A Multilingual, Multi-Style and Multi-Granularity Dataset for Cross-Language Textual Similarity Detection
Jérémy Ferrero, Frédéric Agnès, Laurent Besacier, Didier Schwab

To cite this version:
Jérémy Ferrero, Frédéric Agnès, Laurent Besacier, Didier Schwab. A Multilingual, Multi-Style and Multi-Granularity Dataset for Cross-Language Textual Similarity Detection. 10th edition of the Language Resources and Evaluation Conference, May 2016, Portorož, Slovenia. hal-01303135

HAL Id: hal-01303135
https://hal.archives-ouvertes.fr/hal-01303135
Submitted on 15 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Multilingual, Multi-Style and Multi-Granularity Dataset for Cross-Language Textual Similarity Detection

Jérémie Ferrero1,2, Frédéric Agnès1, Laurent Besacier2, Didier Schwab2
1 Compilatio, 276 rue du Mont Blanc, 74540 Saint-Félix, France
2 LIG-GETALP, Univ. Grenoble Alpes, France
{jeremy, frederic}@compilatio.net, {jeremy.ferrero, laurent.besacier, didier.schwab}@imag.fr

Abstract

In this paper we describe our effort to create a dataset for the evaluation of cross-language textual similarity detection. We present pre-existing corpora and their limits and we explain the various gathered resources to overcome these limits and build our enriched dataset. The proposed dataset is multilingual, includes cross-language alignment for different granularities (from chunk to document), is based on both parallel and comparable corpora and contains human and machine translated texts. Moreover, it includes texts written by multiple types of authors (from average to professionals). With the obtained dataset, we conduct a systematic and rigorous evaluation of several state-of-the-art cross-language textual similarity detection methods. The evaluation results are reviewed and discussed. Finally, dataset and scripts are made publicly available on GitHub: http://github.com/FerreroJeremy/Cross-Language-Dataset.

Keywords: Dataset, Cross-language dataset, Evaluation, Cross-language similarity detection, Cross-language plagiarism detection

1. Introduction

Guibert and Michaut (2011) state that 34.5% of European students have already copied all or part of a document to present it as their own work. This confirms the work of the Josephson Institute (2011) and McCabe (2010) who estimate that more than 30% of American and Canadian students have already re-used Web sentences without citing their source; this is considered as plagiarism. “Plagiarism is an act of fraud to steal and pass off (the ideas or words of another) as one’s own without crediting the source to present as new and original an idea or product derived from an existing source” (Plagiarism.org, 2014).

In addition, Internet expansion facilitates access to documents in foreign languages and to increasingly efficient machine translation tools. Consequently, a new kind of plagiarism is becoming frequent: the Cross-Language Plagiarism. It involves plagiarism by translation, i.e. a text has been plagiarized while being translated (manually or automatically). The challenge in detecting this kind of plagiarism is that the suspicious document is in a language different from its source.

In this relatively new field of research, no complete evaluation framework has been carried out and no sufficiently diversified reference dataset has been made available to enable more systematic and rigorous evaluations.

Contributions. This paper presents our methodology to collect and build a reference dataset for the evaluation of cross-language textual similarity detection (made available to the research community). More precisely, the characteristics of our dataset are the following:

- it is multilingual: French, English and Spanish;
- it proposes cross-language alignment information at different granularities: document-level, sentence-level and chunk-level;
- it is based on both parallel and comparable corpora;
- it contains both human and machine translated text;
- part of it has been altered (to make the cross-language similarity detection more complicated) while the rest remains without noise;
- documents were written by multiple types of authors: from average to professionals.

The major contribution, in addition to merge and enrich existing corpora, has been to provide the various textual granularities and perform an evaluation of state-of-the-art methods on the proposed dataset.

Outline. After presenting the state-of-the-art methods, we first present the pre-existing corpora for the cross-language plagiarism detection and their limits, then we describe how we have gathered and enriched these corpora in a single dataset and we describe the characteristics of the dataset. Finally, we evaluate the main state-of-the-art methods on our dataset.

2. State-of-the-art

Textual similarity detection methods are not exactly methods to detect plagiarism. Plagiarism is a statement that someone copied text deliberately without attribution, while these methods only detect textual similarities. There is no way of knowing why texts are similar and thus to assimilate these similarities to plagiarism.

For the moment, there are five classes of approaches for cross-language similarity detection. Figure 1 presents the taxonomy (Potthast et al., 2011) of the different cross-language textual similarity detection methods grouped by class of methodology (in bold, the methods that we have evaluated on our dataset and which are detailed bellow).
2.1. Length Model

Length Model aims to compare the size of two texts in an attempt to predict if they express the same thing or not. Though it is unlikely to find both documents \( d \) and \( d' \), written in two different languages \( L \) and \( L' \) with the same meaning, such as \(|d| = |d'|\), i.e., having exactly the same length, it is assumed that their length is closely linked by a factor. Pouliquen et al. (2003) observe that there is a different factor for each language pair. They expressed the following formula, included in the work of Potthast et al. (2011):

\[
\phi(d, d') = \exp \left( -0.5 \left( \frac{|d'|}{|d|} - \mu \right)^2 \right) \tag{1}
\]

where \( \mu \) is the average and \( \sigma \) is the standard deviation of the lengths (in characters) between the original documents and their translations, from \( L \) to \( L' \). Table 1 represents the values of \( \mu \) and \( \sigma \) which are used in the evaluation of Potthast et al. (2011).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>en-de</th>
<th>en-es</th>
<th>en-fr</th>
<th>en-nl</th>
<th>en-pl</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \mu )</td>
<td>1.098</td>
<td>1.138</td>
<td>1.093</td>
<td>1.143</td>
<td>1.216</td>
</tr>
<tr>
<td>( \sigma )</td>
<td>0.268</td>
<td>0.631</td>
<td>0.157</td>
<td>1.885</td>
<td>6.399</td>
</tr>
</tbody>
</table>

Table 1: Coefficients of the average and the standard deviation between the languages pairs (Potthast et al., 2011).

2.2. Cross-Language Character N-Gram (CL-CNG)

CL-CNG is based on the Mcnamee and Mayfield (2004) work which is used in the information retrieval. It compares two texts under their n-grams vectors representation. The method achieve a good performance in information retrieval task for languages with the same origin because of common root words.

Let \( d \) and \( d' \), two documents in two different languages (respectively \( L \) and \( L' \)). First, the alphabet of these documents is normalized on a space \( \sum = \{a-z, 0-9, \} \), so only spaces and alphanumeric characters are retained. Any other diacritic or symbol is deleted. The uppercase are passed into lowercase. The texts are then segmented into n-grams (sequences of \( n \) contiguous characters). The variable \( n \) is previously optimized (according to studies, \( n = [3, 5] \), Mcnamee and Mayfield (2004) use a CL-C4G when Potthast et al. (2011) prefer to use a CL-C3G model). The texts are thus transformed into \( tf.idf \) vectors of character n-grams. The similarity between the vectors may be calculated by a cosine similarity.

2.3. Cross-Language Conceptual Thesaurus-based Similarity (CL-CTS)

CL-CTS aims to measure the semantic similarity between two vectors of concepts. The model consists in representing documents as vectors and compare them. The method also involves no explicit translation, the matching is performed using internal connections in the used ontology. For example, Gupta et al. (2012) represent the documents using Eurovoc (1995) thesaurus concepts vectors. They use a stop words filter, a stemming step and a term frequency weighting to build the vectors. A cosine similarity between these vectors is associated with named entities matching, and the Length Model of Pouliquen et al. (2003), seen in section 2.1, is also used to compare the vectors. Česka et al. (2008) proceed similarly with EuroWordNet\(^1\) while Pataki (2012) prefers use a synonym dictionary because, according to her, use an ontology raises two problems. The first is the data limitations and the second is the asymmetry of available data in the different languages.

Let \( S \) a sentence of length \( n \), the \( n \) words of the sentence are represented by \( w_i \) as:

\[
S = \{w_1, w_2, w_3, ..., w_n\} \tag{2}
\]

\( S_x \) and \( S_y \) are two sentences in two different languages. A bag of words vector \( V \) from each sentence \( S \) is built, by filtering stop words and by using a function that returns for a given word all possible translations. The vectors \( V_x \) and \( V_y \) are respectively the conceptual representations of \( S_x \) and \( S_y \).

\(^1\)http://www.illc.uva.nl/EuroWordNet/
To calculate the similarity between $S_x$ and $S_y$, the most common method is to calculate the intersection between $V_x$ and $V_y$:

$$\text{sim}(S_x, S_y) = |V_x \cap V_y|$$  \hspace{1cm} (3)

If a sentence has sufficient common concepts with an other, then it is considered as the possible translation of the other. But Pataki (2012) uses a more discriminant formula taking into account the size of the compared bag of words:

$$\text{sim}(S_x, S_y) = \min(|V_x \cap V_y| - |V_x \setminus V_y|, |V_y \setminus V_x| - |V_x \cap V_y|)$$ \hspace{1cm} (4)

### 2.4. Cross-Language Alignment-based Similarity Analysis (CL-ASA)

CL-ASA is introduced for the first time by Barrón-Cedeño et al. (2008) and developed subsequently by Pinto et al. (2009). The aim of the method is to determine how a textual unit $d$ written in the language $L$ is potentially the translation of another textual unit $d'$ written in a language $L'$. CL-ASA involves the creation of a bilingual unigram dictionary which contains the statistical probabilities of translations pairs determined from a parallel corpus. The IBM-1 model (Brown et al., 1993) can be adopted using only the lexical translations. Pinto et al. (2009) proposed a formula that factored the alignment function.

Let $x$ and $y$, two sentences, such as $x_j$ is the $j$th word of the sentence $x$ and $y_j$ the $i$th word of the sentence $y$. We want to know the probability $p(x, y)$ that $x$ is the translation of $y$.

$$p(x, y) = \prod_{j=1}^{|x|} p(x_j|y)$$ \hspace{1cm} (5)

where

$$p(x_j|y) = \frac{1}{|y| + 1} \cdot p(x_j|y_i)$$ \hspace{1cm} (6)

Improvements of the method were later proposed. For example, consider for each word $x$, only the best translations $y$, above a minimum probability (threshold of 0.4 according to the work of Barrón-Cedeño et al. (2010)) or also filter the stop words to minimize the number of operations. Barrón-Cedeño et al. (2008) (2012) also propose to replace the language model, usually used, by the Length Model of Pouliquen et al. (2003) seen in section 2.1. In this case, the final formula for CL-ASA becomes:

$$\text{sim}(d, d') = \varphi(d, d') \cdot p(d, d')$$ \hspace{1cm} (7)

### 2.5. Cross-Language Explicit Semantic Analysis (CL-ESA)

CL-ESA is based on the explicit semantic analysis model introduced for the first time by Gabrilovich and Markovitch (2007), which represents the meaning of a document by a vector based on concepts derived from Wikipedia, to find a document within a corpus. It was reused by Potthast et al. (2008) in the context of cross-language document retrieval. In ESA, a document $d$ is represented by its similarities with the documents of a collection $D$, represented by a similarity vector $\mathbf{d}$ of $n$ dimensions, such as:

$$\mathbf{d} = (\varphi(v, v^*_1), \ldots, \varphi(v, v^*_n))^T$$ \hspace{1cm} (8)

where $v$ is the terms vector of $d$, $v^*_i$ is the terms vector of the $i$th document in $D$ and $n$ is the number of documents in $D$. Any terms vector can be used but in the state-of-the-art, $v$ is usually a tf.idf character n-grams vector. If $\varphi(v, v^*_i)$ is smaller than a fixed threshold, it can be reduced to zero in order to minimize noise and facilitate calculations. In the state-of-the-art, the function $\varphi$ is a cosine similarity. Let $\mathbf{d}'$ a vectorial representation of another document $d'$ relating to $D$. Thus the similarity between $d$ and $d'$ can be defined as $\varphi(\mathbf{d}, \mathbf{d}')$.

For the cross-language task, we now consider $d$ and $d'$, two documents in two different languages (respectively $L$ and $L'$), and $D$ and $D'$ two different collections containing a large number of documents in the respective languages of $d$ and $d'$. If the documents inside $D$ are one to one parallel or comparable with the documents inside $D'$, then the representations of ESA in both languages become comparable. We build $\mathbf{d}$, the vectorial representation of $d$, where each dimension $i$ represents the similarity between $d$ and each document $D_i$ of the corpus $D$. For the second document $d'$, we proceed the same way, building a vector $\mathbf{d}'$ using the collection $D'$. The two vectors $\mathbf{d}$ and $\mathbf{d}'$ are a representation of $d$ and $d'$ related to the collections $D$ and $D'$. The similarity between $d$ and $d'$ can be expressed as:

$$\text{sim}(d, d') = \varphi(\varphi(d, D), \varphi(d', D')) = \varphi(\mathbf{d}, \mathbf{d}')$$ \hspace{1cm} (9)

### 2.6. Translation + Monolingual Analysis (T+MA)

T+MA is a rather intuitive method that has been updated by Barrón-Cedeño (2012). It consists in translating the texts in the same language in order to operate a monolingual comparison between them. Let $d$ and $d'$, two documents written in two different languages (respectively $L$ and $L'$). The first step of the method consists in translating the document $d$ in language $L'$, the document $d'$ in language $L$ or the two documents in a third language $L''$, which is called hub or pivot language. To do that, Kent and Salim (2010) directly use the Google Translate API, while Muhr et al. (2010) replace each word of one text by its most likely translations in the language of the other text.

After the translation step, a monolingual comparison of both documents is now possible. According to Barrón-Cedeño et al. (2010) and Muhr et al. (2010), it is better to use methods such as bags of words that show better results on monolingual textual comparisons (Barrón-Cedeño et al., 2009). Because machine translation tools can give too multiple translations (all correct but being substantially different) and therefore it is not advisable to make a monolingual alignment with lexical or syntactic methods (Barrón-Cedeño et al., 2010).

### 3. Dataset for the cross-language plagiarism detection task

#### 3.1. Existing corpora

There are many multi-language and cross-language dataset listed by OPUS\textsuperscript{2} website. One example of these most

\textsuperscript{2}http://opus.lingfil.uu.se/
used corpora is undoubtedly Europarl\(^3\) (Koehn, 2005). It is a widely used corpus in cross-language text analysis and machine translation. It is a parallel corpus consisting of the European Parliament exchanges transcriptions, about nearly 10,000 parallel documents in more than 21 languages spoken across the European Union. Similarly, JRC-Acquis\(^4\) is also often used in cross-language NLP or translation research. It is a parallel corpus, representing extracts of *Acquis Communautaire* (applicable laws in the European Union states), available in over 20 languages. As well, Wikipedia is often used as a comparable corpus in multiple languages. These last two, i.e. JRC-Acquis and Wikipedia, were used by Potthast et al. (2011) for cross-language plagiarism detection. Finally, another interesting collection of documents is the one gathered by Prettenhofer and Stein (2010) who collected Amazon Product Reviews (ATR) and Stein (2010) who collected *Amazon Product Reviews* (books, DVD and music albums) for a cross-language sentiment analysis task (Google Translate was used to build the parallel corpus).

### 3.2. Limits of existing corpora

The above-mentioned cross-language corpora present the following shortcomings:

- They propose only one alignment granularity (document or sentence) whereas plagiarism can occur at different levels (sub-sentence level for instance);
- Taken separately, these corpora are very specific: parallel or comparable documents, manual or automatic translations, average or professional translators;
- Taken separately, these corpora only cover a specific domain (e.g. law or politics) which questions the validity of an evaluation done on a single dataset.

Ideally, a dataset allowing a rigorous evaluation of the cross-language similarity detection methods should not contain these limitations and be as diversified as possible.

### 4. Our dataset

#### 4.1. Merged data

So far, our dataset only focuses on French, English and Spanish languages. The collections in these three languages, presented in the section 3.1, were first gathered in our dataset. The result is that the JRC-Acquis corpus (10,000 documents per language), Europarl corpus (close to 9,500 documents for each language), Wikipedia collections (10,000 documents per language) and Webis-CLS-10 corpus also know as *Amazon Product Reviews* (APR) corpus (6,000 documents per language) have been reused. To enrich these corpora, we also used:

- The corpus used for the PAN 2011 evaluation (Potthast et al., 2010) of the CLEF campaign. The corpus was designed for mono-language plagiarism detection task but it contains excerpts of texts of same books in different languages. These texts come from books freely available on the Gutenberg Project website\(^5\). The extraction process involves analyzing XML files containing the metadata of each document in the corpus. Then, using this information, parallel English-Spanish pairs are extracted. The process led to nearly 3,000 document pairs.
- Conference papers. So far, no corpus includes scientific texts, this is why we collected conference papers that were initially published in one language and then translated by their authors to be published in another language. For practical reasons, we focused exclusively on articles published first in French and then in English. The BibTeX file of French speaking conferences in NLP (the 1997-2014 TALN archives, made available in the works of Boudin (2013)\(^6\) and the 2006-2011 RNTI collection made available by the challenge of the EGC 2016 conference\(^7\)) were parsed to extract the names of the authors of each article. Then, names were used as queries in Google Scholar and Google Search Engine. Papers in PDF format corresponding to the most relevant search results were downloaded. We detected the language of each downloaded file according to the Cavnar and Trenkle (1994) classification algorithm and each English candidate file was manually checked to see if a significant part of it was related to one of the French original documents cited in the BibTeX. A total of 35 pairs of French-English conference papers were collected this way.

#### 4.2. Multiple alignment granularities

To allow a rigorous evaluation of the state-of-the-art methods, we wanted a corpus with multiple granularities of aligned textual units. Thus alignment of our dataset at both sentence- and chunk- level was also needed in order to evaluate the performance of different methods on different types of texts but also on different sizes of texts.

To begin, each document in the dataset was split into sentences. To align sentences by pairs or triplets (depending on the languages present in the collections), we use HunAlign (Varga et al., 2005), whose dictionary for alignment has been enriched with DBNary\(^8\) entries (Sérraset, 2015). The use of HunAlign is coupled with the *Length Model* described in Pouliquen et al. (2003). An ad-hoc threshold was used to filter the HunAlign’s output to ensure the best possible ratio between the number of alignments achieved and their quality.

For the lower granularity, i.e. chunk level, we decided to focus on noun chunks because they are considered as the most meaningful elements in a sentence. To obtain these aligned noun chunks, we use the part-of-speech tagger TreeTagger (Schmid, 1994) followed by a post-processing step concatenating tokens according to their part-of-speech tag to build

---

\(^3\)http://www.statmt.org/europarl


\(^5\)http://www.gutenberg.org/

\(^6\)http://github.com/boudinfl/taln-archives

\(^7\)http://www.egc.asso.fr/Manifestations_dEGC/71-FR-Defi_EGC_2016_Communaute_EGC_quelle_histoire_et_quel_avenir

\(^8\)http://kaiko.getalp.org/about-dbmary
Table 2: Characteristics by sub-corpus of our dataset. The percentages of named entities present in the last column are calculated with Stanford Named Entity Recognizer: http://nlp.stanford.edu/software/CRF-NER.shtml.

<table>
<thead>
<tr>
<th>Sub-corpus</th>
<th>Languages</th>
<th># Aligned documents</th>
<th># Aligned sentences</th>
<th># Aligned noun chunks</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRC-Acquis</td>
<td>EN, FR, ES</td>
<td>≈10,000</td>
<td>≈150,000</td>
<td>≈10,000</td>
</tr>
<tr>
<td>Europarl</td>
<td>EN, FR, ES</td>
<td>≈10,000</td>
<td>≈475,000</td>
<td>≈25,600</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>EN, FR, ES</td>
<td>≈10,000</td>
<td>≈5,000</td>
<td>≈150</td>
</tr>
<tr>
<td>PAN (Gutenberg Project)</td>
<td>EN, ES</td>
<td>≈3,000</td>
<td>≈90,000</td>
<td>≈1,400</td>
</tr>
<tr>
<td>Amazon Product Reviews</td>
<td>EN, FR</td>
<td>≈6,000</td>
<td>≈23,000</td>
<td>≈2,600</td>
</tr>
<tr>
<td>Conference papers</td>
<td>EN, FR</td>
<td>≈35</td>
<td>≈1,300</td>
<td>≈300</td>
</tr>
</tbody>
</table>

Table 3: Number of aligned documents, sentences and noun chunks by sub-corpus.

phrases that can be considered as chunks. We also consider a minimal size (empirically set to 3 words) to form each chunk. To align these units, we proceeded the same way as for sentences.

Table 3 summarizes the statistics of our dataset (number of aligned documents, sentences and noun chunks). Obviously, the alignment step yields better results (more parallel sentences obtained) on parallel sub-corpora than on comparable sub-corpora. Also, the bigger corpora obviously lead to more aligned sentences at the sentence-level granularity. Concerning the chunks, the HunAlign threshold is set to maximize the quality of aligned chunks, which can explain their reduced number compared with number of parallel sentences.

4.3. Final corpus characteristics

The different characteristics of our dataset are synthesized in Table 2 while Table 3 presents the number of aligned units, by sub-corpus and by granularity, of our final dataset. To summarize, our dataset is composed of texts:

- in French, English and Spanish;
- aligned at the document-, sentence- and chunk-level;
- aligned from parallel or comparable collections;
- covering various fields;
- translated by humans (professionals or not) or automatically;
- altered or without added noise.

A manual check of more than 1,300 randomly chosen aligned chunks has been performed (which represents more than 3% of the chunk-level sub-corpus), providing an alignment confidence greater than 92%. We could get more accuracy, but with a decrease amount of exploitable alignments.

5. Evaluation protocol and Experiments

For the evaluation, we build a distance matrix of size $N \times M$, with $M = 1,000$ and $N = |S|$ where $S$ is the evaluated sub-corpus. Each textual unit of $S$ is compared to itself and to $M - 1$ other units randomly selected from $S$. A matching score for each comparison performed is thus obtained, leading to the distance matrix. Thresholding on the matrix is applied to find the threshold giving the best $F_1$ score. The $F_1$ score is the harmonic mean of precision and recall. Precision is defined as the proportion of relevant matches retrieved among all the matches retrieved. Recall is the proportion of relevant matches retrieved among all the relevant matches retrieved. Each method is applied on each EN-FR sub-corpus for the three granularities, except the PAN corpus, that do not have EN-FR collection. For each configuration (i.e. one method on one sub-corpus at one granularity), 10 folds are carried out by changing the $M$ selected units. The same unit may be selected several times at each fold. The averages and the confidence intervals of the $F_1$ scores of the 10 related folds are reported in Table 4 for the chunk-level, Table 5 for the sentence-level and Table 6 for the document-level.

During the evaluation, the Length Model used is that of Pouliquen et al. (2003) and CL-CNG considered is the one described by Potthast et al. (2011). CL-CTS used is that of Pataki (2012) and T+MA is the one applied by Muhr et al. (2010), both using lexical data from DBNary. CL-ASA used is that of Pinto et al. (2009) with a lexical dictionary calculated from the concatenation of TED* (Cettolo et al., 2012) and News10 parallel corpora. CL-ESA implemented is that of Potthast et al. (2008) with the comparable data of Wikipedia that are not used in the test data.

---

*https://wit3.fbk.eu/

*http://www.statmt.org/wmt13/translation-task.html#download
Table 4: Average $F_1$ scores and confidence intervals of state-of-the-art methods applied on the chunk-level EN-FR sub-corpora. The last row is the average $F_1$ scores from CL-C3G to T+MA.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Wikipedia (%)</th>
<th>TALN (%)</th>
<th>JRC (%)</th>
<th>APR (%)</th>
<th>Europarl (%)</th>
<th>Overall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Baseline</td>
<td>0.28±0.046</td>
<td>0.23±0.028</td>
<td>0.21±0.019</td>
<td>0.22±0.025</td>
<td>0.23±0.040</td>
<td>0.23</td>
</tr>
<tr>
<td>Length Model</td>
<td>0.30±0.007</td>
<td>0.20±0.000</td>
<td>0.30±0.000</td>
<td>0.29±0.019</td>
<td>0.27±0.028</td>
<td>0.27</td>
</tr>
<tr>
<td>CL-C3G</td>
<td>62.91±0.615</td>
<td>40.90±0.500</td>
<td>36.63±0.826</td>
<td>80.30±0.703</td>
<td>53.29±0.583</td>
<td>54.81</td>
</tr>
<tr>
<td>CL-CTS</td>
<td>58.00±0.519</td>
<td>33.71±0.382</td>
<td>29.87±0.815</td>
<td>67.51±1.050</td>
<td>44.95±1.157</td>
<td>46.81</td>
</tr>
<tr>
<td>CL-ASA</td>
<td>23.33±0.724</td>
<td>23.39±0.432</td>
<td>33.14±0.936</td>
<td>26.49±1.205</td>
<td>55.50±0.681</td>
<td>32.37</td>
</tr>
<tr>
<td>CL-Esa</td>
<td>64.89±0.664</td>
<td>23.78±0.613</td>
<td>14.03±0.997</td>
<td>23.14±0.777</td>
<td>14.19±0.590</td>
<td>28.01</td>
</tr>
<tr>
<td>T+MA</td>
<td>58.22±0.756</td>
<td>39.13±0.551</td>
<td>28.61±0.597</td>
<td>73.14±1.666</td>
<td>36.95±1.502</td>
<td>47.21</td>
</tr>
<tr>
<td>Average</td>
<td>53.47±0.321</td>
<td>32.18±0.248</td>
<td>28.46±0.346</td>
<td>54.12±0.346</td>
<td>40.98±0.288</td>
<td></td>
</tr>
</tbody>
</table>

Table 5: Average $F_1$ scores and confidence intervals of state-of-the-art methods applied on the sentence-level EN-FR sub-corpora. The last row is the average $F_1$ scores from CL-C3G to T+MA.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Wikipedia (%)</th>
<th>TALN (%)</th>
<th>JRC (%)</th>
<th>APR (%)</th>
<th>Europarl (%)</th>
<th>Overall (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Baseline</td>
<td>0.21±0.019</td>
<td>0.22±0.025</td>
<td>0.23±0.029</td>
<td>0.22±0.025</td>
<td>0.24±0.030</td>
<td>0.22</td>
</tr>
<tr>
<td>Length Model</td>
<td>0.30±0.000</td>
<td>0.30±0.000</td>
<td>0.30±0.000</td>
<td>0.30±0.000</td>
<td>0.30±0.000</td>
<td>0.30</td>
</tr>
<tr>
<td>CL-C3G</td>
<td>48.25±0.549</td>
<td>48.08±0.538</td>
<td>36.68±0.693</td>
<td>61.10±0.581</td>
<td>52.72±0.866</td>
<td>49.37</td>
</tr>
<tr>
<td>CL-CTS</td>
<td>46.68±0.437</td>
<td>38.67±0.552</td>
<td>28.21±0.612</td>
<td>50.82±1.034</td>
<td>53.21±0.601</td>
<td>43.52</td>
</tr>
<tr>
<td>CL-ASA</td>
<td>27.63±0.330</td>
<td>27.25±0.341</td>
<td>35.17±0.644</td>
<td>25.53±0.795</td>
<td>36.55±1.139</td>
<td>30.43</td>
</tr>
<tr>
<td>CL-Esa</td>
<td>51.14±0.875</td>
<td>14.25±0.334</td>
<td>14.44±0.341</td>
<td>13.93±0.714</td>
<td>13.91±0.618</td>
<td>21.53</td>
</tr>
<tr>
<td>T+MA</td>
<td>50.57±0.888</td>
<td>37.79±0.364</td>
<td>32.36±0.369</td>
<td>61.94±0.756</td>
<td>37.92±0.552</td>
<td>44.12</td>
</tr>
<tr>
<td>Average</td>
<td>44.85±0.321</td>
<td>33.21±0.248</td>
<td>29.37±0.346</td>
<td>42.66±0.346</td>
<td>38.86±0.288</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Average $F_1$ scores and confidence intervals of state-of-the-art methods applied on the document-level EN-FR sub-corpora. The last row is the average $F_1$ scores from CL-C3G to T+MA.

<table>
<thead>
<tr>
<th>Methods</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Baseline</td>
<td>≈ 3&quot;</td>
</tr>
<tr>
<td>Length Model</td>
<td>≈ 12&quot;</td>
</tr>
<tr>
<td>CL-C3G</td>
<td>≈ 9&quot;</td>
</tr>
<tr>
<td>CL-CTS</td>
<td>≈ 6'14&quot;</td>
</tr>
<tr>
<td>CL-ASA</td>
<td>≈ 3'18&quot;</td>
</tr>
<tr>
<td>CL-Esa</td>
<td>≈ 41'58&quot;</td>
</tr>
<tr>
<td>T+MA</td>
<td>≈ 20'02&quot;</td>
</tr>
</tbody>
</table>

Table 7: Comparison of execution times for each method applied on 1,000 × 1,000 textual units sizing from 35 to 55 words.

The Length Model show very poor performance (close to the Random Baseline with ≤0.31%) due to the choice of a large $M$. The latter greatly increases the number of potential false positives and thus negatively affects accuracy of baseline methods. The rest of the results confirm the state-of-the-art (Franco-Salvador et al., 2016; Potthast et

6. Results and Discussion

The evaluation was parallelized with a queuing mechanism (which explains the relatively long time of the baseline methods) and carried out on a Linux Debian server\footnote{16-core AMD Opteron clocked at 2.0GHz with 3.0Go of RAM}. 

Table 7 lists the execution times of methods for the comparison of 1,000 × 1,000 textual units sizing from 35 to 55 words. The methods which require access to external re-

resources and those making numerous vector calculations are the most expensive in time in addition to being the most expensive in memory resources consumption.
In conclusion, our results confirm that the different methods see their performances stagnated between the sentence- and the document-level (with an average of 0.757) and between the sentence- and the document-level for CL-ASA (0.493). Some methods on some sub-corpora are more efficient on fairly small textual units (CL-C3G on Wikipedia sub-corpus) while other methods are more efficient on longer units (CL-C3G on TALN sub-corpus), although the average best results are obtained at the chunk-level. Generally, all the methods see their performances gradually deteriorate as the granularity of compared documents increases, however we also see that many methods see their performances stagnated between the sentence and document level (CL-CTS or CL-ESA for example). Also, the results tend to be better on Wikipedia, APR and Europarl corpora because the ratio of named entities present in these corpora is more important (see Table 2). The trend of the results on parallel corpora commonly used in evaluation tasks (e.g. JRC, APR and Europarl), at the sentence- and document- level, correlate very well (0.875) with scientific papers sub-corpus (TALN). This suggests that a method efficient on JRC and Europarl corpora should be useful for cross-language similarity detection on scientific papers.

7. Conclusion and Perspectives

In conclusion, our results confirm that the different methods of the state-of-the-art behave differently depending on the characteristics of the compared texts but also that the granularity impacts their performances. Our dataset may be interesting for future evaluation tasks and is made available on GitHub (http://github.com/FerreroJeremy/Cross-Language-Dataset).

In future works, we would like to include in our dataset, sub-corpora with more extreme percentage of named entities (one sub-corpus close to 0% and another one with more than 10% for example) in order to verify the impact of this feature on the effectiveness of the detection methods. We would also like to add an intermediate granularity, between the chunk-level and the sentence-level, that will not only consists of noun chunks but also includes verbal and adverbial phrases. Also, we have plans to develop a corpus builder tool, which generates, from cross-language dataset, a corpus to evaluate plagiarism detection and not just textual similarity detection, i.e. a corpus which will takes into account the granularity of the plagiarized excerpts as PAN corpus does (Potthast et al., 2010). Finally, our short term goal is to work on the improvement of the similarity detection methods by fusion, boosting or introduction of new approaches (using word embeddings for instance).

8. Bibliographical References


9. Language Resource References


