic and Sorzano, 

2016), is here shown to be useful for EM map denoising. To reach a given target accuracy of 

EM map approximation (target approximation error), that method adjusts the number, the 

position and the amplitude of grains represented by 3D Gaussian functions of a given standard 

deviation (grains are sometimes also referred to as pseudoatoms or beads). The method may 

not reach the target approximation error when using an inadequately large Gaussian-function 

standard deviation, but it allows overcoming this situation by suggesting the user to reduce the 
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Gaussian-function standard deviation or increase the target approximation error (Jonic and 

Sorzano, 2016). In this paper, we show that one may intentionally specify a very small, 

unattainable target approximation error and keep the resulting approximation, which can be 

used to remove noise from the original EM density map. In particular, we show how to 

choose the Gaussian-function standard deviation and the target approximation error to allow 

denoising. We use simulated and experimental density maps of several complexes at different 

resolutions to show the performance of the denoising method. 

 

METHODS  

 

Coarse-graining of EM density maps 

We first give a brief description of the method used here for coarse-graining of EM density 

maps while its full description is given in (Jonic and Sorzano, 2016). This coarse-graining 

method uses a set of 3D Gaussian functions to approximate the original EM density map, 

����	��	 ∈ 	ℝ��. The approximated map is given by �	
��� = ∑ 
�


��� ���‖� − ��‖�, where N 

is the number of Gaussian functions, �����  is the Gaussian function with the standard 

deviation � and maximum amplitude of 1, ��  is the position of the i-th Gaussian function, and 


� > 0 is the weight (amplitude) of the i-th Gaussian function. Given a density map, a value 

of �,  and a target approximation error, � , the method adjusts N, �� , and 
�  so that the 

approximation error, � , satisfies � = ������� − �	
���� △ �⁄ ! < �,  where �#∙%  is the 

expectation operator, △ � is the effective range of values of � i.e. ∆� = '(��1 − *� − '(��*�, 

'(��+� is the inverse of the cumulative distribution function of the values of �, and * is the 

statistical confidence on the effective range (typically, *  = 0.025). Note here that �  is 

expressed in voxels throughout this article.  

 



  

6 

 

The approximation error �  is minimized iteratively until it reaches �  and, in optimization 

terminology, it is referred to as objective function. To make this optimization process more 

robust to local minima, Gaussian functions are added progressively, using a given initial 

number of Gaussian functions and a given speed of adding Gaussian functions. For the given 

current number of Gaussian functions, their amplitudes and positions are computed by 

gradient descent minimization of the approximation error. This coarse-graining  method is 

available in the software package Xmipp (de la Rosa-Trevin et al., 2013; Scheres et al., 2008; 

Sorzano et al., 2004) and Scipion (de la Rosa Trevín et al, in preparation). The initial number 

of Gaussian functions of 300 and the speed of adding Gaussian functions of 30% usually 

produce good results and, thus, these values were used as default values in the available 

software as well as in all experiments in this article.    

 

Use of coarse-graining of EM maps for their denoising 

As said above, the coarse-grain representation is adjusted by minimizing the objective 

function until it reaches �. However, in some cases, particularly for very small values of � 

(around 1%), the objective-function minimization results in the density map whose error of 

approximation of the original EM density map is larger than � , which indicates that the 

objective function cannot reach �  for a given value of � . Such cases correspond to local 

minima of the objective function that, for a given value of �, can be escaped by reducing � 

because smaller values of � produce larger numbers of Gaussian functions that, in their turn, 

can better approximate fine details including noise (Jonic and Sorzano, 2016). Keeping the 

current approximation (based on Gaussian functions of larger �) instead of reducing � results 

in smoother density maps in which noise is less represented. Given a small value of � such as 

� = 1%, the question is then how to choose the value of �	to allow denoising. As we show 

below, we have found that optimal results can be obtained by adjusting � (usually between 1 
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and 2) to suit the original (input) density map though � = 1.5 could potentially be used as a 

default value that generally produces good results.  

 

RESULTS 

This section consists of three parts. In the first part, we show the performance of the method 

proposed here by fully evaluating the results of denoising of a synthetic and two EM density 

maps (Experiments 1-3) in terms of their FSC correlation with a non-filtered density map 

obtained from the corresponding atomic structure. In the synthetic case, this atomic structure 

is the exact ground-truth solution and, in the experimental case, it is considered to be close 

enough to the exact ground-truth solution. Density maps from atomic-resolution structures 

were computed using a method based on electronic-form atomic factors (Sorzano et al., 

2015). The non-filtered density maps from atomic structures are referred to as reference 

density maps and were used only for the FSC computations. More importantly, neither the 

reference density map nor the corresponding atomic structure was used in the density map 

approximation process.  

 

In the case of effective noise attenuation, the correlation (FSC) between the output and 

reference density maps is expected to be higher than the correlation between the input and 

reference density maps over a range of frequency shells. Thus, the effective noise attenuation 

is expected to result in an extension of the output-map FSC curve to higher frequencies than 

the input-map FSC curve, which was here evaluated by computing the difference between the 

frequencies at which the input and output density maps have the same correlation (FSC) with 

the reference density map. This frequency shift was computed for four FSC values selected to 

cover equidistantly the range [0.1, 0.7] in which the FSC could change significantly after 

processing the input density map. We would like to stress that the frequency shift was 
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computed for the multiple FSC values (more precisely, 0.7, 0.5, 0.3, and 0.1) to avoid 

reducing the entire FSC curve to a single value that is not carrying enough information in the 

denoising context that is considered in this paper. Single FSC values are commonly used in 

EM in the context of measuring the resolution of reconstructed EM density maps (the FSC 

curve is computed between two so-called half-maps independently computed from two 

subsets of the same set of images, which is known as gold-standard FSC, and the resolution is 

obtained as the frequency at which the FSC curve crosses a selected threshold value). 

However, a single FSC value does not carry enough information when using the FSC to 

evaluate, across frequencies, the amount of noise that is removed from a density map by its 

denoising, which is in the scope of this paper. Each of the different FSC values is related to a 

different value of the spectral signal-to-noise ratio (SSNR), but we are not particularly more 

interested in the frequencies at which SSNR=1 than in those at which SSNR>1 or SSNR<1, as 

we aim at increasing the SSNR in the entire frequency range. Indeed, it does not mean that the 

signal is useless at the frequencies where SSNR<1 but just that it is low, and the increase of 

the SSNR at these frequencies may thus be beneficial for the analysis of the entire signal.  

 

Experiments 1-3 show results of the proposed method using input density maps that were not 

masked. Also, FSC curves in Experiments 1-3 were computed with no masking of density 

maps. In the second part of this section (right after presenting Experiments 1-3), we compare, 

in FSC terms, the results obtained by the proposed method with those that could be obtained 

by masking the input density map as well as with those that could be obtained by several other 

available denoising methods. Also, we present a potential approach for tuning the value of �, 

and we show the use of a measure of signal-to-noise ratio (SNR) as an alternative to FSC-

based denoising evaluation that can be useful when high-resolution structures close enough to 

the exact ground-truth solution are unavailable. In the last part of this section, we show that 
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the proposed method can be used for denoising subtomogram average density maps of 

subnanometer resolution. Also, we demonstrate that the method does denoising inside the 

particle, by showing an example of denoising an empty virus particle (requiring an important 

denoising of the central region of the particle) and by comparing this result with the result of 

denoising a full virus particle.    

  

Experiment 1: Synthetic EM density map of anthrax toxin protective antigen  

In this experiment, the input density map for the denoising method was a synthetic EM 

density map computed from the atomic structure of anthrax toxin protective antigen with the 

PDB code 1ACC (Petosa et al., 1997). The atomic structure was first converted into a density 

map of size 220 × 220 × 220 voxels with the voxel size of 1 Å × 1 Å × 1 Å (reference density 

map). Then, 10,000 random projections of the reference density map were generated, and 

noise (signal-to-noise ratio of 0.1) and contrast transfer function (a defocus between 2.1 and 

2.2 µm) were applied onto the projections to simulate EM images. Finally, the synthetic 

density map was reconstructed from the simulated EM images using their ground-truth 

orientations (known orientations of the generated random projections). Note here that the 

reference density map is the exact ground-truth solution in this experiment. Indeed, as the 

reference map was used to compute the input map for denoising, this reference map can be 

considered as a truly error- and noise-free solution. 

 

The input density map was processed with the proposed method using � values between 1 and 

2 and � = 1%, which resulted in an output density map for each value of �. FSC results show 

that the reference density map correlates better with the output density map than with the 

input density map for all tested values of �. Indeed, at almost all frequencies, the FSC is 

larger for the output map than for the input map i.e., the output-map FSC curve extends more 
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to higher frequencies than the input-map FSC curve (Fig. 1A and Fig. S1A). In these terms, 

the best noise attenuation results were obtained for � = 1.6 producing the frequency shift of 

2.7 Å, 1.5 Å, 1.2 Å, and 1.5 Å for the FSC of 0.7, 0.5, 0.3, and 0.1, respectively (Table 1, Fig. 

1A, Fig. S1A). The number of Gaussian functions obtained using � = 1.6 was 6,280 and the 

corresponding error of the input density map approximation was 3.08% (Table 2). An 

arbitrary slice extracted from the reference map, the input map, and the output map for 

� = 1.6  is shown in Fig. 1B-D, respectively. The isosurface representations of these density 

maps are provided in Fig. S1B-D.  

 

It is tempting to think that the proposed denoising method introduces just a masking-type 

effect onto the EM density map, but this is not the case, which we show in a separate 

subsection. 

 

Experiment 2: EM density map of 50S-ObgE 

In this experiment, the EM density map of 50S ribosome subunit bound to ObgE (50S-ObgE) 

was obtained from the EMDB data bank and used as the input density map by the proposed 

denoising method (EMDB:EMD-2605; map size: 256 × 256 × 256 voxels; voxel size: 1.5 Å × 

1.5 Å × 1.5 Å (Feng et al., 2014)). The nominal resolution of the map is 5.5 Å, based on the 

gold-standard FSC with the 0.143 FSC threshold (Feng et al., 2014). The reference density 

map for evaluating the denoising results was the density map computed from the 

corresponding atomic model (PDB:4CSU) derived by fitting modelled and crystal structures 

of different parts of the complex into the EMD-2605 map and model refinement (Feng et al., 

2014). 
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As in Experiment 1, the input density map was processed with the proposed method using � 

values between 1 and 2 and � = 1% and, for all tested values of �, we could observe that the 

output-map FSC curve extends more to higher frequencies than the input-map FSC curve 

(Fig. 1E and Fig. S2A). According to the FSC computations, the best denoising results were 

obtained for � = 1.7 producing the frequency shift of 1.5 Å, 0.3 Å, 0.7 Å, and 2.7 Å for the 

FSC of 0.7, 0.5, 0.3, and 0.1, respectively (Table 1, Fig. 1E and Fig. S2A). The number of 

Gaussian functions produced using σ = 1.7 was 50,356 and the corresponding error of the 

input density map approximation using these Gaussian functions was 2.29% (Table 2). An 

arbitrary slice of the reference, noisy input, and denoised 1.7-� output maps is shown in Fig. 

1F-H, respectively (for isosurface representations of these density maps, see Fig. S2B-D).   

 

If comparing results obtained in Experiments 1 and 2, one should consider different sources 

of imperfection of the input and reference maps in these two experiments. While the input 

density map in Experiment 1 is a 3D reconstruction from images at their ground-truth 

orientations and the map imperfections come from the added noise, the added contrast transfer 

function effects, and the use of a finite number of images, the input-map imperfections in 

Experiment 2 also come from image alignment errors as well as other real-experiment-

related imaging issues. Also, while the reference map is the exact ground-truth solution in 

Experiment 1, it is a solution close to the exact ground truth in Experiment 2.  

 

Experiment 3: EM density map of beta-galactosidase 

In this experiment, the EM density map of beta-galactosidase from the EMDB data bank was 

used as the input density map by the proposed denoising method (EMDB:EMD-5995; map 

size: 340 × 340 × 340 voxels; voxel size: 0.64 Å × 0.64 Å × 0.64 Å (Bartesaghi et al., 2014)). 

The nominal resolution of the map is 3.2 Å, based on the gold-standard FSC with the 0.143 
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FSC threshold (Bartesaghi et al., 2014). The reference density map for evaluating the 

denoising results was the density map computed from the corresponding atomic model (PDB: 

3J7H) that has been derived from a 1.7-Å resolution crystal structure of the entire complex, 

involving fitting of the crystal structure into the EMD-5995 map and model refinement 

(Bartesaghi et al., 2014).  

 

As in the previous experiments, the input density map was processed with the proposed 

method using � values between 1 and 2 and � = 1%, and we could again notice a shift to 

higher frequencies of the output-map FSC curve with respect to the input-map FSC curve for 

all tested values of � (Fig. 1I and Fig. S3A). According to the FSC computations, the best 

denoising results were obtained for � = 1.4		producing the frequency shift of 0.5 Å, 0.5 Å, 0.5 

Å, and 1.1 Å for the FSC of 0.7, 0.5, 0.3, and 0.1, respectively (Table 1, Fig. 1I, Fig. S3A). 

The number of Gaussian functions produced using σ = 1.4  was 120,827 and the 

corresponding error of the input density map approximation using these Gaussian functions 

was 9.75% (Table 2). An arbitrary slice of the reference, noisy input, and denoised 1.4-� 

output maps is shown in Fig. 1J-L, respectively (for isosurface representations of these 

density maps, see Fig. S3B-D). 

 

Experiments 2 and 3 show that the proposed method can denoise experimental EM density 

maps as well as they show that the denoising results can be evaluated based on the FSC with 

an atomic reference structure if such a structure is available. Also, they show that the input 

and output density-map slices can be displayed to visually check the denoising results (i.e., 

the noise attenuation on the output density-map slices with respect to the input density-map 

slices). The exact ground-truth solution is not available in Experiments 2 and 3. Thus, the 

reference density map in these experiments comes from the best available atomic model for 
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the given EM map, and can be considered as noise-free but not as completely error-free. The 

reference density map is closer to the exact ground-truth solution in Experiment 3 than in 

Experiment 2 because of the higher resolution of the EM map yielding the atomic model for 

Experiment 3 than for Experiment 2. Interestingly enough, Experiment 2 shows that atomic 

models obtained from EM maps of nominal resolution in the range 5-6 Å (gold-standard FSC 

0.143) are still reliable for evaluation of denoising results.   

 

Comparison with input-map masking and with several available denoising methods 

In this subsection, the best results obtained for denoising unmasked input maps in 

Experiments 1-3 using the proposed method are compared with the denoising results 

obtained by masking the input density map and with the results obtained by other publicly 

available denoising methods (Fig. 2, Figs. S4-9). The output (density map) of the proposed 

method was compared with unmasked and masked output of each of these methods. Density-

map masks adjusted to the shape of each particular complex were created using the standard 

masking procedure in single particle analysis, based on low-pass filtering, thresholding, and 

binarization (Frank, 2006)). The results are shown for iterative median filtering (van der 

Heide et al., 2007), bilateral filtering (Jiang et al., 2003), and nonlinear anisotropic diffusion 

filtering (Fernandez and Li, 2003; Frangakis and Hegerl, 2001) available in Bsoft software 

(programs bmedian, bbif, and bnad, respectively) (Heymann, 2001; Heymann et al., 2008) 

and, regarding nonlinear anisotropic diffusion filtering, also available in TOMOAND 

software (programs tomoeed and tomoand) (Fernandez and Li, 2003; Fernández et al., 2007). 

While bnad proposes edge-enhancing diffusion as a default diffusion mode and coherence-

enhancing diffusion as an optional mode, tomoeed only allows edge-enhancing diffusion and 

tomoand combines the two diffusion modes. Regarding bnad, only edge-enhancing diffusion 

results are shown here as those are the best results obtained for this method with the data used 
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in this article. Furthermore, the methods were run using different values of their parameters 

and only the best results obtained with each method are shown here. 

 

The FSC results in Figure 2 show that the reference density map correlates better with the 

masked input density map than with the unmasked input density map. They also show that the 

reference density map correlates better with the output of the proposed method than with the 

masked input density map or with the output of other methods (Figs. 2A-C, S4-6), even when 

the output of these methods is masked (Figs. 2D-F, S7-9). This is particularly the case at 

higher frequencies i.e. a higher FSC of the output of the proposed method is observed where 

the FSC of the output of other methods (including input-map masking) is below 0.7 in the 

simulated case and below 0.3 in the experimental case (Fig. 2). One can also note that the 

FSC differences between the output of the proposed method and the output of other methods 

(including input-map masking) are larger in the simulated case than in the experimental case 

(Fig. 2), which is interesting because the FSC-based results evaluation should be the most 

correct in the simulated case, taking into account that the reference density map used for 

computing the FSC curves in that case is the exact ground-truth solution.   

 

Identifying “optimal” σσσσ based on input-map approximation error 

In Experiments 1-3, we could identify the “optimal” value of σ using the FSC-based 

approach as we had at our disposal atomic-resolution models that were close enough to the 

corresponding exact ground-truth solutions. When this is not the case, the FSC-based 

approach cannot be used, but σ=1.5 could be used in such cases as it usually gives satisfactory 

results (Figs. S1A, S2A, S3A). We refer to this value (σ=1.5) as “default” value of σ. 

Alternatively, one could chose σ by analysing the actual dependence of the final input-map 

approximation error on the given value of σ. More precisely, we have found interesting to 
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compare the input-map approximation errors achieved when reducing σ and to identify the σ 

value for which the approximation error starts to decrease slowly or for which there is an 

unchanged amount of the approximation error decrease (a kind of saturation in the decrease). 

A decrease in the σ value produces a decrease in the speed of the global approximation-error 

convergence towards the target approximation error (Table 2). For instance, in the case of 

synthetic density map, the approximation error decreases by around 0.005 when σ decreases 

from 1.7 to 1.6, and by around 0.002 when σ decreases from 1.6 to 1.5 or from 1.5 to 1.4 

(Table 2), which means a saturation in the decrease of the approximation error when reducing 

σ below the value that was identified as the optimal value by the FSC analysis (σ=1.6). Recall 

here that the recommended target approximation error of 1% was used in all three 

experiments and that the approximation error achieved for each σ corresponds to a local 

minimum of the objective function from which one can escape by reducing σ (Jonic and 

Sorzano, 2016). Indeed, the decrease in σ produces a larger number of Gaussian functions to 

better approximate fine details including noise (Table 2). Thus, stopping to decrease σ below 

the value identified as the optimal value by the FSC analysis suggests that this σ produces the 

approximation where noise is optimally removed. Here, we could show (Table 2) that this 

value of σ can be identified as the value for which the approximation error starts to decrease 

slowly or for which there is a saturation in the decrease.   

 

Signal-to-noise ratio as an alternative to FSC-based denoising evaluation 

In Experiments 1-3, we could evaluate the denoising results numerically using the FSC-

based approach. When the FSC-based approach cannot be used, an alternative could be to 

measure the SNR. Here, we use the SNR definition already introduced in EM (Bilbao-Castro 

et al., 2010), namely SNR=(Is−Ib)/ϭb, where Is and Ib denote the average intensity in the 

meaningful signal region (structure of interest) and in the unwanted signal region (noise), 
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respectively, and ϭb is the standard deviation in the noise region. The noise region is defined 

as the region outside a mask suited to the shape of the complex such as the one used in 

Experiments 1-3. Although the average intensity in the noise region, Ib, is small and could be 

neglected in many cases, we here take it into account by considering a general case where this 

may not be true (e.g., subomogram average data). Table 3 summarizes the SNRs before and 

after denoising by the proposed method and the other methods tested in Experiments 1-3 as 

well as the ratio between the input and output SNRs. Though the information measured by the 

SNR and the FSC is not the same but related, one can notice that the proposed method 

achieves the best results over all tested methods according to both the FSC and the SNR (Fig. 

2 and Table 3). In the next two subsections, aiming at answering particular additional 

questions regarding the performance of the proposed method, we only report the SNR because 

the particular experiments described in these subsections were done using density maps for 

which atomic models are either unavailable or may not be sufficiently reliable for the purpose 

of denoising evaluation. 

 

Denoising of density maps obtained by subtomogram averaging 

The proposed method was specifically conceived to deal with single-particle EM density 

maps. It cannot be used for denoising 2D images and it is not efficient in denoising electron 

tomogram reconstructions that are large and very noisy. However, it can be used to denoise 

subnanometer-resolution subtomogram averages, as we show in this subsection. Figure 3 

shows the use of the proposed method (with σ=0.5 and � = 5%), bmedian, bbif, bnad, and 

tomoeed for denoising a density map of immature HIV-1 capsid of intact virus particles 

obtained by subtomogram averaging at 8.8 Å resolution (FSC 0.143; EMDB:EMD-2706; 

size: 140×140×140voxels, voxel size: 2.02 Å) (Schur et al., 2015). Note that the value of ε 

was set larger than 1%  in this case to avoid noise overfitting that here refers to as an 
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important noise reproduction in the approximation by Gaussian functions. The SNR of the 

input density map (SNR=7.3) was increased to SNR=42.7 (output map) using the proposed 

method, while it was increased only to 8.0, 9.4, 9.3, 7.9, and 8.4 using bmedian, bbif, bnad, 

tomoand, and tomoeed, respectively. This means that the proposed method improved the SNR 

of the input density map 5.8 times, whereas the other methods improved it only 1.1-1.3 times.     

 

Interior denoising  

In this subsection, we show that the proposed method denoises the interior of a complex and 

not only the background. For this purpose, we show in Figure 4 denoising of a density map of 

genogroup II genotype 10 norovirus virus-like particle obtained by single-particle analysis at 

10 Å resolution (FSC 0.5; EMDB: EMD-5374; size: 250×250×250 voxels, voxel size: 2.40 Å) 

(Hansman et al., 2012). This density map shows an empty particle, meaning that there is no 

“signal” in the middle of the particle but only noise. Figure 4 clearly shows that the proposed 

method denoises not only the background but also the interior of the virus.  While the SNR of 

the input density map is 10.4, the SNR of the map obtained by the proposed method (using 

σ=1.5 and ε = 15%) is 30.3, which makes an improvement of 2.9 times. These results can be 

compared with results of denoising of a full virus particle where the middle part of the particle 

is not occupied by noise but by “signal” (meaningful information) and should thus not be 

suppressed by denoising (Fig. 5). Figure 5 shows denoising of a density map of human 

rhinovirus 2 135S full particle obtained by single-particle analysis at 8.8 Å resolution (FSC 

0.5; EMDB: EMD-2109; size: 244×244×244voxels, voxel size: 1.89 Å) (Pickl-Herk et al., 

2013). In this case, the increase in the SNR obtained by the proposed method (using σ=1.3 

and ε = 5%) is from 13.6 (input map) to 121.4 (output map), which makes an improvement 

of 8.9 times. In these two data cases, as in the case of subtomogram average data shown in the 
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previous subsection, the value of ε had to be set larger than in Experiments 1-3 to avoid 

noise overfitting. 

 

DISCUSSION AND CONCLUSION 

In this paper, the method of representing an EM density map by a linear combination of 3D 

Gaussian functions, whose positions, amplitudes, and number are computed through an 

optimization (approximation) procedure (Jonic and Sorzano, 2016), was shown to be useful 

for denoising single-particle EM maps of high (typically subnanometer) resolution. This was 

shown by a successful denoising of one synthetic and several experimental input density maps 

without masking. The proposed method is a denoising method, meaning that it aims at 

attenuating noise while preserving structural features as they are. For instance, in lower 

resolution EM maps, the structural features are not fine and they will remain so after the use 

of the method. Depending on the density map size and the combination of σ (the standard 

deviation of Gaussian functions) and ε (the target approximation error of the density map 

using Gaussian functions), the method takes from a few minutes to a few hours to perform on 

a single processor of a laptop computer, but multithreading is also allowed. 

 

Choice of σ and � 

In the context of denoising, ideal values of σ and ε are those that result in the complete noise 

removal and signal reproduction. However, such σ and ε	values are difficult to determine, 

meaning that some noise is usually reproduced together with the signal. In the case of higher-

resolution density maps (resolutions higher than 6 Å, gold-standard FSC 0.143), we have 

shown that σ=1.5 and � = 1%  produce satisfactory results in most cases, but σ can be 

additionally adjusted (for the given � value) to achieve optimal results in terms of the FSC 

with an atomic model of the density map, if such a model is available (Figs. S1A, S2A, S3A). 
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We have also shown an approach to adjust σ that does not rely on the FSC computations but 

produces consistent results with the FSC-based ones. It compares the values of the input-map 

approximation error achieved when reducing σ to identify the σ value for which the 

approximation error starts to decrease slowly or the approximation error decrease starts to 

saturate. Note here that � = 1% is a quite small value, and as such, it may not be achieved 

(for the given value of σ). In the case of higher-resolution density maps, a failure in reaching 

� of 1% usually means a “failure” in noise overfitting. This was the case with the data in 

Experiments 1-3, where the target approximation error of 1% could not be reached and 

adding of Gaussian functions to the approximation ended as soon as the approximation error 

achieved the values of 3.08%, 2.29%, and 9.75%, respectively (for the given σ value of 1.6, 

1.7, and 1.4, respectively). Target approximation errors smaller than 1%  are often 

unattainable and the resulting approximations (for the achieved approximation error) suffer 

from noise overfitting. Thus, setting the value of � to 1% is likely a good compromise for the 

majority of higher-resolution density maps. In the case of lower-resolution density maps 

(resolutions lower than 6 Å, gold-standard FSC 0.143), the target approximation error of 1% 

is usually unreachable and this choice usually produces approximations with noise overfitted. 

As we have shown, noise overfitting in such cases can be avoided by setting � to larger values 

(often	5%, and in some cases, 15%) and by readjusting the value of σ around the suggested 

value of 1.5 (usually slightly, but a more important readjustment may be needed in some cases 

of noise such as subtomogram noise). 

 

Evaluation of denoising results  

In Experiments 1-3, denoising results were evaluated quantitatively based on the frequency 

shift between the FSC curves of the input and output density maps with respect to the 

reference density map, where the reference density map was derived from an atomic-
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resolution structure of the complex that was available in these three cases (Table 1). Here, we 

decided to examine the frequency shifts of four FSC values, taken at equal distances (0.2) 

from FSC=0.1 to FSC=0.7, which allows a more complete numerical evaluation of the noise 

reduction across different frequency shells than it would be the case if the frequency shift of a 

single FSC value was used for this purpose. Though only the entire FSC curve carries the full 

information and the four selected FSC values are only one of many possible reduced 

representations of the entire FSC curve, the results presented here show that the four selected 

values can be considered as representative enough of the FSC curve shape changes due to 

denoising (Figs. 1A,E,I).    

 

When atomic-resolution structures are unavailable or perhaps not enough reliable for the 

purpose of denoising evaluation (e.g., when atomic models are obtained from EM maps of 

resolution lower than 6-7 Å (gold-standard FSC 0.143)), numerical evaluation of denoising 

results can be done by measuring the signal-to-noise ratio, as shown in this article. 

Additionally, the denoising results can be inspected visually, by comparing the input and 

output density-map slices.  

 

Comparison with masking and with other available methods 

We have shown that the denoising results cannot be reproduced by a simple masking of the 

input density map, even using a mask suited to the shape of the complex. This suggests that 

the masks remove the background noise only, whereas the method proposed here removes 

noise additionally from non-background voxels (voxels occupied by the complex). The 

removal of noise from non-background voxels was illustrated by denoising two (empty and 

full) virus particles (Figs. 4-5). We have also shown that the proposed method provides better 

results than other available methods tested using the same data (Fig. 2). The majority of these 
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methods have been conceived for denoising raw electron tomography images or 3D 

reconstructions from these images (electron tomograms). The method proposed here has been 

conceived for single particle 3D applications and it is not efficient in tomogram denoising, but 

it can be used for denoising subtomogram averages (Fig. 3).     

 

Avoiding local density overrepresentation or subrepresentation 

The proposed denoising method approximates an input density map by a linear combination 

of Gaussian functions whose number is usually smaller than the number of voxels of the input 

density map (see Table 2 for the numbers of Gaussian functions used for different complexes 

and different values of σ). Also, amplitudes and locations of Gaussian functions are adjusted 

so as to achieve a uniform representation of densities of the complex while avoiding local 

overrepresentations or subrepresentations (Jonic and Sorzano, 2016). In this respect, the 

proposed method is original and has advantages. It may be tempting to think that some non-

linear transformations of the input density map such as raising input densities to the power of 

2 could produce similar results as the method proposed here. However, such transformations 

produce a non-uniform representation of input densities (high intensities are strongly 

amplified and low intensities are in a way attenuated, which makes that some very bright 

voxels “appear” and some dark voxels “disappear”), which in turn makes that the reference 

map correlates less with the map transformed using this transformation than with the map 

processed using the proposed method (results not shown). 

 

No use of a priori knowledge 

Recently, a visualization improvement of EM density maps has been proposed using a method 

based on bead models (Spiegel et al., 2015). Though the method presented here has been 

conceived for a general task of denoising of EM maps, one may consider its use also for the 
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EM map visualisation improvement. The method proposed in (Spiegel et al., 2015) places the 

beads randomly in the density regions that are above a certain threshold. The coordinates of 

the beads are then used to place real atoms inside the EM map (randomly assigned atom types 

to the beads inside the particle boundaries defined by the density threshold such that the 

atomic composition is the same as the average atomic composition observed for proteins in 

the PDB database). Thus, the method proposed in (Spiegel et al., 2015) requires some a priori 

knowledge about protein structures and an estimate of the number of atoms inside the particle 

boundaries defined by a density threshold. This implies that it works best for resolutions 

better than 5 Å because, at lower resolutions, the boundaries of the protein are not well 

defined and a radial mass distribution cannot be compared with the average one obtained from 

PDB structures (Spiegel et al., 2015). In contrast to that method, the approach proposed here 

uses no a priori knowledge about proteins or from PDB, which allows analysing any type of 

macromolecular assemblies. 

 

Basis functions 

Gaussian functions are used for the purpose of approximating the input density map (in real 

space) and for the purpose of building the reference density map from the atomic structure (in 

Fourier space). However, the two tasks rely on completely different real-space basis functions 

i.e., Gaussian functions for approximating the input map (Jonic and Sorzano, 2016) and Low-

pass filtered Electron Atomic Scattering Factors for building the reference map (Sorzano et 

al., 2015). Thus, while the “extension” of the FSC curve for the denoised map to higher 

frequencies than the FSC curve for the input map could be attributed to the denoising effect of 

real-space Gaussian functions used for the input map approximation, one cannot say that this 

FSC “extension” was facilitated by the use of Fourier-space Gaussian functions for building 
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the reference map as the corresponding real-space basis functions are not Gaussian functions 

(Sorzano et al., 2015). 

 

In the future work, we plan to extend this method to use other basis functions and evaluate the 

performance of different basis functions for a detailed analysis of cryo EM maps. 

 

SUPPORTING MATERIAL 

Supporting Material includes nine supplementary figures (Figs. S1-9) with their legends. 
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FIGURE LEGENDS 

 

Figure 1: Denoising of one synthetic and two experimental EM maps (Experiments 1-3). (A-

D) Denoising of the synthetic density map of anthrax toxin protective antigen using σ=1.6 

(the optimal σ regarding the FSC results shown in Figure S1A) and � = 1% i.e., the FSC of 

the input and output density maps with respect to the reference density map (A) and an 

arbitrary slice (slice 104 along Z axis) of the reference, input, and output density maps ((B)-

(D), respectively). (E-H) Denoising of the EM density map of 50S-ObgE complex 

(EMDB:EMD-2605) using σ=1.7 (the optimal σ regarding the FSC results shown in Figure 

S2A) and � = 1% i.e., the FSC of the input and output density maps with respect to the 

reference density map (E) and an arbitrary slice (slice 116 along Y axis) of the reference, 

input, and output density maps ((F)-(H), respectively). (I-L) Denoising of the EM density map 

of beta-galactosidase (EMDB:EMD-5995) using σ=1.4 (the optimal σ regarding the FSC 

results shown in Figure S3A) and � = 1% i.e., the FSC of the input and output density maps 

with respect to the reference density map (I) and an arbitrary slice (slice 144 along Y axis) of 

the reference, input, and output density maps ((J)-(L), respectively). In (A), (E), (I), a reduced 

range of spatial frequencies is shown for a better visibility. The FSC obtained for other values 

of σ and the reference-, input-, and output-map isosurface representations are provided in 

Figures S1-3. 
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Figure 2: Comparison of the FSC curves obtained by the proposed method for one synthetic 

and two experimental EM maps (Experiments 1-3, Figs. 1A,E,I) with the FSC curves 

obtained for the output of bmedian, bbif, bnad, tomoand, and tomoeed methods. (A-C) 

Comparison of different methods using synthetic anthrax toxin protective antigen data (A), 

experimental 50S-ObgE data (B), and experimental beta-galactosidase data (C), using non-

masked output density maps obtained by bmedian, bbif, bnad, tomoand, and tomoeed. (D-F) 

Comparison of different methods using synthetic anthrax toxin protective antigen data (D), 

experimental 50S-ObgE data (E), and experimental beta-galactosidase data (F), using masked 

output density maps obtained by bmedian, bbif, bnad, tomoand, and tomoeed. The FSC curves 

obtained for the non-masked and masked input density maps are also shown. Slices of the 

different non-masked and masked maps for the three data cases are provided in Figures S4-9.     

 

Figure 3: Denoising of a density map of immature HIV-1 capsid in intact virus particles 

(EMDB:EMD-2706) by the proposed method (using σ=0.5 and � = 5%) and bmedian, bbif, 

bnad, and tomoeed methods. (A) Input density map (transparent gray) and the output of the 

proposed method (solid orange) superposed and cut with the same plane using Chimera 

(Pettersen et al., 2004). (B) Another view of the overlap shown in (A). (C-H) Input density 

map (C), output of the proposed method (D), output of bmedian, bbif, bnad, and tomoeed 

((E)-(H), respectively), cut with the same cutting plane as in (A) and shown in the same 

orientation as in (A) but using a higher density isosurface level than in (A). Note that the input 

density map is masked as deposited at EMDB. 

 

Figure 4: Denoising of a density map of genogroup II genotype 10 norovirus virus-like 

particle (EMDB:EMD-5374) by the proposed method (using σ=1.5 and � = 15%). (A) Input 

density map (transparent gray) and the output of the proposed method (solid cyan) superposed 
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and cut with the same plane using Chimera. (B-E) Cut of the input density map for two 

different density isosurface levels, a lower one in (B) and a higher one in (C) (both higher 

than the isosurface level in (A)), and the corresponding cut of the output of the proposed 

method ((D) and (E), respectively). (F-G) Arbitrary slice (slice 108 along Z axis) extracted 

from the input density map (F) and from the output of the proposed method (G). In (B)-(E), a 

half of the density map, radially colored, is shown using Chimera (bluish densities are those 

on the medial slice or close to it that are among the most far away from the center of the slice 

while less distant ones are greenish; yellowish and reddish densities correspond to the slices 

that are further away from the medial slice and the most distant ones are in dark red).  

 

Figure 5: Denoising of a density maps of human rhinovirus 2 135S full particle obtained by 

single-particle analysis (EMDB:EMD-2109) by the proposed method (using σ=1.3 and 

ε = 5%). (A-D) Cut of the input density map for two different density isosurface levels, a 

lower one in (A) and a higher one in (B), and the corresponding cut of the output of the 

proposed method ((C) and (D), respectively). (E-F) Arbitrary slice (slice 132 along Z axis) 

extracted from the input density map (E) and from the output of the proposed method (F). In 

(A)-(D), a half of the density map, radially colored, is shown using Chimera (the same color 

code is used as in Figure 4). 
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Fig. 4 
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Fourier 
Shell 

Correlation 

Inverse spatial frequencies and differences  
Synthetic density map EMD-2605 EMD-5995 

Input 
[Å] 

Ouput 
[Å] 

Difference 
[Å] 

Input 
[Å] 

Ouput 
[Å] 

Difference 
 [Å] 

Input 
[Å] 

Ouput 
[Å] 

Difference 
 [Å] 

0.7 7.6 4.9 2.7 10.4 8.9 1.5 4.3 3.8 0.5 
0.5 5.9 4.4 1.5 8.9 8.6 0.3 3.9 3.4 0.5 
0.3 5.2 4.0 1.2 8.7 8.0 0.7 3.5 3.0 0.5 
0.1 4.7 3.2 1.5 8.5 5.8 2.7 3.1 2.0 1.1 

 

Table 1: Noise attenuation obtained by the proposed method and evaluated by measuring the 
output-map FSC curve shift to higher frequencies with respect to the input-map FSC curve, 
for synthetic (anthrax toxin protective antigen) and experimental (EMD-2605 and EMD-
5995) input density maps (the columns denoted by different shades of transparent grey). The 
FSC curves for the input and output density maps of a complex were computed with respect 
to the same reference density map of the complex (see the text for more details on reference 
maps). The frequencies corresponding to the input- and output-map FSC curve values of 0.7, 
0.5, 0.3, and 0.1 are shown in the first two columns of the part of the table related to each map 
and the differences among these frequency pairs are shown in the third column of the same 
part of the table. 
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 Standard deviation of 
Gaussian functions, σ 

Number of Gaussian 
functions 

Approximation error 
[%] 

Synthetic 
density map 

1.7 4,399 3.54 
1.6 6,280 3.08 

1.5 8,546 2.86 
1.4 11,519 2.66 

EMD-2605 1.8 31,046 2.68 
1.7 50,356 2.29 
1.6 76,748 2.01 
1.5 98,666 1.84 

EMD-5995 1.5 55,043 11.48 
1.4 120,827 9.75 

1.3 196,998 8.64 
1.2 269,189 7.80 

 

Table 2: Numbers of Gaussian functions produced using different values of the Gaussian-

function standard deviation (σ) and the target approximation error of the input density map of 
1%, together with the achieved approximation error using these Gaussian functions, for 
synthetic (anthrax toxin protective antigen) and experimental (EMD-2605 and EMD-5995) 
input density maps. The values in bold denote the optimal solution obtained by analysing the 
FSC between the output and reference density maps (see the text for more details on reference 
maps). The results are shown for the optimal value of σ, two smaller values than the optimal 
value (smaller by 0.1 and 0.2) and one larger value than the optimal value (larger by 0.1). 
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 SNR SNR�output� SNR�input�⁄  
Synthetic 

density map 
EMD-
2605 

EMD-
5995 

Synthetic 
density map 

EMD-
2605 

EMD-
5995 

Input 25.7 8.2 4.2 N/A N/A N/A 
Output of the 
proposed method 

138.2 34.8 13.1 5.4 4.2 3.1 

Output of 
bmedian 

30.9 9.4 5.4 1.2 1.1 1.3 

Output of bbif 60.2 13.5 6.6 2.3 1.6 1.6 
Output of bnad 39.7 12.0 7.2 1.5 1.5 1.7 
Output of 
tomoand 

27.0 8.4 4.4 1.1 1.0 1.0 

Output of 
tomoeed 

37.4 9.9 5.5 1.5 1.2 1.3 

 

Table 3: Noise attenuation evaluated by measuring the signal-to-noise ratio (SNR) of the 
input density map (synthetic anthrax toxin protective antigen map and experimental EMD-
2605 and EMD-5995 maps) and the SNR of the corresponding output density map obtained 
by each tested method (the proposed method, bmedian, bbif, bnad, tomoand, and tomoeed). 
The ratio of the SNRs of the output and input density maps is also provided. 
 

 

 


