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Abstract

In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured
meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-
Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a
simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of
the classical shallow water equations supplemented with a source term globally accounting for the
non-hydrostatic effects and we show that this source term can be computed through the resolution
of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are:
(i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation
in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water
height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow
water equations. The resulting numerical model is validated through several benchmarks involving
nonlinear wave transformations and run-up over complex topographies.

Keywords: Green-Naghdi equations, discontinuous Galerkin, high-order schemes, free surface flows,
Shallow Water Equations, dispersive equations

1 Introduction

The mathematical modelling and numerical approximations of free surface water waves propagation
and transformations in near-shore areas has received a lot of interest for the last decades, motivated
by the perspective of acquiring a better understanding of important physical processes associated with
the nonlinear and non-hydrostatic propagation over uneven bottoms. Great improvements have been
obtained in the derivation and mathematical understanding of particular asymptotic models able to
describe the behavior of the solution in some physical specific regimes. A recent review of the different
models that may be derived can be found in [1]. In this work, we focus on the shallow water and large
amplitude regime: the water depth h0 is assumed to be small compared to the typical wave length λ:

(shallow water regime) µ :=
h2
0

λ2
≪ 1.

while there is no assumption on the size of the wave’s amplitude a:

(large amplitude regime) ε :=
a

h0
= O(1). (1)

Under this regime, the classical Nonlinear Shallow Water (NSW) equations can be derived from the full
water waves equations by neglecting all the terms of order O(µ), see for instance [2]. This model is
able to provide an accurate description of important unsteady processes in the surf and swash zones,
such as nonlinear wave transformations, run-up and flooding due to storm waves, see for instance [3],
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but it neglects the dispersive effects which are fundamental for the study of wave transformations in the
shoaling area and possibly slightly deeper water areas.
Keeping the O(µ) terms in the analysis, the corresponding equations have been derived first by Serre [4]
in the horizontal surface dimension d = 1, by Green and Naghdi [5] for the d = 2 case, and have been
recently mathematically justified in [6].
As far as numerical approximation is concerned, it is only recently that the Green-Naghdi (GN) equations
really have received attention and several methods have been proposed, mainly in the d = 1 case. Let us
mention the Finite-Difference (FD) approach of [7], Finite-Volume (FV) approaches of [8–10], the pseudo-
spectral approach of [11], continuous Finite Elements (FE) methods in [12,13], and discontinuous Galerkin
(DG) approaches (possibly mixed with FEM) in [14], [15], or more recently [16] for a reconstructed-DG
method. In the d = 2 case, we find pioneering FD approaches [17], FV methods [18], hybrid FV-FD
methods [19, 20] and a pseudo-spectral method in the rotating case [21]. Let us also mention the recent
non-hydrostatic models [22] and [23] or the so called high-level GN equations [24]
After having developed hybrid FV-FD formulations based on a temporal splitting approach (see [25–27]
for the d = 1 case and [28] for the d = 2 case on structured cartesian grids), we have recently introduced
in [29] an approach based on a full DG method in the d = 1 case. In this approach, we decouple the
hyperbolic and elliptic parts of the model by computing the solutions of the NSW equations supplemented
by an additional algebraic source term, which fully accounts for the whole dispersive correction, and which
is itself obtained from the resolution of auxiliary elliptic and coercive linear second order problems. With
this approach we have obtained:

♯ more flexibility, as the proposed discrete formulation handles an arbitrary order of accuracy in space
and, although limited in the d = 1 case in [29], it conceptually generalizes to the dimension d = 2
with unstructured meshes. It can moreover be straightforwardly used to enhance any numerical
code based on the NSW equations,

♯ more efficiency, as we built this approach on the new set of GN equations issued from [28] which
allows to perform the corresponding matrix assembling and factorization in a preprocessing step,
leading to considerable computational time savings.

Note that similar decoupling strategies have recently been used to implement some hybrid approaches
based on the classical GN equations (see [20] for an hybrid FV-FD scheme in the d = 2 case on cartesian
meshes and [30] for a FV-FEM scheme in the d = 1 case. Although full DG or Spectral-Element methods
have been developed respectively for high order Boussinesq equations in [31] and fully nonlinear water
waves in [32], there is still no studies, up to our knowledge, that allows to approximate the solutions of
GN equations on arbitrary unstructured meshes in the multidimensional case: this is the main purpose
of this work.
Starting from the new model recently introduced in [28], we consider a Discontinuous Galerkin (DG)
formulation and generalize to the d = 2 case the decoupling strategy of [29]:

♯1 we compute the flow variables using a RK-DG approach [33] by approximating the solutions of the
hyperbolic set of NSW equations supplemented with an additional source term that accounts for
the whole dispersive correction,

♯2 the dispersive source term is obtained from the computation of auxiliary scalar linear elliptic
problems of second order, approximated through a mixed formulation and Local Discontinuous
Galerkin (LDG) stabilizing interface fluxes [34, 35].

This results in a global formulation of arbitrary order of accuracy in space, which is shown to preserve
both the non-negativity of the water height and the motionless steady states up to the machine accuracy.
These properties are particularly important in the study of propagating waves reaching the shore. Note
that while this multidimensional strategy is clearly promising in terms of flexibility, the emphasize is put
here on efficiency. First, the use of the diagonal constant model issued from [28] allows to considerably
simplify the computations associated with the elliptic sub-problems. Indeed, the time evolutions of the
velocity vector’s components are here fully decoupled, thanks to the simplified analytical structure of the
model. The problem therefore reduces to the approximation of scalar problems without any third order
derivatives, instead of the more complex vectorial ones obtained with the classical GN equations. The
corresponding matrix can be assembled and the associated LU factorization stored in a pre-processing

2



step. Secondly, the use of a nodal approach [36] together with the pre-balanced formulation of the hy-
perbolic part of the model (see for instance [37, 38]), allows to combine (i) an efficient quadrature free
treatment for the integrals which are not involved into the equilibrium balance, (ii) a quadrature-based
treatment with a lower computational cost, needed to exactly compute the surface and face integrals
involved in the preservation of the steady states at rest, (iii) a direct nodal product method, in the spirit
of pseudo-spectral methods, for the strongly nonlinear terms occurring in the source terms of the elliptic
sub-problems.
This remainder of this work is organized as follows: we describe the mathematical model and the nota-
tions in the next section. Section 3 is devoted to the introduction of the discrete settings and the DG
formulations for both hyperbolic and elliptic sub-problems. This approach is then validated in the last
section through convergence analysis and comparisons with data taken from experiments with several
discriminating benchmark problems.

2 The physical model

Let us denote by x = (x, y) the horizontal variables, z the vertical variable and t the time variable. In
the following, ζ(t,x) describes the free surface elevation with respect to its rest state, h0 is a reference
depth, −h0 + b(x) is a parametrization of the bottom and h := h0 + ζ − b is the water depth, as shown
on Figure 1. Denoting by Uhor the horizontal component of the velocity field in the fluid domain, we
define the vertically averaged horizontal velocity v = (u, v) ∈ R2 as

v(t,x) =
1

h

∫ ζ

−h0+b

Uhor(t,x, z)dz,

and we denote by q = hv the corresponding horizontal momentum.

z

0

72−h0

z = ζ(t,x)

z = −h0 + b(x)

x = (x, y)

Figure 1: Sketch of the domain

2.1 The Green-Naghdi equations

According to [25], the Green-Naghdi equations may be written as follows:

{
∂tζ +∇ · (hv) = 0,
(I + T [h, b])

[
∂tv + (v · ∇)v

]
+ g∇ζ +Q1[h, b](v) = 0,

(2)

where the linear operator T [h, b]· and the quadratic form Q1[h, b](·) are defined for all smooth enough
R2-valued function w by

T [h, b]w = R1[h, b](∇ ·w) +R2[h, b](∇b ·w), (3)

Q1[h, b](w) = −2R1[h, b](∂1w · ∂2w
⊥ + (∇ ·w)2) +R2[h, b]((w · ∇)∇b), (4)
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(here ∂1 and ∂2 denote space derivatives in the two horizontal directions) with, for all smooth enough
scalar-valued function w,

R1[h, b]w = −
1

3h
∇(h3w) −

h

2
w∇b, (5)

R2[h, b]w =
1

2h
∇(h2w) + w∇b, (6)

and I stands for the 2 × 2 identity matrix. We also recall in [25] that the dispersion properties of (2)
can be improved by adding some terms of order O(µ2) to the momentum equation, which consequently
does not affect the accuracy of the model. An asymptotically equivalent enhanced family of models
parametrized by α > 0 is given by





∂tζ +∇ · (hv) = 0,

(I + αT [h, b])

(
∂tv + (v · ∇)v +

α− 1

α
g∇ζ

)
+

1

α
g∇ζ +Q1[h, b](v) = 0.

(7)

or alternatively written in (h, hv) variables:





∂th+∇ · (hv) = 0,

(I + αT[h, b])

(
∂t(hv)+∇·(hv ⊗ v) +

α−1

α
gh∇ζ

)
+

1

α
gh∇ζ + hQ1[h, b](v) = 0,

(8)

where we have introduced the operator T[h, b] defined as follows

T[h, b]w = hT [h, b](
w

h
).

As shown in [29], (8) can be recast as





∂th+∇ · (hv) = 0, (9a)

∂t(hv) +∇ · (hv ⊗ v) + gh∇ζ +Do = 0, (9b)

(I+αT[h, b])(Do +
1

α
gh∇ζ) =

1

α
gh∇ζ + hQ1[h, b](v). (9c)

which highlights the fact that the dispersive correction of order O(µ) only acts as a source term Do in
(9b), and is obtained as the solution of an auxiliary second-order elliptic sub-problem (9c).

Remark 1. These formulations have two main advantages:

1. They do not require the computation of third order derivatives, while this is necessary in the standard
formulation of the GN equations,

2. The presence of the operator (I+αT[h, b])−1 makes the models robust with respect to high frequency
perturbations, which is an interesting property for numerical computations.

Remark 2. These formulations have two main drawbacks:

1. Solving linear systems arising from discrete formulations of (8) may be computationally expensive
as I +αT[h, b] is a matricial second order differential operator acting on two-dimensional vectors.
This structure entails a coupling of the time evolutions of the two components of hv through (9b).

2. I + αT[h, b] is a time dependent operator (through the dependence on h) and this is of course the
same for any associated discrete formulations: the corresponding matrices have to be assembled at
each time step or sub-steps.

Remark 3. It is known that equations (2) exactly conserve the energy

E(t) =

∫

R2

(ζ(t)2 + h(t)|v(t)|2 + h(t)T [h(t), b]v(t) · v(t)).

This cannot be expected for (7) when α > 1: the conservation of energy is satisfied only up to O(µ2)
terms, which is the precision of the model.
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2.2 A Green-Naghdi model with a simplified analytical structure

In [28], some new families of models are introduced to overcome these drawbacks, without loosing the
benefits listed in Remark 1. In particular, defining a modified water depth at rest (which therefore does
not depend on time):

hb = max(h0 − b, ε0) = max(h− ζ, ε0),

where ε0 is a numerical threshold introduced to account for possible dry areas in a consistent way, the
one-parameter optimized constant-diagonal GN equations read as follows:





∂th+∇ · (hv) = 0,
[
1 + αT[hb]

] (
∂t(hv) +∇ · (hv ⊗ v) +

α− 1

α
gh∇ζ

)
+

1

α
gh∇ζ +Q[h, b](ζ,v) = 0, (10)

where for all smooth enough R-valued function w:

T[hb]w = −
1

3
∇ · (h3

b∇
w

hb
), (11)

and
Q[h, b](ζ,v) = h(Q1[h, b](v) + gQ2[h, b](ζ)) + gQ3[h, hb]

([
1 + αT[hb]

]−1
(h∇ζ)

)
, (12)

is a second order nonlinear operator with

Q2[h, b](ζ) = −h(∇
⊥h · ∇)∇⊥ζ −

1

2h
∇(h2∇b · ∇ζ) +

(h
2
∆ζ − (∇b · ∇ζ)

)
∇b, (13)

and for all smooth enough R-valued function w

Q3[h, hb]w =
1

6
∇(h2 − h2

b) · ∇w +
h2 − h2

b

3
∆w −

1

6
∆(h2 − h2

b)w. (14)

Remark 4. We actually show in [28] that it is indeed possible to replace the inversion of I + αT[h, b]
by the inversion of 1 + αT[hb], where T[hb] depends only on the fluid at rest (i.e. ζ = 0), while keeping
the asymptotic O(µ2) order of the expansion. The interest of working with (10) rather than (8) is that
T[hb] has a simplified scalar structure, i.e. it can be written in matricial form as

(
− 1

3∇ · (h
3
b∇

1
hb

·) 0

0 − 1
3∇ · (h

3
b∇

1
hb

·)

)
. (15)

From a numerical viewpoint, this simplified analytical structure allows to compute each component of the
discharge hv separately, and to alleviate the computational cost associated with the dispersive correction
of the model, as the discrete version of 1 + αT[hb] may be assembled and factorized once and for all, in
a preprocessing step.

Remark 5. The other difference with (8) is the presence of the modified quadratic term Q[h, b], which
shares with (8) the nice property that no computation of third order derivative is needed. The price to pay

is the inversion of an extra linear system, through the computation of Q3[h, hb]
([

1 + αT[hb]
]−1

(h∇ζ)
)
.

However, this extra cost is largely off-set by the gain obtained by using the time independent scalar
operator T[hb].

Remark 6. One could replace Q3[h, hb]
([

1 + αT[hb]
]−1

(h∇ζ)
)
by Q3[h, hb] (h∇ζ) in the second equa-

tion of (10), keeping the same asymptotic O(µ2) order. This would avoid the resolution of this extra
linear system but leads to strong instabilities. We refer to [28] for more comments on this point.

Remark 7. As shown in [29], the model (10) can be recast as follows:





∂th+∇ · (hv) = 0,

∂t(hv) +∇ · (hv ⊗ v) + gh∇ζ +Dc = 0,[
1+αT[hb]

]
(Dc +

1
αgh∇ζ) = h( 1

αg∇ζ +Q1[h, b](v) + gQ2[h, b](ζ)) +Q3[h, hb]K,[
1+αT[hb]

]
K = gh∇ζ,

(16)
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and we see that the dispersive correction Dc acting as a source term in the second equation, is obtained
as the solution of auxiliary scalar second-order elliptic sub-problems. This formulation will be referred to
as (CGα) in the following.

Remark 8. We highlight that (CGα) still does not involve third order derivative computation, which
is a very interesting property. It is indeed shown in [30] that when third order derivatives on the free
surface occur, it is important to introduce some sophisticated approximation strategies for the free surface
gradient to reduce the dispersion error.

Remark 9. Considering the case of flat bottoms and d = 1 for the sake of simplicity, the linear dispersion
relation associated with (16) is classically obtained through the study of the linear behavior of small
perturbation (ζ̇ , v̇) to a constant state solution (ζ,v) of (16) and looking for plane wave solutions of

the form (ζ0,v0)ei(k·x−ωt) to the linearized system. Skipping computing details, one finds the following
dispersion relation

1

gh|k|2
(ω − V · k)2 =

1 +
α− 1

3
h2
0|k|

2 −
h2 − h2

0

3

|k|2

1 + α
3 h

2
0|k|

2

1 +
α

3
h2
0|k|

2
, (17)

where h = h0 + ζ. Note that the dispersion relation obtained for the non-enhanced model is obtained
choosing α = 1. For the applications considered here, we are interested in obtaining a model with the
widest possible range of validity: in addition to the shallow water zone, we aim at providing a correct
description of the waves in intermediate to moderately deep water, that is for increased values of |k|h0.
The discussion concerning the choice of α to improve the dispersive properties of the model follows the
usual procedure (see for instance [9,25]) and we take α = 1.159 throughout this article. Such enhancement
allows to achieve an improved matching between the phase and group velocities associated with (17) and
the reference phase and group velocities coming from Stokes linear theory up to |k|h0 = 4.

2.3 A pre-balanced Green-Naghdi formulation

Paving the way towards the construction of a well-balanced and efficient discrete formulation in §3, we
now adjust the pre-balanced approach of [39] for the case d = 1 and [37] for the case d = 2 to the Green-
Naghdi equations (CGα). We introduce the total free surface elevation η = h + b, denote W = t(η,q)
and use the following splitting of the hydrostatic pressure term:

gh∇ζ =
1

2
g∇(η2 − 2ηb) + gη∇b, (18)

to obtain a one-parameter pre-balanced constant-diagonal Green-Naghdi model (more simply referred to
as (PCGα) model in the following):





∂tη +∇ · q = 0,

∂tq+∇ ·

(
q⊗ q

η − b
+

1

2
g∇(η2 − 2ηb)I

)
+Dc = −gη∇b,

[
1+αT[hb]

]
(Dc +

1
αgh∇η) = h( 1

αg∇η +Q1[h, b](v) + gQ2[h, b](η)) +Q3[h, hb]K,[
1+αT[hb]

]
K = gh∇η.

(19)

Remark 10. The use of the pre-balanced formulation allows to straightforwardly construct a discrete
formulation that exactly preserves motionless steady states, as detailed in §3.2.2 and Proposition 17. It
also helps to slightly reduce the number of quadrature nodes needed to exactly achieve the preservation of
motionless steady states, see Remark 20 for details.
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3 Discrete formulation

3.1 Settings and notations

Let Ω ⊂ Rd, d = 2, denote an open bounded connected polygonal domain with boundary ∂Ω. We
consider a geometrically conforming mesh Th defined as a finite collection of |Th| nonempty disjoint open
triangular elements T of boundary ∂T such that Ω =

⋃
T∈Th

T . The meshsize is defined as h = max
T∈Th

hT

with hT standing for the diameter of the element T and we denote |T | the area of T , pT its perimeter
and ~nT its unit outward normal.
Mesh faces are collected in the set Fh and the length of a face F ∈ Fh is denoted by |F |. We denote
by |Fh| the number of faces. A mesh face F is such that either there exist T1, T2 ∈ Th such that
F ⊂ ∂T1 ∩ ∂T2 (F is called an interface and F ∈ F i

h) or there exists T ∈ Th such that F ⊂ ∂T ∩ ∂Ω (F

is called a boundary face and F ∈ Fb
h ). For all T ∈ Th, FT := {F ∈ Fh | F ⊂ ∂T } denotes the set of

faces belonging to ∂T and, for all F ∈ FT , ~nTF is the unit normal to F pointing out of T .
In what follows, we consider Pk(Th) the broken bivariate polynomial space defined as follows:

P
k(Th) := {v ∈ L2(Ω) | v|T ∈ P

k(T ) ∀T ∈ Th}, (20)

where Pk(T ) denotes the space of bivariates polynomials in T of degree at most k, and we define

Xh = Pk(Th)×
(
Pk(Th)

)2
. We denote Nk = dim(Pk(T )) = (k + 1)(k + 2)/2.

To discretize in time, for a given final computational time tmax, we consider a partition (tn)0≤n≤N of the
time interval [0, tmax] with t0 = 0, tN = tmax and tn+1 − tn = ∆tn. For any sufficiently regular function
of time w, we denote by wn its value at discrete time tn. More details on the computations of ∆tn and
the time marching algorithms are given in §3.4.1.

3.2 Discrete formulation for the advection-dominated equations

Postponing to §3.3 the computation of the projection of the dispersive correction D(W, b) on the ap-
proximation space, we focus here on the discrete formulation associated with the 2 first equations of (19)
written in a more compact way:

∂tW +∇ · F(W, b) + D(W, b) = B(W, b), (21)

with

B(W, b) = t
(
0,−gηt∇b

)
, D(W, b) = t

(
0, tDc

)
,

and

F(W, b) =




tq
q⊗ q

η − b
+

1

2
g∇(η2 − 2ηb)I2


 . (22)

3.2.1 The discrete problem

We seek an approximate solution Wh = t (ηh,
tqh) of (21) in Xh. Requiring the associated residual to

be orthogonal to Pk(Th), the semi-discrete formulation reduces to the local statement: find (ηh,
tqh) in

Xh such that
∫

T

d

dt
Whπhdx−

∫

T

F(Wh, bh) · ∇πhdx +

∫

∂T

(F(Wh, bh) · ~nT )πhds

+

∫

T

D(Wh, bh)πhdx =

∫

T

B(Wh, bh)πhdx, (23)

for all πh ∈ Pk(Th) and all element T ∈ Th, where bh refers to the L2 projection of b on Pk(Th) and
D(Wh, bh) stands for a polynomial description of D(W, b) in Xh, to be obtained in §3.3.
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Remark 11. Considering a local basis {φi}
Nk

i=1 for a given element T ∈ Th, the local discrete solution
Wh|T may be expanded as:

Wh|T (x, t) =

Nk∑

i=1

W̃i(t)φi(x), ∀x ∈ T, ∀t ∈ [0, tmax], (24)

where {W̃i(t)}
Nk

i=1 are the local expansion coefficients, defined as W̃i(t) =
t(η̃i,

tq̃i) and q̃i =
t((q̃x)i, (q̃y)i).

Many choices are of course possible for the basis. In the following, {φi}
Nk

i=1 refers to the interpolant (nodal)
basis on the element T and we choose the Fekete nodes [40] as approximation points.

Equipped with such local basis, following Remark 11, and splitting the boundary integral into faces
integrals, the local statement (23) is now equivalent to

Nk∑

i=1

(∫

T

φiφj dx

)
d

dt
W̃i(t)−

∫

T

F(Wh, bh) · ∇φj dx+
∑

F∈FT

∫

F

F̂TF φj ds

+

∫

T

D(Wh, bh)φj dx =

∫

T

B(Wh, bh)φj dx, 1 ≤ j ≤ Nk,

(25)

where F̂TF is a stabilizing numerical approximation of the normal interface flux F(Wh, bh) · ~nTF , to be
defined in the following.

3.2.2 Interface fluxes and well-balancing

We recall in the following a simple choice to approximate the interface fluxes [38], leading to a well-
balanced scheme that preserves motionless steady states. This modified flux can also be seen as the
adaptation of the ideas of [41] to the pre-balanced formulation (21).
Consider a face F ∈ FT (for the sake of simplicity, we only focus on the case F ∈ F i

h and do not detail

the case F ∈ Fb
h). Let us denote denote W− and W+ respectively the interior and exterior traces on

F , with respect to the elements T . Similarly, b− and b+ stand for the interior and exterior traces of bh
on F . We define:

b∗ = max(b−, b+), b̌ = b∗ −max(0, b∗ − η−) (26)

and

ȟ− = max(0, η− − b∗), ȟ+ = max(0, η+ − b∗), (27)

η̌− = ȟ− + b̌, η̌+ = ȟ+ + b̌, (28)

leading to the new interior and exterior values:

W̌− = t(η̌−,
ȟ−

η− − b−
q−), W̌+ = t(η̌+,

ȟ+

η+ − b+
q+). (29)

Now we set
F̂TF = Fh(W̌

−,W̌+, b̌, b̌, ~nTF ) + F̃TF , (30)

as the numerical flux function through the interface F , where:

1. the numerical flux function Fh is the global Lax-Friedrichs flux:

Fh(W
−,W+, b−, b+, ~nTF ) =

1

2
((F(W−, b−) + F(W+, b+)) · ~nTF − a(W+ −W−)), (31)

with a = max
T∈Th

λT and

λT = max
∂T

(∣∣∣∣
qh|T

ηh|T − bh|T
· ~nT

∣∣∣∣+
√
g(ηh|T − bh|T )

)
. (32)
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2. F̃TF is a correction term defined as follows:

F̃TF =




0 0

gη̌−(b̌− b−) 0

0 gη̌−(b̌− b−)


 · ~nTF . (33)

Note that the modified interface flux (30) only induces perturbations of order k + 1 when compared to
the traditional interface fluxes.

Remark 12. Let denote in the following by wT the averaged value of the discrete approximation wh|T

on the element T , for any R or R2-valued function w. Let consider the corresponding first order FV
scheme for the averaged free-surface:

ηn+1
T = ηnT −

∆tn

|T |

∑

F∈FT

∫

F

Fh(W̌
−,W̌+, b̌, b̌, ~nTF ) ds, (34)

with Fh defined following (31) and W̌−, W̌+, b̌ obtained from (26)-(29), starting from W− and W+

defined respectively, for each face F , as the first-order piecewise constant interior and exterior values
Wn

T1
and Wn

T2
, with TF = {T1, T2}.

Then, assuming that hn
T ≥ 0, ∀T ∈ Th, we have hn+1

T ≥ 0 ∀T ∈ Th, under the condition

λT
pT

|T |
∆tn ≤ 1, ∀T ∈ Th. (35)

This is a positivity property of the FV scheme based on Lax-Friedrichs flux within the pre-balanced
formulation, which is shown in [38] and is mandatory to obtain a positive high-order DG scheme, see [42].

3.2.3 Positivity

The enforcement strategy of the water height non-negativity within the DG formulation [41] requires
positivity of the water height at carefully chosen quadrature nodes at the beginning of each time step.
Then, the positivity of the water height is ensured providing the use of the LF flux (31) and an additional
time-step restriction, see Proposition 17.
We adjust these ideas to the (PCGα) formulation (19) to enforce the mandatory property that the mean
value of the water height hT = ηT − bT on any given element T ∈ Th remains positive during the time
marching procedure. The main ideas are summarized for an explicit first order Euler scheme in time for
the sake of simplicity:

♯ 1 considering the broken polynomial space P
k(T ), we assume that the face integrals are computed

using (k+1)-points Gauss quadrature (see Remark 20). The special quadrature rules introduced in
[43] are obtained by a transformation of the tensor product of a β-points Gauss-Lobatto quadrature
(with β the smallest integer such that 2β − 3 ≥ k) and the (k + 1)-point Gauss quadrature. This
new quadrature includes all (k + 1)-point Gauss quadrature nodes for each face F ∈ FT , involves
positive weights and it is exact for the integration of ηnh over T . In the following, let us denote Sk

T

the set of points of this quadrature rule. We show on Fig. 2 the resulting quadrature nodes used
for k = 2 and k = 3 orders of approximation on a reference element.

♯ 2 for each element T ∈ Th, h
n
h|T is computed from ηn

h|T and bh|T and we need to ensure that hn
h|T (x) ≥

0, ∀x ∈ Sk
T , which is a sufficient condition to ensure the non-negativity property for the DG scheme

(23), under the CFL-like condition (57).
This condition is enforced using the accuracy preserving limiter of [42]. Assuming hn

T ≥ 0, we
replace hn

h|T by a conservative linear scaling around this element average:

ĥn
h|T = θT (h

n
h|T − hn

T ) + hn
T , (36)

with

θT = min

(
hn
T

hn
T −mT

, 1

)
, and mT = min

x∈Sk

T

hn
h|T (x).

9



Figure 2: Nodes locations for the Zhang and Shu quadrature - P2 and P3 cases.

Remark 13. Note that this approach also ensures that the water height remains positive at the k + 1
Gauss quadrature nodes used to compute the faces integrals in (25).

3.3 Discrete formulations for the second order elliptic sub-problems

We are now left with the computation of the projection D(Wh, bh) of the dispersive correction on the
approximation space Xh. As its first component identically vanishes, the computation of the discrete

version of Dc (denoted by Dc,h ∈
(
P
k(Th)

)2
in the following) is obtained as the solution of the discrete

problems associated with

[
1+αT[hb]

]
K = gh∇η, (37)

[
1+αT[hb]

]
(Dc +

1

α
gh∇η) = h(

1

α
g∇η +Q1[h, b](v) + gQ2[h, b](η)) +Q3[h, hb]K. (38)

Note that both problems ultimately reduce to the construction of a discrete formulation associated with
the generic scalar problem [

1+αT[hb]
]
w = f,

where the source term f is successively defined as the directional scalar components of the source terms
occurring in (37)-(38), that is to say

f =




gh∇η for (37)
1

α
gh∇η + h(Q1(v) + gQ2(η)) +Q3[h, hb]K for (38),

(39)

where we keep a vectorial notation for the sake of simplicity. Remarking now that the following identity
holds for any smooth enough scalar-valued function:

T[hb]w = −
1

3
∇ ·

(
Hb∇w

)
+

1

6
∇ ·

(
w∇Hb

)
, (40)

with the notation Hb = h2
b , we consider the following mixed formulation, introducing a diffusive flux p:

{
w − α∇ ·

(
1
3H

bp− 1
6w∇H

b
)
= f,

p−∇w = 0,
(41)

and the following associated discrete problem: find (wh,
tph) in Xh such that

∫

T

whπhdx+
α

3

∫

T

Hb
h(ph · ∇πh)dx−

α

3

∫

∂T

Hb
h(ph · ~nT )πh ds (42)

−
α

6

∫

T

wh(∇H
b
h · ∇πh) dx+

α

6

∫

∂T

wh(∇H
b
h · ~nT )πh ds =

∫

T

fhπh dx,

∫

T

ph · φhdx+

∫

T

wh∇ · φh dx−

∫

∂T

wh(φh · ~nT ) ds = 0, (43)
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for all (πh, φh) ∈ Xh, where H
b
h and ∇Hb

h respectively denote the L2 projection of h2
b and ∇h2

b on Pk(Th)

and (Pk(Th))
2, and fh is a polynomial representation of f in Pk(Th), with f defined according to (39).

We choose to use the Local Discontinuous Galerkin (LDG) approach [34] to compute the associated
stabilizing fluxes. For any given element T ∈ Th, we have:

∫

∂T

Hb
h(ph · ~nT )πh ds =

∑

F∈FT

∫

F

Hb
h(p̂TF · ~nTF )πh ds, (44)

∫

∂T

wh(φh · ~nT ) ds =
∑

F∈FT

∫

F

ŵTF (φh · ~nTF ) ds, (45)

∫

∂T

wh(∇H
b
h · ~nT )πh ds =

∑

F∈FT

∫

F

ŵTF (∇H
b
h · ~nTF )πh ds, (46)

where the interface fluxes are computed as follows:

ŵTF = {{wh}}+ (β · ~nTF ) , Ja+ bKJwhK, (47)

p̂TF = {{ph}} − β(JphK · ~nTF ) +
ξ

|F |
JwhK~nTF , (48)

with the classical notations for the face average {{w}} = (w++w−)/2 and face jump JwK = w+−w−, and
w− and w+ stand respectively for the interior and exterior traces of wh with respect to the considered
face F (and similar notations for the R2-valued quantity p). The penalization parameter ξ and the
upwinding parameter β are both set to 1.

Remark 14. The choice of the LDG fluxes (47)-(48) allows to eliminate locally the auxiliary discrete
flux ph, and to globally assemble the matrix corresponding to the discrete formulation of

[
1+αT[hb]

]
.

The auxiliary flux does not appear in the final formulation. Note also that, for the sake of simplicity, we
also use the upwind flux (47) to approximate the faces contributions associated with the purely advective
part of (40).

Remark 15. The relative simplicity of the discrete formulation (42)-(43) is a direct consequence of the
simplified analytical structure of the (PCGα) formulation. One can of course adapt this approach to the
initial formulation (8), leading in practice to a more costly and complicated global assembling process, as
the operator T [h, b] directly acts on a R2-valued function.

For the sake of efficiency, the computations of the source terms integrals
∫
T
fhπh dx occurring in (42)

are performed in a collocation way, in the spirit of pseudo-spectral methods. More precisely, we build

approximated integrands with polynomial representations (Qj,h)j=1,2,3 in
(
Pk(Th)

)2
of the operators

(Qj)j=1,2,3 using direct products of the discrete flow variables (ηh,vh) and their derivatives at the Fekete
nodes. These derivatives are however weakly computed with the DG approach, using LDG fluxes. In
practice, this is simply achieved by adjusting the approach of [29] to the d = 2 case to easily compute
the required first and second order derivatives of ηh and vh in each space direction. Again, the second
order spatial derivatives are written in mixed form and we use the stabilizing fluxes (47)-(48). The
corresponding discrete formulations are simplified through local elimination of the diffusive fluxes, leading
to the assembling of global matrices for first and second order weak derivatives in each direction. For
instance, considering derivatives in the first direction, the mixed form

v + ∂xw = 0 , u+ ∂xv = 0,

leads to the following local discrete formulations for 1 ≤ j ≤ Nk:

Nk∑

i=1

ṽiMij =

Nk∑

i=1

w̃iS
x
ij −

∑

F∈FT

∫

F

ŵTFφjn
x
TFds ,

Nk∑

i=1

ũiMij =

Nk∑

i=1

ṽiS
x
ij −

∑

F∈FT

∫

F

v̂TFφjn
x
TF ds,

(49)
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where nx
TF is the first component of ~nTF and with

Mij :=

∫

T

φiφj dx , Sx
ij :=

∫

T

φi∂xφj dx.

These systems can be globally rewritten as follows:

MṼ = SxW̃ − (Ex − Fx) W̃ ,

MŨ = SxṼ − (Ex + Fx) Ṽ −
ξ

h
FxW̃ ,

(50)

where: (i) Ũ , Ṽ and W̃ are Nk × card(Th) vectors gathering the expansion coefficients ũ, ṽ and w̃ for
all mesh elements, (ii) M and Sx are the square card(Th) ×Nk global mass and stiffness matrices, with
a block-diagonal structure, (iii) Ex and Fx are square card(Th) × Nk matrices, globally assembled by
gathering all the mesh faces contributions, accounting respectively for the average {{·}} and jump J·K
operators occurring in the definition (47)-(48) of the LDG fluxes. Note that each interface F ∈ F i

h

contributes to four blocks of size Nk in the global matrices and each boundary face F ∈ Fb
h contributes

to one block. Equipped with these global structures, first and second order global differentiation matrices
can be straightforwardly assembled, leading to the following compact notations:

Ṽ = DxW̃ , with Dx = M
−1 (Sx − Ex + Fx) , (51)

Ũ = DxxW̃ , with Dxx = M
−1

(
(Sx − Ex − Fx)Dx −

ξ

h
Fx

)
. (52)

Similar constructions are performed for Dy and Dyy.

Remark 16. The use of such a direct nodal products method helps to reduce the computational cost
by reducing the accuracy of quadrature but may threaten the numerical stability for strongly nonlinear
or marginally resolved problems with the possible introduction of what is known in the field of spectral
methods as aliasing driven instabilities. Several well-known methods may help to alleviate this issue, like
the use of stabilization filtering methods. In this work however, and considering the test cases studied in
§4, we did not need to use any additional stabilization mechanism.

3.4 Time-marching, boundary conditions and wave-breaking

3.4.1 Time discretization

The time stepping is carried out using the explicit SSP-RK scheme [44]. Up to k = 3, we consider
RK-SSP schemes of order k+1. A fourth order SSP-RK scheme is used for k ≥ 3. For instance, writing
the semi-discrete equations as d

dtWh +Ah(Wh) = 0, advancing from time level n to n+ 1 is computed
as follows with the third-order scheme:





W
n,1
h = Wn

h −∆tnÃh(W
n
h ) ,

W
n,2
h = 1

4 (3W
n
h +W

n,1
h )− 1

4∆tnÃh(W
n,1
h ) ,

Wn+1
h = 1

3 (W
n
h + 2wn,2

h )− 2
3∆tnÃh(W

n,2
h ) .

(53)

with the formal notation Ãh = Ah ◦ ΛΠh, Wh ← ΛΠhWh being the limitation operator possibly acting
on the approximated vector solution (see §3.4.3), and ∆tn is obtained from the CFL condition (57).

3.4.2 Boundary conditions

For the test cases studied in the next section, boundary conditions are imposed weakly, by enforc-
ing suitable reflecting relations at virtual exterior nodes, at each boundaries, allowing to compute the
corresponding interface stabilizing fluxes. Solid-wall (reflective) but also periodic conditions (as the com-
putational domains geometries of the cases studied in §4 are rectangular) can be enforced following this
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simple process.
These simple boundary conditions possibly have to be complemented with ad-hoc absorbing boundary
conditions, allowing the dissipation of the incoming waves energy together with an efficient damping of
possibly non-physical reflections, and generating boundary conditions that mimic a wave generator of
free surface waves. We have implemented relaxation techniques and we enforce periodic waves combined
with generation/absorption by mean of a generation/relaxation zone, following the ideas of [45], using
the relaxation functions described in [46], and the computational domain is locally extended to include
sponge layers which may also include a generating layer.
More explicitely, the relaxed solution along the domain will take the form :

Wrelax = FaWh + (1− Fa)FgR(t)Wimp , (54)

where Fa , Fg stand for the absorption and generation profiles and R governs the time evolution of the
generation process. Above, Wimp contains the imposed profile. Concerning the relaxation functions, we
follow [46], taking the exponential forms :

Fa(x) = 1−
exp ((xr)

n − 1))

exp(1)− 1
, Fg(x) = 1−

exp ((1 − xr)
n − 1))

exp(1)− 1
,

where xr =
x− xR

∆R
, n is a positive parameter, and xR, ∆R are respectively the beginning and the width

of the relaxation zone. In agreement with other works, the length of the sponge layers ∆R is calibrated
for each test case (generally 2 or 3 wavelengths); the parameter n is fixed to 3. The reader is referred to
the above references for more details.

3.4.3 Wave-breaking and limiting

Obviously, vertically averaged models cannot reproduce the surface wave overturning and are therefore
inherently unable to fully model wave breaking. Moreover, if the GN equations can accurately repro-
duce most phenomena exhibited by non-breaking waves in finite depth, including the steepening process
occurring just before breaking, they do not intrinsically account for the energy dissipation mechanism
associated with the conversion into turbulent kinetic energy observed during broken waves propagation.
Several methods have been proposed to embed wave breaking in depth averaged models. Many of them
focus on the inclusion of an energy dissipation mechanism through the activation of extra terms in the
governing equations when wave breaking is likely to occur, and the reader is referred to [47] for a recent
review of these approaches. More recently, hybrid strategies have been elaborated for weakly nonlinear
models [48,49] and for fully nonlinear models [19,25,47,50]. Roughly speaking, the idea is to switch from
GN to NSW equations when the wave is ready to break by locally suppressing the dispersive correction
and the various approaches may differ by the level of sophistication of the detection criteria and the
switching strategies.
Denoting that, from a numerical point of view, such an approach allows to avoid numerical instabilities
by turning off the computation of higher-order derivatives and nonlinear and non-conservative terms in
the vicinity of appearing singularities, we use in [29] a purely numerical smoothness detector to identify
the potential instability areas, switch to NSW equations in such areas by simply locally neglecting the
Dc source term and use a limiter strategy to stabilize the computation, letting breaking fronts propagate
as moving bores.
As the aim of the present work is only to introduce and validate our fully discontinuous discrete formu-
lation in the multidimensional case, we do not focus on the development of new wave breaking strategies
and we simply adjust this simple approach to the d = 2 case to possibly stabilize the computations
performed in §4.
We detect the troubled elements (following the terminology of [51]) using the criterion proposed in [52],
and based on the strong superconvergence phenomena exhibited at element’s outflow boundaries. More
precisely, for any T ∈ Th, denoting by ∂Tin the inflow part of ∂T , we use the following criterion:

IT =

∑
F∈∂Tin

∫

F

(h− − h+) ds

h
(k+1)/2
T |∂Tin|‖hh|T ‖

, (55)
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which has already successfully been used as a troubled cells detector in purely hyperbolic shallow water
models, see among others [53–55].
If IT ≥ 1 then we apply a slope limiter on each scalar component of Wh|T , based on the maxmod
function, see [56]. This limiting strategy is not recalled here, as we straightforwardly reproduce the
implementation described in [38] for the NSW equations in pre-balanced form. Of course, waves about
to break do not embed any free surface singularities yet, but our numerical investigations have shown
that when the wave has steepened enough, the free surface gradient becomes large enough to activate
the criteria. This simple approach, although quite rough and far less sophisticated than recent strategies
introduced for instance in [47, 49], allows us to obtain good results in the various cases of §4.

3.5 Main properties

We have the following result:

Proposition 17. The discrete formulation (25) together with the interface fluxes discretization (30) and
a first order Euler time-marching algorithm has the following properties:

1. it preserves the motionless steady states, providing that the integrals of (25) are exactly computed
for the motionless steady states. In other terms, we have for all n ∈ N:

({
ηnh ≡ ηe

q
n
h ≡ 0

)
⇒

({
ηn+1
h ≡ ηe

q
n+1
h ≡ 0

)
, (56)

with ηe constant,

2. assuming moreover that hn
T ≥ 0, ∀T ∈ Th and hn

h|T (x) ≥ 0, ∀x ∈ Sk
T , ∀T ∈ Th, then we have

hn+1
T ≥ 0, ∀T ∈ Th under the condition

λT
pT

|T |
∆tn ≤

2

3
ω̂β
1 , (57)

where ω̂β
1 is the first quadrature weight of the β-point Gauss-Lobatto rule used in §3.2.3.

Proof. 1. assuming that the following equilibriumWh = We
h = (ηe, 0) holds, we have to show that

∀T ∈ Th and 1 ≤ j ≤ Nk:

∫

T

F(We
h, bh) · ∇φj dx−

∑

F∈FT

∫

F

F
e
TF φj ds−

∫

T

D(We
h, bh)φj dx+

∫

T

B(We
h, bh)φj dx = 0, (58)

where Fe
TF is the interface numerical flux obtained at equilibrium. Looking at (30), and highlighting

that for each interface F we have η̌− = η̌+ = ηe and therefore W̌− = W̌+, it is easy to check that
Fe
TF = F(W−, b−)·~nTF , thanks to the consistency of the numerical flux function Fh. Consequently,

we have
∫

T

F(We
h, bh) · ∇φjdx−

∑

F∈FT

∫

F

F
e
TF φj ds = −

∫

T

∇ · F(We
h, bh)φjdx, (59)

= −

∫

T

B(We
h, bh)φjdx. (60)

assuming that the integrals are computed exactly (see Remark 20), and observing that we have
∇h · F(W

e
h, bh) = B(We

h, bh). For the integrals associated with the dispersive source term, it is
straightforward to check from the definitions (4) and (13) of (Qj)j=1,2 that Q1,h = 0 whenever
qh = 0 and that Q2,h = 0 whenever ηh = ηe. Moreover, using again the fact that ∇hη

e = 0,
the polynomial representation Kh of K, obtained as the solution of the discrete problem (42)-(43)
associated with (37), taking fh = 0 as source term and suitable boundary conditions, identically
vanishes leading to Q3,h = 0 using (14). Note that this result holds no matter what method we
use to compute polynomials representations (Qj,h)j=1,2,3.
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2. the proof of [43], adjusted to the pre-balanced framework in [38], can be straightforwardly repro-
duced, as the dispersive source term D(Wh, bh) has no influence on the mass conservation equation.
Note that this is the condition (57) (more restricting than (35)) which is used in practice. Condition
(35) only ensures the positivity of a FV scheme based on the LF flux.

Remark 18. The previous analysis can be extended to the third order SSP scheme of §3.4.1 (or any
TVD high order Runge-Kutta and multi-step time discretizations) at the cost or more technicality, see
for instance [43] and [41].

3.6 Computational cost

In order to provide some insights concerning the computational cost per iteration of the resulting discrete
formulation, let us first consider the advective part (25). Neglecting the topography source term for the
sake of simplicity and temporarily postponing the analysis of the computation of the dispersive term, we
observe that the discrete solution may be updated at each time step (or sub-step, see §3.4.1) providing
the computation of the following residual :

−

∫

T

F(Wh, bh) · ∇φj dx+
∑

F∈FT

∫

F

F̂TF φj ds,

for each mesh element T and basis functions φj . To compute the surface integrals, we have to evaluate
products of the form

ωq(∂mφj)q(Flm)q,

at each single quadrature point (in physical coordinates) indexed by q, where ωq is the corresponding
quadrature weight (involving a factor coming from the determinant of the transformation’s jacobian),
∂kφj is the partial derivative of φj in the kth direction, (Flm)1≤l≤d+1, 1≤m≤d refer to the components of
F(Wh, bh) regarded as a matrix and the notation ( · )q is used for the evaluation of the quantities of
interest at the quadrature node indexed by q.
As the jacobians and the derivatives values at quadrature nodes are pre-computed, it leads to 2d(d +
1)Nk + C(F) floating point operations (flop in the following) at each quadrature node, where C(F)
refers to the evaluation of the components (Flm)g, and therefore [2d(d+1)Nk +C(F)]|Th|Nq flop for the
evaluation on Ω, with Nq the number of quadrature nodes per element.
Assuming that the jumps of basis functions on each face are also pre-computed, similar considerations
for the line integrals lead to [2(d+1)(k+1)+C(F̂)]|Fh|Ng flop, with Ng the number of Gauss quadrature

nodes per face and C(F̂) the number of flop needed to evaluate the numerical flux at a given node. Note
that using the nodal approach and the basis functions of Lagrange, there are only k + 1 basis functions
with a nonzero support on a given face. We also have to account for the (precomputed) inverse of the
mass matrix products, leading to some additional [3(Nk)

2 + 3Nk(k + 1)]|Th| flop.

Remark 19. To precisely evaluate the total number of flop of the advective parts, one would have to
meticulously account for the state reconstructions of §3.2.2, and the limiting procedures of §3.2.3 and
§3.4.3, which affect the values of C(F) and C(F̂).

Remark 20. The line integrals of (25) can be exactly computed at motionless steady states with Ng =
k + 1 point Gauss quadrature nodes, thanks to the pre-balanced splitting (18), allowing to reduce the
number of numerical fluxes evaluation per face. Indeed, with the resulting formulation of the advective
flux (22), the integrands on faces are of order 2k at equilibrium, while they are of order 3k within the
formulation (16)). In the same way, the quadrature rules used for the surface integrals have to be exact
only for bivariate polynomials of order 2k − 1. Higher order quadrature rules would be needed to exactly
compute these integrals and ensure exact well-balancing for the formulation (16).

Concerning now the dispersive part, the most computationally demanding step concerns the resolution
of the 4 linear systems of size Ndof = Nk|Th| associated with (37)-(38). Recalling the time-independent
nature of the second order operator

[
1+αT[hb]

]
, the assembling of the corresponding matrix detailed in

§3.3 is performed in a pre-processing step, allowing to exclude the corresponding number of flop from
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the computational cost per iteration. Additionally, we also pre-compute the LU factorization of this
(unsymmetric) matrix, saving the associated Θ(N3

dof) flop. Finally, we are left with the resolution of
the resulting triangular systems through forward and backward substitutions, with an overall Θ(N2

dof)
asymptotic cost, and the computation of the corresponding second members (39), which is straightfor-
wardly performed by collocation at the Ndof interpolation nodes.

4 Numerical validations

In this section, we validate the previous discrete formulation through several benchmarks. Unless stated
otherwise, we use periodic boundary conditions in each direction, we set α = 1.159, ε0 = 0.1 and the
time step restriction is computed according to (57). Accordingly with the non-linear stability result of
the previous section, we do not suppress the dispersive effects in the vicinity of dry areas. Some accuracy
analysis are performed in the first two cases using the broken L2 norm defined as follows for any arbitrary
scalar valued piecewise polynomial function wh defined on Th:

‖wh‖L2(Th) =




∑

T∈Th

‖wh|T ‖
2
L2(T )




1

2

.

4.1 Preservation of motionless steady state

This preliminary test case is devoted to check the ability of the formulation to preserve motionless steady
states and accuracy validation. The computational domain is the [-1,1] × [-1,1] square, and we use an
unstructured mesh of 8466 elements. The bottom elevation involves a bump and a hollow having same

dimensions, respectively located at x1 = (x1, y1) = (−
1

3
,−

1

3
) and x2 = (x2, y2) = (

1

3
,
1

3
), leading to the

following analytic profile :

b(r1, r2) = 1 + d e−(r1/L)2 − d e−(r2/L)2 , (61)

where r1,2 are respectively the distances from x1 and x2 and we set d = 0.45 and L = 0.15. The reference
water depth is h0 = 1.5m, leading to the configuration depicted on Fig. 3. Our numerical investigations
confirm that this initial condition is preserved up to the machine accuracy for any value of polynomial
order k. For instance, the L2 numerical errors obtained at t = 50 s using a k = 2 approximation are
respectively 3.0e-16, 7.4e-16 and 7.9e-16 for η, hu and hv.
Keeping the same computational domain and topography profile, we also perform a convergence study,
using a reference solution obtained with k = 4 and a regular triangulation with space steps ∆x = ∆y =
2−9m. The initial free surface is set to:

ζ(t = 0,x) = a e−(‖x‖/L)2 , a = 0.075 h0. (62)

The computations are performed on a sequence of regular triangular meshes with increasing refinement
ranging from 2−4m to 2−9m and polynomial expansions of degrees ranging from k = 1 to k = 4, while
keeping the time step constant and small enough to ensure that the leading error orders are provided by
the spatial discretization. The L2-errors computed at tmax = 0.02 s lead to the convergence curves shown
on Fig. 4 for the free surface elevation and Fig. 5 for the discharge. The corresponding convergence rates
obtained by linear regression are reported on each curve. The initial lack of convergence for coarse meshes
might be explained, at least partially, by the aliasing errors developed in the collocation approximation of
the highly nonlinear terms and third order derivatives on the topography in the dispersive part. We note
that while the L2-errors are typically larger on the discharge than on the free surface, we asymptotically
reach some convergence rates between O(hk+

1

2 ) and O(hk+1) for both variables. We observe that for

this problem, the resulting convergence rates are greater than the O(hk+
1

2 ) optimal estimate one would
be expected, see [57].

16



Figure 3: Test 1 - Motionless steady states preservation: topography and free surface
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Figure 4: Test 1 - L2-error for the free surface elevation vs. ∆x for k = 1, 2, 3 and k = 4 at tmax = 0.02 s.
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Figure 5: Test 1 - L2-error for the discharge vs. ∆x for k = 1, 2, 3 and k = 4 at tmax = 0.02 s
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Figure 6: Test 2 - Solitary wave propagation over a flat bottom: initial free surface
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Figure 7: Test 2 - L2-error for the free surface elevation vs. ∆x for k = 1, 2, 3 and k = 4 at tmax = 0.2 s.
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Figure 8: Test 2 - L2-error for the discharge vs. ∆x for k = 1, 2, 3 and k = 4 at tmax = 0.2 s.
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Figure 9: Test 2 - Solitary wave propagation: cross section of the free surface elevation at several times
during the propagation.

4.2 Solitary wave propagation

We consider now the time evolution of a solitary wave profile defined as follows:





h(x, t) = h0 + εh0 sech
2 (κ(x− ct)) ,

u(x, t) = c

(
1−

h0

h(x, t)

)
,

(63)

with κ =

√
3ε

4h2
0(1 + ε)

, and c =
√
gh0(1 + ε). Note that if such profiles are exact solutions of the

original Green-Naghdi equations (2), or equivalently (7) with α = 1, these are only solutions of the
(CGα=1) model up to O(µ2) terms. However, for small enough values of ε, such profiles are expected
to propagate over flat bottoms without noticeable deformations. We use a rectangular computational
domain of 200m length and 25m width, and a relatively coarse unstructured mesh with faces’ length
ranging from 0.7m to 1.5m. The reference water depth is set to h0 = 1m, the relative amplitude is set
to ε = 0.2 and the initial free surface, shown on Fig. 6, is centred at x0 = 50m. Cross sections along
the x-direction centerline, obtained with k = 3 at several times during the propagation, are shown on
Fig. 9. Note that the time step computed from (57) is around ∆t = 0.01 s, so that approximatively 3500
iterations are necessary to reach the tmax = 35s of simulation.
To further investigate the convergence properties of our approach, we now consider a sequence of regular
meshes with mesh size ranging from 2−4m to 2−9 m and polynomial expansions of degrees ranging from
k = 1 to k = 4. The corresponding L2-errors computed at tmax = 0.2 s are used to plot the convergence
curves on Fig. 7 for the free surface elevation and Fig. 8 for the discharge. The corresponding convergence
rates obtained by linear regression are also reported and we observe an irregular behavior with rates
varying between O(hk) and O(hk+1), generally close to O(h

1

2 ) but with a sub-optimal convergence
observed for the free surface with k = 4. Such a behavior is also observed with slightly larger amplitude
waves.
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To complete the picture, we also investigate the conservation of mass (denoted by M(t) in the following)
and energy E(t) over time by computing the time evolution of their relative error, see Fig.10. As
expected, the mass is preserved up to the machine accuracy, independently from the polynomial order k.
Unlike the classical GN equations, the (CGα=1) formulation is not expected to preserve the total energy
of the system, but only up to O(µ2) terms. These discrepancies are expected to remain relatively small
in the shallow water regime µ ≪ 1. This is indeed also numerically confirmed on Fig.10, where we can
also appreciate the significant benefits of the space order accuracy increasing. Note that similar results
are observed with other mesh sizes.
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Figure 10: Test2 - Solitary wave propagation: study of the total mass (M) and total energy (E) conser-
vation. Time evolution of the relative errors |M(t) −M(0)|/M(0) and |E(t) − E(0)|/E(0) for k = 2, 3
on a mesh of 5000 elements.

4.3 Run-up of a solitary wave

We investigate now the ability of the scheme in handling dry areas with a test based on the experiments
of Synolakis [58]. We study the propagation, shoaling, breaking and run-up of a solitary wave over a
topography with constant slope s = 1/19.85. The reference water depth is set to h0 = 1m, and a solitary
wave profile is considered as initial condition (63), with a relative amplitude ε = 0.28. The simulation
involves a 50m×5m basin, regularly meshed with a space step ∆x = 0.25m and k = 2. We show on Fig.
11 some cross sections of the solution, taken at various times during the propagation and compared with
the experimental data. The wave breaking is identified approximately at t∗ = 17 s, with the normalized
time t∗ = t(g/h0)

1/2, and occurs between gauges #2 and #3, which is in agreement with the experiment.
The whole breaking process is well reproduced, as well as the subsequent run-up phenomena.

4.4 Propagation of highly dispersive waves

The dispersive properties of the numerical model are now assessed through the study of the propagation
of periodic waves over a submerged bar, following the experiments of Dingemans, see [59]. The com-
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Figure 11: Test 3 - Solitary wave breaking over a sloping beach: free surface profiles comparison between
numerical results (solid lines) and experimental data (crosses) at several times during the propagation
(t∗ = t(g/h0)

1/2).
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Figure 12: Test 4 - Propagation of highly dispersive waves: sketch of the experiment configuration and
location of the gauges used for test #A.

putational domain is a 37.7m long and 0.8m wide basin. The topography is shown on Fig. 12. The
trapezoidal bar extends from x = 10m to x = 15m with slopes of 1/20 at the front and 1/10 at the
back. The initial state is a flow at rest with a reference water depth of h0 = 0.4m. Periodic waves are
generated at the left boundary, with an amplitude a, and a period T . Both generating and absorbing
layers are set to 5m at the corresponding boundaries. The two following tests are carried out:

#A : a=0.01m , T = 2.02 s , no wave - breaking.

#B : a=0.025m , T = 2.51 s , wave - breaking.

For both test #A and #B, we set k = 2 and use a regular triangulation obtained from rectangular
elements ∆x = ∆y = 0.125m. The characteristics of the flow are quite complex here, notably due to
the high non-linearities induced by the topography. The propagating waves first shoal and steepen over
the submerged bar, generating higher-harmonics. These harmonics are progressively released on the
downward slope, until encountering deeper waters again. In the first test, the initial amplitude is not
large enough to trig the breaking of the waves and the GN equations are resolved in the whole domain.
Fig. 12 indicates the location of the five wave gauges used for the first test to study the time-evolution
of the free surface deformations. The results are plotted on Fig. 13. We observe a very good agreement
between analytical and experimental data for the first wave gages. Of course the quality of the results at
the two last gages is not as good as those obtained with optimized GN models such as [26,60], higher-level
GN model [24] or the higher-order Boussinesq models with 2 layers of [61]. In particular, the extension
of the present DG approach to the 3-parameters model of [28] is left for future works.

The test #B corresponds to the experiments of [62]. The first reference gage is located at x = 6m,
followed by a series of seven gages regularly spaced between x = 11m and x = 17m. Wave breaking is
observed at the level of the flat part of the bump during the propagation and to stabilize the computation,
the dispersive terms are turned-off in the vicinity of troubled cells, using the strategy described in §3.4.3.
Again, a comparison between the numerical results and the experimental data is performed and shown
on Fig. 14.

4.5 Periodic waves propagation over an elliptic shoal

We study now the propagation of a train of monochromatic waves evolving over a varying topography,
following the experiment of Berkhoff et al [63]. The experimental domain consists of a 20m wide and 22m
long wave tank. The experimental model reproduces a seabed with a constant slope, forming an angle
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Figure 13: Test 4 - Propagation of highly dispersive waves: test #A, free surface evolution at gauges.
Numerical data are denoted in plain lines.
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Figure 15: Test 5 - Periodic waves propagation over an elliptic shoal: topography and view of the free
surface.

of α = 20◦ with the y axis, and deformed by a shoal with an elliptic shape, see Fig. 15. The analytical
profile for the topography in rotated coordinates xr = xcos(α)−ysin(α), yr = xsin(α)+ycos(α) is given
by z = zb + zs where:

zb(x, y) =

{
(5.82 + xr)/50 if xr ≥ −5.82
0 elsewhere

zs(x, y) =




−0.3 + 0.5

√
1−

( xr

3.75

)2

−
(yr
5

)2

if
(xr

4

)2

+
(yr
3

)2

≤ 1

0 elsewhere

(64)

The reference water depth is set to h0 = 0.45m, and the corresponding computational domain has
dimensions [−10, 12] × [−10, 10] (in m), with an extension of 5m at inlet and outlet boundaries for
the generation of incident waves and their absorption. The periodic wave train has an amplitude of
a = 0.0232m and a period of T = 1 s. Solid wall boundary conditions are used at y = 10m and
y = −10m. We use an unstructured mesh of 25390 elements which is refined in the region where the
bottom variations are expected to have the greatest impact on the wave transformations (the smallest
and largest mesh face’s lengths are respectively 0.2m and 0.5m). The computations are performed with
polynomial approximations of order k = 2.

The data issued from the experiment provides the normalized time-averaged of the free surface measured
along several cross sections. In our numerical experiment we focus on the following ones:

Section 2 : x = 3m , −5m ≤ y ≤ 5m,

Section 3 : x = 5m , −5m ≤ y ≤ 5m,

Section 5 : x = 9m , −5m ≤ y ≤ 5m,

Section 7 : y = 0m , 0m ≤ x ≤ 10m,

(65)

allowing a good coverage of the computational domain. Time series of the free surface elevation are
hence recorded along these sections, from t = 30 s to t = 50 s and post-processed by mean of the
zero up-crossing method to isolate single waves and compute the mean wave elevation. The results,
classically normalized by the incoming wave amplitude a, are shown in Fig. 16 and compared with
the data. The obtained results are in good agreement with the data, and qualitatively comparable, for
instance, with those obtained in [20, 28, 64] with other numerical methods. Note however that in [28],
the uniform cartesian mesh has 86000 rectangular elements (∆x ≈ 0.065m and ∆y = 0.1m) and that
a 5th order WENO scheme is used. In [20], 1024× 1024 rectangular elements are needed to achieve the
same qualitative agreement due to the use of a 2nd order scheme whereas in [64], the mesh size in the y
direction varies from hy = 0.05m to 0.1m and hx = 2hy.
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Figure 16: Test 5 - Periodic waves propagation over an elliptic shoal: comparison with experimental data
along the four sections.

Figure 17: Test 6 - Solitary wave propagation over a 3d reef: overview of the mesh in the refined area.
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4.6 Solitary wave propagation over a 3d reef

The following test case is based on the experiments of [65] and allows to study some complex wave’s
interactions such as shoaling, refraction, reflection, diffraction, breaking and moving shoreline in a fully
two-dimensional context. The experimental domain is a 48.8 m large and 26.5m wide basin. The to-
pography is a triangular shaped shelf with an island feature located at the offshore point of the shelf.
The island is a cone of 6m diameter and 0.45m height is also placed on the apex, between x = 14m
and x = 20m (see Fig. 18). During the experiments, free surface information was recorded via 9 wave
gauges, and the velocity information was recorded with 3 Acoustic Doppler Velocimeters (ADVs). The
complete set up can be found in [65] but we also specify the gauge locations in the legend of Fig. 19,
with exact values given on Fig. 22.

Figure 18: Test 6 - Solitary wave propagation over a 3d reef: 3d view of the topography and initial
condition.

Such a geometry motivates the use of an unstructured mesh of 45000 elements refined in the vicinity of
the cone, leading to a smallest face’s length of 0.12m and a largest of 0.51m, see Fig. 17. We set the
polynomial order to k = 2. The reference water depth is h = 0.78m and we study the propagation and
transformations of a solitary wave of relative amplitude ε = 0.5. In addition to the complex processes
already stated above, the transformations are quite nonlinear, making the following test particularly
interesting. We show on Fig. 20-21 some snapshots of the free surface evolution before and after crossing
the shelf’s apex. We observe that the wave breaks at the apex slightly before t = 5 s, wrapping the
cone around t = 6.5 s. We also observe refracted waves from the reef slopes and diffracted waves around
the cone which converge at the rear side at approximatively t = 8.5 s. The snapshots at t = 11.5 s
shows the run-up on the beach. Note that according with the positivity preservation property shown in
the previous section, the simulation remains stable even with the use of a third order scheme. We also
provide a comparison between the numerical results and the data taken from the experiments for both
free surface evolutions at the wave gages locations on Fig. 22 and the velocity at the ADVs locations,
see Fig.23. We highlight that even with this relatively moderate level of refinement, the characteristics
of the flow are well resolved. Considering [49] (which is the only work, to our knowledge, to provide
results on an unstructured mesh) we observe similar qualitative results with less elements. The results
observable in [19,66] for instance seem to exhibit a slightly better agreement with the data, but using a
meshes with more than 100,000 elements, highlighting the need for locally adapted meshes.
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Figure 19: Test 6 - Solitary wave propagation over a 3d reef: location of the ADV and wave gauges.

Figure 20: Test 6 - Solitary wave propagation over a 3d reef - free surface at times t = 4.5, 6.5, 8.5 and
9.5 s.

Figure 21: Test 6 - Solitary wave propagation over a 3d reef - free surface at times t = 10.5, 11.5, 13 and
14 s.
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Figure 22: Test 6 - Solitary wave propagation over a 3d reef - Comparison with experimental solution at
gauges 1 to 9.
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Figure 23: Test 6 - Solitary wave propagation over a 3d reef: x and y velocity components - Comparison
with experimental solution at several ADVs.

5 Conclusion

In this work, we introduce for the first time a fully discontinuous Galerkin formulation designed to
approximate the solutions of a multi-dimensional Green-Naghdi model on arbitrary unstructured sim-
plicial meshes. The underlying elliptic-hyperbolic decoupling approach, already investigated in [29] for
the d = 1 case, allows to regard the dispersive correction simply as an algebraic source term in the
NSW equations. Such dispersive correction is obtained as the solution of scalar elliptic second order
sub-problems, which are approximated using a mixed formulation and LDG fluxes. Additionally, the
preservation of motionless steady states and of the positivity of the water height, under a suitable time
step restriction, are ensured for the whole formulation and for any order of approximation.
These properties are assessed through several benchmarks, involving nonlinear wave transformations and
severe occurrence of dry areas, and some additional convergence studies are performed. The numerical
method exhibits some very nice convergence properties and the numerical validations show that a good
description of the wave’s transformations can be achieved with a moderate number of mesh elements,
thank’s to the high order accuracy of the method and the ability to refine the meshes in some areas of
interest.
Although the obtained numerical results clearly show very promising abilities for the study of nearshore
flows, there are still several issues that need to be addressed in future works. In particular, we use
a low-brow approach to stabilize the computations in the vicinity of broken waves. If such a method
provides results which are in good agreement with experimental data for the cases under study in this
work, we are still working to extend the method of [47] to the d = 2 case in a robust way.
Another important issue may be related to the computational cost of our approach. If we believe in
the potential benefits of the use of such a non-conforming high order approach, especially concerning
the robust approximations of solutions involving strong gradients occurring in the vicinity of breaking
waves and possibly strong topography variations, it clearly leads to larger algebraic systems than those
obtained with classical continuous approximations. Future works will therefore be devoted to go further
in the development and optimization of our approach, and in particular to the reduction of the associated
computational cost.
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