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Figure 1: Our Wasserstein projection framework can be used to automatically color grade an input photo (a) using a database of stylized color
histograms, with samples shown in (b). We propose to compute the optimal transport barycenter of these stylized palettes that can approximate
best the original palette, and use that barycenter to carry out color transfer without large color distortions as shown in (c), where the modified
image and the barycentric palette are represented. That barycentric palette is parameterized using only the weights appearing in the captions
of figure (b). Other applications include inferring reflectance functions or missing geometry (see Sec. 5).

Abstract

This article defines a new way to perform intuitive and geometri-
cally faithful regressions on histogram-valued data. It leverages
the theory of optimal transport, and in particular the definition of
Wasserstein barycenters, to introduce for the first time the notion
of barycentric coordinates for histograms. These coordinates take
into account the underlying geometry of the ground space on which
the histograms are defined, and are thus particularly meaningful
for applications in graphics to shapes, color or material modifica-
tion. Beside this abstract construction, we propose a fast numerical
optimization scheme to solve this backward problem (finding the
barycentric coordinates of a given histogram) with a low computa-
tional overhead with respect to the forward problem (computing the
barycenter). This scheme relies on a backward algorithmic differ-
entiation of the Sinkhorn algorithm which is used to optimize the
entropic regularization of Wasserstein barycenters. We showcase
an illustrative set of applications of these Wasserstein coordinates
to various problems in computer graphics: shape approximation,
BRDF acquisition and color editing.

Keywords: optimal transport, fitting
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Figure 2: Comparison between Euclidean (left) and Optimal Trans-
port (right) barycenters between two densities, one being a trans-
lated and scaled version of the other. Colors encode the progression
of the interpolation. The Euclidean interpolation results in mixtures
of the two initial densities, while Optimal Transport results in a
progressive translation and scaling.

1 Introduction

Probability histograms play an important role in graphics. From
color histograms to reflectance distribution functions, or even digital
3D shapes, probability histograms are routinely used to encode
complex physical properties into vectors. The space of features
these distributions are supported on—here, color space, sphere and
spatial grid—can be often endowed with a distance, which encodes
important invariances among features.

Optimal transport theory [Villani 2008; Rubner et al. 2000] proposes
a natural way to lift a distance between features to define a met-
ric between probability histograms on features. Optimal transport
theory sees probability histograms as heaps of sand, and quantifies
the distance between two of them by considering the least costly
way to move all sand particles from one histogram to reshape it
into the other. In this way, two histograms only differing by a small
displacement are very near in the optimal transport sense, while they
could be, in sharp contrast, regarded as very dissimilar under the
`2 and `1 metrics or the KL divergence, particularly so if these two
histograms have little overlap.

Because the optimal transport metric emphasizes mass displace-
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ments, it also defines radically different ways to interpolate between
two or more histograms. From a theoretical perspective, the math-
ematics of optimal transport ensure that histograms are combined
through advections, and not linear combinations, as illustrated in
Fig. 2 and Fig. 3. Because of their physical interpretation, optimal
transport interpolations, a.k.a Wasserstein barycenters, are partic-
ularly suited to applications in graphics, where such concepts of
motions are often meaningful: the rotation of the color wheel, the
motion of highlights in reflectance models, Hausdorff distances be-
tween shapes etc. From a practical perspective, these interpolations
can only find applications in graphics if they are computationally
cheap. Although direct approaches to compute such interpolations
were first believed to be intractable and degenerated [Agueh and
Carlier 2011, §4], recent work has shown that regularized formula-
tions [Cuturi 2013; Benamou et al. 2015] can provide those cheap
algorithms for graphics [Solomon et al. 2015].

We consider in this paper the inverse problem associated with his-
togram interpolation, which is that of forming, for a given histogram,
a barycentric interpolation of reference histograms that approxi-
mates it best. The barycentric interpolation itself can be interpreted
as a denoised version of the original input, with respect to the prior
contained in those reference histograms. The usually much shorter
vector of barycentric coordinates can serve as a handy representa-
tion to compress, visualize or carry out inference on the original
histogram. The crucial novelty in this paper lies in the fact that
the interpolation we consider here is in the optimal transport metric
sense, which gives our barycentric coordinate system an intuitive and
geometrically faithful flavor. We call this new notion of coordinates
for histograms Wasserstein barycentric coordinates, and provide
algorithms to compute them efficiently. We apply our algorithms on
histograms frequently encountered in computer graphics, ranging
from color histograms to reflectance distributions.

Contributions. We propose a method to project an input his-
togram q onto the set of all Wasserstein barycenters formed by
S histograms (p1, · · · , pS) (see Fig. 3). This corresponds to ap-
proximating the input histogram q by its closest (with respect to
some loss) Wasserstein barycenter P (λ) of (p1, · · · , pS), where
λ = (λ1, . . . , λS) is the optimal weight vector sought for. We call
this weight vector λ the Wasserstein barycentric coordinates of q.

We propose the first numerical scheme to compute Wasserstein
barycentric coordinates. This scheme builds upon gradient descent,
and requires thus the computation of the (usually high-dimensional)
Jacobian of the barycenter operator λ 7→ P (λ). To be tractable,
our solution relies on an approximation of P (λ) that uses a fixed
number of steps of a fixed-point iteration computation proposed by
Benamou et al. [2015]. We can therefore use a recursive differen-
tiation method to compute that Jacobian efficiently. This leads to
an algorithm which is both fast and stable, allowing for the com-
putation of optimal barycentric weights on large scale dense 3-D
grids and other domains. We showcase a set of typical applications
of our methods to color analysis (Fig. 7, fitting sparse reflectance
measurements (Fig. 6) and reconstructing 3D shapes (Fig. 9).

2 Previous works

Optimal transport (OT) is a powerful way to define distances (also
known as Wasserstein or earth mover’s distances) between probabil-
ity distributions on general metric spaces, which takes into account
the geometry of the underlying space. Initially formulated by Monge
as an intractable non-convex optimization [Monge 1781], its mod-
ern linear programming formulation is due to Kantorovitch [1942],
and is presented in much details in Villani’s monograph [2003]. Its
practical applications are more recent, starting with computer vi-

sion [Haker et al. ; Rubner et al. 2000], image processing [Rabin
and Papadakis 2015], machine learning [Cuturi 2013; Solomon et al.
2014b] and computer graphics [Bonneel et al. 2011].

Classical linear programming and combinatorial optimization ap-
proaches to OT [Burkard et al. 2009] scale roughly with cubic com-
plexity, and are very costly. Alternative methods somehow alleviate
this issue – e.g., the special case of W1 transport [Solomon et al.
2014a], semi-discrete approach with Laguerre’s cells [Mérigot 2011]
and a dynamical formulation [Benamou and Brenier 2000]. These
approaches are however very restrictive in the sense that they only
work for particular cost structures or discretizations (typically in low
dimension) and are thus not usable for the applications this paper
targets. Of particular relevance to this paper is the recent interest for
entropy regularized approaches to solve OT [Cuturi 2013]. Instead
of a linear program, entropic smoothing allows the use of Bregman
optimization tools [Bregman 1967], in particular Sinkhorn’s algo-
rithm [Sinkhorn 1964; Deming and Stephan 1940]. This approach
provides two benefits: since the computation of regularized OT only
involves matrix-vector products, that problem can be computed ef-
ficiently on parallel architectures; since the problem is regularized
with a strongly convex term, the regularized distance becomes a
smooth function of all its parameters.

Because OT was considered expensive, computing OT distances
faster has been for many years a goal in and by itself. Only re-
cently was it realized that—now that OT distances can be effi-
ciently approximated—far more interesting problems involving OT
distances can be considered, starting with the introduction of OT
barycenters [Agueh and Carlier 2011]. Among all approaches pro-
posed to compute them in practice [Rabin et al. 2012; Cuturi and
Doucet 2014; Bonneel et al. 2015], that of Benamou et al. [2015]
stands out for its simplicity. These barycenters have been indepen-
dently considered in statistics [Bigot and Klein 2012; Srivastava
et al. 2015], image processing [Bonneel et al. 2015] and computer
graphics [Solomon et al. 2015]. These developments have paved the
way for even more complicated problems on the space of probability
measures that incorporate OT in their formulation, such as Prin-
cipal Component Analysis (PCA) [Seguy and Cuturi 2015; Bigot
et al. 2015] or non-negative matrix factorization (NMF) [Sandler
and Lindenbaum 2009; Rolet et al. 2016] which have been recently
rephrased using OT loss functions. More precisely, the NMF prob-
lem (even when used in conjunction with a Wasserstein loss) corre-
sponds to looking for a linear combination of base distributions that
approximates a given input histogram. In contrast, our Wasserstein
barycentric coordinate regression uses a non-linear combination
of the base distributions, which uses the OT geometry by enabling
interpolation through mass transportation (see Figures 2 and 3 for
simple illustrations of this important distinction).

While we propose a generic approach, application specific solutions
have been proposed. For instance, Matusik et al. [2003] has shown
that measured reflectance data form a manifold of histograms which
can be learned via charting [Brand and Brand 2003]. Their approach
allows to locate a new measured reflectance within this manifold.
Wills et al. [2009] locates reflectance functions in a manifold ob-
tained via multi-dimensional scaling. This technique has similarly
been used to build space of color histograms via optimal transporta-
tion distances [Rubner et al. 1998]. Let us also note that computing
barycentric coordinates on non-Euclidean domains is an important
theoretical and numerical problem, see for instance [Rustamov 2010]
for the case of surfaces.

3 Wasserstein Barycenters: Background

This section first presents the—now well-understood—forward
problem of numerically computing Wasserstein barycenters of his-
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Figure 3: We consider four monochrome 500× 500 images, (q, p1, p2, p3) whose total intensity is normalized to sum to 1. The three images
(pi)i generate their Euclidean simplex (left, blue background), which consists in all of their convex combinations. The (pi)i also define
their Wasserstein simplex (right, red background), which consists in all of their Wasserstein barycenters under varying weights λ, see §3.3
for a formal definition. (left arrows) Finding the best approximation of q on the Euclidean simplex with a `2 loss is a simple constrained
linear regression problem. Finding such an approximation with a Wasserstein loss was recently studied in [Rolet et al. 2016]. (right arrows)
projections of q onto the Wasserstein simplex of the histograms (pi)i using either the `2 or the Wasserstein loss. This work proposes the first
known algorithms to carry out such projections, which can be entirely parameterized by weight vectors λ. These coordinates (3 numbers here)
are reflected in the projections’ locations in their respective simplexes.

tograms. It then exposes our main contribution: the presentation and
resolution of the barycentric coordinates inverse problem.

3.1 Notations

We consider the simplex ΣN
def.
=
{
p ∈ RN+ ;

∑
i pi = 1

}
of N -

dimensional normalized histograms, and consider a family of S
reference histograms (p1, · · · , pS) in ΣN . To interpolate between
these S histograms, we consider barycentric weights λ ∈ ΣS . For
a matrix T ∈ RN×N+ , we write H(T ) =

∑
i,j Ti,j log(Ti,j) its

negative entropy, with the convention 0 log 0 = 0. For two matrices
A,B of the same size, we write 〈A, B〉 = tr(A>B) for their usual
inner-product, where A> is the transpose of A. We write 1 for the
vector with unit coordinates and whose size depends on the context.
The `α norm for α ≥ 1 is ||p||αα

def.
=
∑
i p
α
i . The Kullback-Leibler

divergence between histograms is KL(p|q) def.
=
∑
i pi log(pi/qi). In

this paper, multiplication (
∏

for products of many terms and � for
two terms) and division / operators between vectors are applied
entry-wise, as well as exponential exp and logarithmic log maps.

3.2 Regularized Wasserstein Distance

Following [Cuturi 2013] (see also §2), we define the entropy regu-
larized OT distance between two histograms (p, q) ∈ Σ2

N as

W (p, q)
def.
= min
T∈RN×N+

{
〈T, C〉+ γH(T ) ; T1 = p, T>1 = q

}
,

(1)
where the matrix C = (Ci,j)i,j quantifies the cost of transporting
mass between histogram bins. For instance, if bins are sampled at
some locations (xi)i in a Euclidean space, a common choice for
C would be Ci,j = ||xi − xj ||α for some α > 0. We assume that
the regularization parameter γ is positive, which ensures that the
optimal solution of this program is unique and that the program itself
is easier (faster, parallel computations) to solve.

3.3 Regularized Wasserstein Barycenters

Agueh and Carlier defined Wasserstein barycenters [2011] as Fréchet
means in the space of probability measures endowed with the Wasser-
stein metric. They studied several of their properties, such as unique-
ness; established links with the multi-marginal OT problem; de-
scribed barycenters of Gaussian distributions. We consider in this
work a simplified setting for this problem, in which measures are dis-
crete and supported on the same set of N points. Following Cuturi
and Doucet [2014] (see also [Benamou et al. 2015; Solomon et al.
2015]), we propose to compute the Wasserstein barycenters of S
histograms (ps)s in ΣN using the regularized Wasserstein distance
defined in Eq. (1).
Definition 1. Given a family of S input histograms (ps)s, the
barycentric map P : ΣS → ΣN associates to a vector λ ∈ ΣS the
barycenter of (ps)s with weights λ, uniquely defined as

P : λ 7→ P (λ)
def.
= argmin

p∈ΣN

∑
s

λsW (p, ps). (2)

The uniqueness of P (λ) comes from the strong convexity (as a
function of p) of the energy defined on the right-hand side of Eq. (2),
itself inherited from the regularization term in Eq. (1).

Wasserstein barycenters are very different from the usual linear aver-
aging

∑
s λsps, which corresponds to barycenters in the `2 sense.

Indeed, the usual `2 averaging is completely blind to the geometry of
the domain, and is in some sense “non-physical” (induces transport
of mass at infinite speed), as highlighted by Figure 2. Note that
the same remark applies to barycenters induced by other separable
divergences on ΣN such as Hellinger, Kulback-Leibler or `1.

Although there is no closed-form expression for P (λ), Benamou
et al. [2015] have shown that the celebrated Sinkhorn fixed-point
algorithm—which is used to solve problem (1)—can be extended
to compute Wasserstein barycenters. This extension consists in an
augmented fixed-point algorithm:



Proposition 1. [Benamou et al. 2015, Prop. 2] Define for all s ≤ S,
a

(0)
s = 1, and then recursively for l ≥ 0, s ≤ S:

P (`)(λ)
def.
=
∏
s

(
K>a(`)

s

)λs
and

 b
(`+1)
s

def.
= P (`)(λ)

K>a(`)s
,

a
(`+1)
s

def.
= ps

Kb
(`+1)
s

.
(3)

where K def.
= e−C/γ is the N ×N kernel matrix corresponding to

the cost C and regularization γ. Then P (`)(λ) −−−→
`→∞

P (λ).

As detailed in [Benamou et al. 2015], iterations (3) correspond
to iterative projections for the KL divergence on a set of affine
constraints. The main computational burden of these iterations is
that of applying the kernel K or K> to S vectors. In our settings,
where the cost C is translation invariant, these operations are cheap
because they amount to carrying out S convolutions in parallel.

4 Barycentric Coordinate Regression

We now come to the core of our contributions. Given a histogram q ∈
ΣN , our goal is to define and compute the barycentric coordinates
of q within a family of S reference histograms (ps)s, namely to find
the vector of probability weights λ ∈ ΣS such that q ≈ P (λ) with
respect to a loss function L : ΣN × ΣN → R+:
Definition 2. Let q, p1, . . . , pS ∈ ΣN . The barycentric coordinates
of q with respect to (ps)s are any optimal solution to problem

argmin
λ∈ΣS

E(λ), where E(λ)
def.
= L(P (λ), q). (4)

In contrast to the convexity of problem (2), the energy of problem (4)
is in general not convex. Our goal is thus to recover a stationary
point of that energy through gradient descent. The gradient of E
with respect to λ can be computed using the chain rule:

∇E(λ) = [∂P (λ)]>∇L(P (λ), q), (5)

where ∂P (λ) is the Jacobian of λ 7→ P (λ),∇L(p, q) is the gradient
of the loss p 7→ L(p, q), and, with these notations,∇L(P (λ), q) is
that gradient evaluated at P (λ).

Among the two quantities in Eq. (5), the gradient of the loss
∇L(P (λ), q) is the least problematic since it can be easily derived
for several common losses as shown below, and evaluated at P (λ).
Applying the transpose of the Jacobian [∂P (λ)]> to that gradient is
more challenging, both in theory and practice: We show first in §4.2
that, although an exact expression for that Jacobian can be obtained,
computing it is impractical for large dimensions N . We present in
§4.2 an efficient alternative, by replacing the true barycenter P (λ)

in the definition of the energy E by the running estimate P (L)(λ)
obtained after L iterations of the map described in Eq. (3), where L
is a number of iterations fixed beforehand.

Gradient of the loss. The gradient with respect to p of commonly
used separable losses L(p, q) is

∇1

2
||p− q||22 = p− q, ∇||p− q||1 = sign(p− q), (6)

∇KL(p|q) = log( p
q
), ∇W (p, q) = γ log(a), (7)

where, for the gradient of W (p, q), a ∈ RN is the left scal-
ing produced by Sinkhorn’s fixed-point algorithm, namely the
unique vector with geometric mean 1 such that the matrix
diag(a)K diag(q/K>a) has row-sum p and column-sum q [Cu-
turi and Doucet 2014, §5]. Note that the notation∇||p− q||1 is not

rigorous, since the `1-norm is not differentiable everywhere and the
sign vector is only a subgradient of that quantity. We side-step this
issue in this paper, which is only problematic for the 1-norm, by
using quasi-Newton solvers such as L-BFGS that work well even
with non-smooth objectives [Lewis and Overton 2013].

4.1 Exact Computation of the Jacobian

We show in Proposition 2 below that [∂P (λ)]> can be computed, as-
suming that the barycenter P (λ) can been computed exactly. To sim-
plify this exposition, we introduce two bi-variate functions (Φ,Ψ)
to rewrite the iterations of Proposition 1 as operating only on the
scalings b(`)(λ)

def.
= (b

(`)
s (λ))Ss=1:

P (`)(λ) = Ψ(b(`)(λ), λ) where Ψ(b, λ)
def.
=
∏
s

ϕs(bs)
λs (8)

b(`+1)(λ) = Φ(b(`)(λ), λ) where Φ(b, λ)
def.
=

(
Ψ(b, λ)

ϕs(bs)

)
s

, (9)

and ϕs(bs)
def.
= K> ps

Kbs
, using this time the initialization b(0)

s = 1.
Proposition 2. One has

[∂P (λ)]> = [∂b(λ)]>[∂bΨ(b(λ), λ)]>+ [∂λΨ(b(λ), λ)]> (10)

[∂b(λ)]> = [∂λΨ(b(λ), λ)]>
(

Id− [∂bΦ(b(λ), λ)]>
)−1

, (11)

where ∂bΦ and ∂λΦ (resp. ∂bΨ and ∂λΨ) correspond to the partial
derivatives of Φ(b, λ) (resp. Ψ(b, λ)) with respect to its first and
second variables. The matrices corresponding to these differentials
are spelled out in Appendix A.

Proof. When iterations (8) have converged, the barycenter satisfies
P (λ) = Ψ(b(λ), λ) where b(λ) satisfies the fixed-point equation
b(λ) = Φ(b(λ), λ). Differentiating these two relations gives a linear
equation that can be inverted to give the desired expression.

While mathematically correct, formulas (10) and (11) are difficult
to implement in practice: (i) They make the hypothesis that one is
able to compute vectors P (λ) and b(λ) that solve the fixed-point
equations exactly, which is not the case in practice, since these
vectors are only approximated by iterating a sufficient number of
times the map in Eq. (3) to converge to a sufficient accuracy; (ii)
Eq. (11) requires solving aN×N linear system, which is prohibitive
for all of the settings considered in this paper, where N is usually of
the order of 106. Even for much smaller N , toy experiments have
shown that this approach was not only extremely costly, but also
unstable, unless one uses an extremely small convergence criterion
to control the number of iterations of the fixed point map.

4.2 Algorithmic Differentiation of the Jacobian

Because the exact computation of P (λ) outlined above in §4.1 is
impractical, we propose in this section to minimize a loss on the
approximate barycenter P (L)(λ) computed after a finite number of
iterations L ≥ 1, to solve instead:

argmin
λ∈ΣS

EL(λ)
def.
= L(P (L)(λ), q). (12)

The gradient formula (5) thus needs to be replaced by

∇EL(λ) = [∂P (L)(λ)]>(u(L)), u(L) def.
= ∇L(P (L)(λ), q). (13)

Because P (L)(λ) is obtained by recursively applying the same map
L times, the application of the transposed Jacobian [∂P (L)(λ)]> to



function SINKHORN-DIFFERENTIATE((ps)Ss=1, q, λ)
∀ s, b(0)

s ← 1
(w, r)← (0S , 0S×N )
for ` = 1, 2, . . . , L // Sinkhorn loop
∀ s, ϕ(`)

s ← K> ps

Kb
(`−1)
s

p←
∏
s

(
ϕ

(`)
s

)λs
∀ s, b(`)s ← p

ϕ
(`)
s

g ← ∇L(p, q)� p
for ` = L,L− 1, . . . , 1 // Reverse loop
∀ s, ws ← ws + 〈logϕ

(`)
s , g〉

∀ s, rs ← −K>(K(λsg−rs
ϕ
(`)
s

)� ps

(Kb
(`−1)
s )2

)� b(`−1)
s

g ←
∑
s rs

return P (L)(λ)← p,∇EL(λ)← w

Algorithm 1: Given a database of histograms (ps)
S
s=1, the input

distribution q, weights λ, this function computes ∇EL(λ) ∈ RS .
The barycenter P (L)(λ) is obtained as a by-product.

the vector u(L) can be computed using backward recursive differen-
tiation [Neidinger 2010]. This turns out to be particularly efficient,
since the overall complexity of computing [∂P (L)(λ)]>(u(L)) is
the same as that of computing the approximate barycenter P (L)(λ).
Proposition 3 shows that one can compute [∂P (L)(λ)]>(u(L)) and
thus∇EL(λ) using a simple backward recursion. Its proof is given
in Appendix B.
Proposition 3. Let us denote, for ` ≥ 0,

Φ
(`)
λ

def.
= [∂λΦ(b(`)(λ), λ)]> and Φ

(`)
b

def.
= [∂bΦ(b(`), λ)]>,

Ψ
(`)
λ

def.
= [∂λΨ(b(`)(λ), λ)]> and Ψ

(`)
b

def.
= [∂bΨ(b(`), λ)]>.

One has

∇EL(λ) = Ψ
(L)
λ (u(L)) +

L−1∑
`=0

Φ
(`)
λ (v(`)) (14)

where u(L) is defined in (13) and the vectors (v(`))L−1
`=0 are com-

puted using the following backward recursion

∀ ` = L− 1, L− 2, . . . , 0, v(`−1) def.
= Φ

(`−1)
b (v(`)) (15)

initialized with v(L) def.
= Ψ

(L)
b (u(L)).

The overall numerical scheme to compute ∇EL(λ) is detailed in
Algorithm 1, which can be obtained by plugging the expression for
the differential of (Φ,Ψ)—used to prove Proposition 2 and detailed
in Appendix A—into the formulas of Proposition 3. The algorithm
first performs a forward loop to compute the barycenter P (L)(λ)
and then an inverse loop to implement (15) and accumulate the sum
appearing in (14). This efficient implementation computes both the
gradient and barycenter in twice as many Gibbs kernel K and K>

applications as required to compute the barycenter alone, making it
a competitive approach, even against naive approximate numerical
finite differentiation, which would run (S + 1)/2 times slower.
To summarize, this algorithm only requires 4SL convolutions and
additional storage for 3NLS scalar values at each gradient step
carried out to minimize the energy EL.

4.3 Barycentric Coordinates using Quasi-Newton

With the function SINKHORN-DIFFERENTIATE at hand, which is
able to compute both the current barycenter estimate P (L)(λ) and

p1 p2 p3 P ( 1
3
, 1

3
, 1

3
)

L = || · ||22 L = || · ||1 L = KL L = W

Figure 4: To assess the convexity of our energy function (Eq. 4), we
used three simple 2D shapes and their iso-barycenter. We computed
the energy of fitting the isobarycenter for various barycentric coor-
dinates. The bottom row shows these energy landscapes for various
loss functions L. In all cases, the energies appear convex.
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Figure 5: Gradient accuracy compared to finite differentiation. We
use the S = 3 2D histograms of Fig. 4 (downsampled to N =
64× 64), and vary the number of iterations L and γ = 2σ2.

the gradient∇EL(λ), one can now efficiently compute barycentric
coordinates λ as a local minimizer of (12) through a descent method.
Quasi-Newton methods proved very efficient in our experiments.
We tested two methods, which turned out to be equally effective:
The PQN constrained quasi-Newton of [Schmidt et al. 2009], which
can optimize smooth functions such as EL over the simplex ΣS ; a
standard quasi-Newton (L-BFGS) over a logarithmic domain using
the change of variables λ = eα∑

s e
αs ∈ ΣS and carrying out the

optimization over α ∈ RS .

4.4 Evaluation

Problem (12) is non-convex, and optimization techniques may con-
verge to local minima. In Figure 4, we illustrate the energy landscape
of EL(λ) for various loss functions on simple 2D shapes. The re-
sulting landscapes show that the energy seems nearly convex. In
practice, we observed repeatedly that the algorithm converged to the
same minimum for all initializations λ0 within ΣS . In our exper-
iments, we hence set λ0 = 1/S. With this setting, quasi-newton
approaches typically converge within 10 iterations. Figure 5 evalu-
ates the gradient relative accuracy ||∇EL(λ) −∇E(λ)||/||∇E(λ)||
when varying the number of iterations L for various regularizations
γ = 2σ2. As the exact Jacobian (Section 4.2) cannot be reliably
evaluated, we approximate∇E(λ) using numerical finite differenti-
ation with 5000 iterations. This shows a small number of iterations
often suffices.



λ = (1, 94, 0, 1, 1, 4),
PSNR=34.5dB

λ = (1, 94, 0, 1, 1, 3),
PSNR=34.5dB

λ = (2, 94, 0, 1, 1, 4),
PSNR=34.2dB

λ = (1, 92, 0, 1, 3, 3),
PSNR=34.1dB

λ = (54, 0, 0, 2, 44, 0),
PSNR=38.3dB

λ = (39, 5, 0, 21, 34, 1),
PSNR=37.2dB

λ = (26, 21, 1, 12, 39, 1),
PSNR=36.2dB

λ = (18, 14, 1, 17, 46, 3),
PSNR=35.8dB

λ = (6, 2, 20, 12, 1, 59),
PSNR=41.1dB

λ = (5, 1, 23, 11, 1, 58),
PSNR=41.2dB

λ = (9, 0, 23, 0, 0, 67),
PSNR=41.5dB

λ = (0, 74, 1, 25, 0, 0),
PSNR=36.0dB

(a) BRDF database (p̄s)s (b) Reference q̄0 (c) P̄ (λ), all data (d) P̄ (λ), 25% data (e) P̄ (λ), 10% data (f) P̄ (λ), 5% data

Figure 6: We fit a measured anisotropic BRDF q̄ (b) using a basis of S = 6 measured BRDFs (p̄s)
S
s=1 (a). We obtain an approximation

P̄ (λ) (c) that remains robust when decimating measurements prior to the fitting (d,e,f). Reported λ are normalized so that
∑
s λs = 100, and

PSNR values computed on BRDFs.

(a) database (fs)s (b) input f (c) color corrected f̃

Figure 7: From a set (fs)
S
s=1 of professional photographs (consist-

ing of, from top to bottom: S = 7, S = 12, S = 6, and S = 15
photos), our algorithm projects a photograph f (b) to improved
color-corrected or stylized photographs (c). Note that only the
four most contributing professional photos (i.e. highest weights
λs) are shown in (a). Their corresponding optimal weights (λs)s,
from top to bottom, are: λ = (5.10−6, 2.10−5, 0.40, 0.60), λ =
(10−6, 7.10−4, 0.34, 0.66), λ = (3.10−6, 6.10−6, 0.23, 0.77) and
λ = (0.05, 0.09, 0.29, 0.54).

5 Applications

This section illustrates our histogram barycentric coordinates for
various computer graphics applications.

5.1 Optimal Image Color Palettes

Color grading refers to the task of changing the color palette of a
given image to improve its visual aspect. This task is often carried
out manually by professional colorists [Pitié et al. 2007; Bonneel
et al. 2013]. In this section, we build upon the automatic color
grading approach pioneered by Reinhard et al. [2001] (see for in-
stance [Bonneel et al. 2015] and references therein). This approach
has shown that the visual style of images is contained to a large ex-
tent in the distribution of their colors, and that this visual aspect can
be changed by adjusting the color palette of a given image to make it
match that of another target image. In most automatic color grading
approaches, that target palette is defined beforehand by choosing a
single image’s palette. We propose in this section a new approach to
define such target palettes adaptively using multiple images.

Given an input photograph f and a small database of relevant color
palettes, we compute first, among all barycenters of these palettes,
the one that is the closest to the color palette of f . We then modify
the distribution of colors in f to make it match that of this closest
palette. Color transfer towards a single predefined palette often
results in artefacts, especially when the target palette is very far from
the original one [Rabin et al. 2010]. Our approach sidesteps this
problem, and considers automatically an infinite family of target
palettes that retain the characteristics of the database.

We discretize RGB histograms with N = 1283 values on a uniform
grid (xi)

N
i=1 of the RGB cube. This defines the histograms (ps)

S
s=1

of the input database (fs)
S
s=1, and the histogram q of the image f to

process. Our algorithm computes the optimal barycenter P (λ) using
the ground cost Ci,j = ||xi − xj ||2 and the quadratic loss function



L(p, p′) = ||p− p′||2. The image f is modified into an image f̃ , so
that the histogram of f̃ is equal, up to a small approximation error,
to P (λ). This is achieved using the barycentric projection method
detailed in [Solomon et al. 2015]. More precisely, if we denote p the
histogram of the input image f , we use the Sinkhorn algorithm [Cu-
turi 2013] to determine a transport plan T between p and P (λ), so
that T solves (1) when setting q = P (λ). The transport map in the
RGB color space is then approximated by the barycentric projection
map xi ∈ R3 7→ 1

pi

∑
j Ti,jxj ∈ R3. This map is applied to each

pixel of f using linear interpolation (since these pixel values do not
necessary fall on the discretization grid (xi)i) to obtain the modified
image f̃ . Note that this barycentric projection step is not related to
the barycentric coordinate and the associated Wasserstein projection
P (λ) defined in Section 4. Figure 7 illustrates our method using a
database of professional photographs. Figure 8 shows an application
in the context of text-based user interfaces. We use the top 10 results
of the Flickr image search engine (www.flickr.com) for the query
autumn to stylize an input summer photograph with a more autumnal
aspect. Among various loss functions, the quadratic loss offered the
best quality/speed tradeoff for this application.

5.2 Sparse Reflectance Inference

Acquiring reflectance data can be cumbersome. Our method makes it
possible to infer reflectance values from sparse data given a database
of densely measured reflectances. A Bidirectional Reflectance Dis-
tribution Function (BRDF) p̄ is a function p̄(ω, ξ) describing the
probability for a photon hitting a surface with a direction ω to be
reflected off that surface with a direction ξ, or to be absorbed by that
surface. These functions are sampled on discretized hemispheres
(ω, ξ) ∈ Ω2 of N = 288 points. Since p̄ describes distributions
of energy, we consider (p̄(ω, ·))ω∈Ω as a set of un-normalized his-
tograms on the hemisphere. We thus first normalize the BRDF and
define p(ω, ξ) def.

= p̄(ω, ξ)/
∑
ξ′ p̄(ω, ξ

′), so that (p(ω, ·))ω∈Ω is a
collection of normalized histograms.

Given a database (ps)
S
s=1 of such normalized BRDF ps(ω, ξ), we

extend (2) to define barycenters by jointly optimizing over all in-
coming direction ω

P (λ)
def.
= argmin

(p(ω,ξ))ξ,λ

∑
ω∈Ω

∑
s

λsW (p(ω, ·), ps(ω, ·)). (16)

We use the cost matrix Ci,j = d(xi, xj)
2 where d is the geodesic

distance on the hemisphere. Using this extended notion of barycen-
ters, we use (12) to define barycentric coordinates of a normalized
BRDF q computed from some BRDF q̄, where the loss L is the
Wasserstein loss , extended to collections of histograms. The gra-
dient of EL is now obtained by summing the gradient contribution
of all incident directions ω, so that we can use Algorithm 1 for the
computation of the optimal λ. One finally recovers the interpolated
BRDF P̄ (λ) from P (λ) by re-introducing the initial scaling factor
of q̄, i.e. P̄ (λ)(ω, ξ)

def.
= P (λ)(ω, ξ)

∑
ξ′ q̄(ω, ξ

′)

Fig. 6 shows typical results for isotropic and anisotropic BRDFs
from the UTIA database [Filip and Vávra 2014]. To simulate a
sparse acquisition setup, we progressively decimate (which corre-
sponds to replacing some histogram values by 0) an input BRDF
q̄0 by up to 95% to obtain the input BRDF q, prior to computing
barycentric coordinates λ. We observe relatively good reconstruc-
tion quality even for highly degraded BRDFs. This suggests our
approach could alleviate the BRDF capture process when reasonably
similar materials have already been captured at higher resolution.

Shape database
(p1, . . . , pS)

Input shape q Projection
P (λ)

Iso-surface

Figure 9: We fit a 1923 voxelized digital shape q, on a database of
similar shapes (p1, . . . , pS). We obtain a projectionP (λ), with com-
puted weights λ = (7.10−4, 0.928, 0.070, 6.10−4, 4.10−4) (top
row) and λ = (0.295, 0.121, 0.067, 0.084, 0.163, 0.269) (bottom
row), from which we extract a smooth iso-surface. Shapes in the first
row are from the Princeton database [Chen et al. 2009].

Euclidean Projection Our Projection P (λ)

Figure 10: Comparison of the Euclidean projection (left, λ =
(0.251, 0.287, 0.013, 0.076, 0.112, 0.187)) and our Wasserstein
projection (right, λ = (0.295, 0.121, 0.067, 0.084, 0.163, 0.269).
The Euclidean projection results in linearly blended shapes.

5.3 Inferring missing geometry

Capturing geometries can be difficult due to partial occlusions, mea-
surement noise, or unreachable camera angles. Given a database of
input 3-D models, our tool can be used to infer missing geometry
in an input mesh. We voxelize all shapes on a N = 1923 uniform
3-D grid (xi)

N
i=1 and we use a ground cost Ci,j = ||xi − xj ||2, and

L = KL as loss function. Each shape is represented as a normalized
histogram representing the uniform distribution inside this shape,
and a uniform mass of ε = 10−4 outside for compatibility with KL
loss. We account for the mass missing in the input geometry by
roughly estimating the amount of missing mass, and normalizing the
input histogram accordingly. Specifically, if α percent of the input
shape is missing, we use a loss of the form KL(P (λ), (1− α) q∑

q
).

Figure 9 illustrates our results, and Figure 10 compares the Wasser-
stein and Euclidean projections.

5.4 MRI Data

We consider processed data from the Human Connectome Project Q1
data set. The processing includes skull stripping, brain segmentation
and cortical reconstruction of the cerebrum and the cerebellum at
the native resolution of 0.7mm, as provided by the NITRC web-
site. We selected S = 14 original MRIs represented as volumetric
histograms of dimension 208× 276× 225, and considered an ad-
ditional test one that we project on both the Euclidean simplex and

www.flickr.com


Flickr database Input KL (23 min)
λ2 = 1

TV (38 min)
λ0,2,6 = (0.34, 0.23, 0.42)

Wasserstein (49 min)
λ0,8 = (0.37, 0.63)

Quadratic (33min)
λ2,4,6,8 =

(0.11, 0.42, 0.24, 0.10)

[Pitié et al. 2007],
λ0 = 1

[Pitié et al. 2007],
λ2 = 1

[Pitié et al. 2007],
λ4 = 1

[Pitié et al. 2007],
λ6 = 1

[Pitié et al. 2007],
λ8 = 1

Figure 8: Using the image search engine Flickr, we use the top 10 results for the query autumn (here, with Commercial use allowed and
sorted by Interesting) and use them to color grade a summer image. (First row) For different loss functions, we show the non-zero barycentric
coordinates and total computation time using 1283 voxel RGB color histograms, L = 60 and our CPU implementation. (Second row) We use
the color matching of Pitie et al. [2007] to transfer colors from the most contributing photographs (numbered 0, 2, 4, 6 and 8). As existing
techniques use a single target histogram, this can lead to large color distortion.

Original Euclidean Wasserstein
projection projection

Figure 11: (left) Original MRI, followed by two 208× 276× 225
histogram projections, using the Euclidean simplex (middle) and
the Wasserstein simplex (right), both computed using an `2 loss.
The Euclidean barycentric coordinates consist in 8 non-zero values,
while the Wasserstein barycentric coordinates have 9.

the Wasserstein simplex of the 14 original MRIs, as illustrated in
Figure 11. The test MRI is projected on both simplexes using a `2
loss. The coefficients selected by these two procedures have a sparse
support, with 9 and 8 non-zero weights respectively. These two
projections share 7 of these coefficients, with comparable weights.
Although the Euclidean barycenter looks sharper, close inspection
reveals overlapping boundaries and edges (see insets) while our
Wasserstein projection results in well-defined contours.

6 Discussion

This paper introduces the concept of Wasserstein barycentric coordi-
nates. We illustrate this tool with applications to color manipulation,
reflectance approximation, and shape inference.

Shape database Input shape P (λ) Iso-surface

Figure 12: When the database is too far from the input shape, our
method produces poor reconstructions. The computed weight is
λ = (0.62, 4.10−4, 0, 0, 0.38).

Performance. While our method scales to large densely sampled
histograms (we experimented with grids of size up to 2563 and his-
tograms supported on the sphere such as BRDFs), our method is
limited by its memory requirements, and remains slow for databases
exceeding more than 10-20 dense histograms. Memory requirements
increase linearly with the number of iterations L, the number of in-
put histograms S, and the number of bins N . In practice, we used
between L = 50 and 100 iterations. A memory-free implementa-
tion would make the time complexity of the algorithm quadratic in
the number of iterations instead of linear. Regarding speed, for a
regression on a 10-histogram database typically converging within
10 L-BFGS iterations, each consisting of 100 fixed-point iterations,
both our multicore CPU C++ implementation and multi-GPU mat-
lab implementations perform about 40k convolutions. This ranges
from seconds for 1D and 2D histograms to minutes for small 3D
histograms (∼ 643) or hours for denser 3D histograms with the C++
implementation. The latter computations only require a few min-
utes on four K-80 GPUs. We found that initial L-BFGS iterations
can be carried out using coarser gradient approximations, without
impacting convergence.

Quality. When the histogram database is far from the input his-
togram, the input histogram will unlikely be faithfully approximated
by Wasserstein barycenters. For applications such as shape inference,
this can lead to erroneous reconstructions (Fig. 12).

Future work. We observed that our Wasserstein barycentric co-
ordinates are often very sparse. This sparsity might be attributed



to the minimization being carried out over the set, in ΣN , of all
Wasserstein barycentric combinations of the histograms (pi)i. If
the reference histograms are close to each other (meaning that the
volume of that set is small) and the input histogram is far apart, the
projection onto that set is likely to lie in one of the faces of that
set, i.e., on barycentric combinations that have sparse weights. This
poses an interesting theoretical problem, which would likely benefit
from a better understanding of the energy landscape of EL(λ). We
believe that our method can find other practical applications in graph-
ics, and find applications in vision and machine learning—notably if
we consider extensions in which the basis (pi)i is learned from data.
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A Differentials of Φ and Ψ

Proposition 4. One has

[∂ϕs(bs)]
> = −K> diag

(
ps

(Kbs)2

)
K (17)

[∂ϕ(b)]> = diags

(
[∂ϕs(bs)]

>
)
s

(18)

[∂bΦ(b, λ)]> = [∂ϕ(b)]> diag(Φ(b, λ))Pλ diag
(

1
ϕ(b)

)
(19)

[∂bΨ(b, λ)]> = [∂ϕ(b)]> diag(Φ(b, λ))Jλ (20)

[∂λΦ(b, λ)]> = log(ϕ(b))>IN,S diag(Φ(b, λ)) (21)

[∂λΨ(b, λ)]> = log(ϕ(b))> diag(Ψ(b, λ)) (22)

where we denoted

IN,S
def.
= (IdN , . . . , IN ) ∈ RN×NS ,

∀a ∈ RN , Jλ(a)
def.
= (λ1a, . . . , λSa) ∈ RN×NS ,

∀b ∈ RNS , Pλ(b)
def.
= (λs

∑
t

bt − bs)s ∈ RNS ,

log(ϕ(b))
def.
= [log(ϕ1(b1))| . . . | log(ϕS(bs))] ∈ RN×S .

Proof. For the sake of simplicity, we omit the dependency with
respect to (b, λ) and write e.g. Ψ in place of Ψ(b, λ). We also write
∆

def.
= diag. Formula (17) and (18) are obtained by differentiating

the definitions of ϕs and ϕ. Differentiating

log(Ψ(b, λ)) =
∑
s

λsϕs(bs) (23)

with respect to b leads to

∆( 1
Ψ

)∂bΨ = (∆( λ1
ϕ1

)∂b1ϕ1| . . . |∆( λS
ϕS

)∂bSϕS) = J>λ ∆( 1
ϕ

)∂bϕ

and hence [∂bΨ]> = [∂bϕ]>∆( 1
ϕ

)Jλ∆(Ψ). We then use the fact
that ∆( 1

ϕ
)Jλ∆(Ψ) = ∆(Φ)Jλ to obtain formula (20). Differenti-

ating Φ = ( Ψ(b)
ϕs(bs)

)s with respect to b leads to

∂bΦ =

∆( 1
ϕ1

)∂bΨ
. . .

∆( 1
ϕS

)∂bΨ

− diag
(

∆( Ψ
ϕ2
1
)∂ϕ1, . . . ,∆( Ψ

ϕ2
S

)∂ϕS
)

= ∆( 1
ϕ

)I>N,S [∂bΨ]−∆( 1
ϕ

)∆(Φ)∂ϕ

and hence, transposing this relation,

[∂bΦ]> = [∂ϕ]>∆(Φ) (JλIN,S − IdNS) ∆( 1
ϕ

)

which is the desired formula (19) since JλIN,S − IdNS = Pλ.
Differentiating (23) with respect to λ gives

∆( 1
Ψ

)∂λΨ = (log(ϕ1(b1))| . . . | log(ϕs(bS)))

and hence formula (22). Differentiating Φ = ( Φ(b)
ϕs(bs)

)s with respect
to λ leads to

∂λΦ =

∆( 1
ϕ1

)∂λΨ
. . .

∆( 1
ϕS

)∂λΨ

 = ∆( 1
ϕ

)I>N,S∂λΨ

and hence, transposing this relation,

[∂λΦ]> = log(ϕ)>∆(Ψ)I>N,S∆( 1
ϕ

) = log(ϕ)>I>N,S∆(Φ)

which shows (21).

B Proof of Proposition 3

Differentiating (8) and (9) for ` ≥ 0 leads to

[∂P (`)(λ)]> = B(`)Ψ
(`)
b + Ψ

(`)
λ , (8’)

B(`+1) = B(`)Φ
(`)
b + Φ

(`)
λ , (9’)

where, B(`) def.
= [∂b(`)(λ)]> andB(0) = 0 to agree with the constant

initialization b(0)
s = 1. Applying (8’) to u(L) shows that

∇EL(λ)=[∂P (L)(λ)]>(u(L)) = B(L)(v(L)) + Ψ
(L)
λ (u(L)) (24)

where we denoted v(L) def.
= Ψ

(L)
b (u(L)). So all we need to compute

now is B(L)(v(L)). Using (9’) shows that

B(L)(v(L)) =

L−1∑
`=0

Φ
(`)
λ (v(`)), (25)

where the (v(`))L−1
`=0 are computed using the backward recur-

sion (15). Note that the sum appearing in (25) starts at ` = 0

because B(0) = 0. Plugging (25) into expression (24) gives the
desired formula (14).
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A., NGUYEN, A., DU, T., AND GUIBAS, L. 2015. Convolu-
tional Wasserstein distances: Efficient optimal transportation on
geometric domains. ACM Trans. Graph. (SIGGRAPH) 34, 4.

SRIVASTAVA, S., CEVHER, V., TRAN-DINH, Q., AND DUNSON,
D. B. 2015. Wasp: Scalable bayes via barycenters of subset
posteriors. In International Conference on Artificial Intelligence
and Statistics.

VILLANI, C. 2003. Topics in optimal transportation. American
Mathematical Soc.

VILLANI, C. 2008. Optimal transport: old and new, vol. 338.

WILLS, J., AGARWAL, S., KRIEGMAN, D., AND BELONGIE, S.
2009. Toward a perceptual space for gloss. ACM Trans. Graph.
28, 4.


