D. Barré, M. Kraushaar, G. Staffelbach, V. Moureau, and L. Y. , Compressible and low Mach number LES of a swirl experimental burner, Comptes Rendus M??canique, vol.341, issue.1-2, pp.277-287, 2013.
DOI : 10.1016/j.crme.2012.11.010

B. Toda, H. , O. Cabrit, K. Truffin, G. Bruneaux et al., Assessment of subgrid-scale models with a large-eddy simulation-dedicated experimental database: The pulsatile impinging jet in turbulent cross-flow, Physics of Fluids, vol.26, issue.7, p.75108, 2014.
DOI : 10.1063/1.4890855

M. Carlsson, E. Heiberg, J. Toger, and H. Arheden, Quantification of left and right ventricular kinetic energy using four-dimensional intracardiac magnetic resonance imaging flow measurements, AJP: Heart and Circulatory Physiology, vol.302, issue.4, pp.893-900, 2012.
DOI : 10.1152/ajpheart.00942.2011

I. B. Celik, Z. N. Cehreli, and I. Yavuz, Index of Resolution Quality for Large Eddy Simulations, Journal of Fluids Engineering, vol.127, issue.5, p.949, 2005.
DOI : 10.1115/1.1990201

J. J. Charonko, R. Kumar, K. Stewart, W. C. Little, and P. P. Vlachos, Vortices Formed on the Mitral Valve Tips Aid Normal Left Ventricular Filling, Annals of Biomedical Engineering, vol.387, issue.6, pp.1049-1061, 2013.
DOI : 10.1007/s10439-013-0755-0

C. P. Cheng, D. Parker, and C. A. Taylor, Quantification of Wall Shear Stress in Large Blood Vessels Using Lagrangian Interpolation Functions with Cine Phase-Contrast Magnetic Resonance Imaging, Annals of Biomedical Engineering, vol.30, issue.8, pp.1020-1032, 2002.
DOI : 10.1114/1.1511239

S. Chien, Shear Dependence of Effective Cell Volume as a Determinant of Blood Viscosity, Science, vol.168, issue.3934, pp.977-979, 1970.
DOI : 10.1126/science.168.3934.977

C. Chnafa, Using image-based large-eddy simulations to investigate the intracardiac flow and its turbulent nature, p.231, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01135796

C. Chnafa, S. Mendez, R. Moreno, and F. Nicoud, Using Image-based CFD to Investigate the Intracardiac Turbulence, Modeling the Heart and the Circulatory System, pp.97-117, 2015.
DOI : 10.1007/978-3-319-05230-4_4

URL : https://hal.archives-ouvertes.fr/hal-01152496

C. Chnafa, S. Mendez, and F. Nicoud, Image-based large-eddy simulation in a realistic left heart, Computers & Fluids, vol.94, pp.173-187, 2014.
DOI : 10.1016/j.compfluid.2014.01.030

URL : https://hal.archives-ouvertes.fr/hal-00943609

S. P. Collins, P. Arand, C. J. Lindsell, W. F. Peacock, and A. B. Storrow, Prevalence of the Third and Fourth Heart Sound in Asymptomatic Adults, Congestive Heart Failure, vol.1, issue.14, pp.242-247, 2005.
DOI : 10.1016/0002-9343(60)90152-2

P. F. Davies, A. Remuzzi, E. J. Gordon, C. F. Dewey, and M. A. Gimbrone, Turbulent fluid shear stress induces vascular endothelial cell turnover in vitro., Proc. Natl. Acad. Sci, pp.2114-2117, 1986.
DOI : 10.1073/pnas.83.7.2114

F. Domenichini, G. Pedrizzetti, and B. Baccani, Three-dimensional filling flow into a model left ventricle, Journal of Fluid Mechanics, vol.539, issue.-1, p.179, 2005.
DOI : 10.1017/S0022112005005550

F. Domenichini, G. Querzoli, G. Cenedese, and . Pedrizzetti, Combined experimental and numerical analysis of the flow structure into the left ventricle, Journal of Biomechanics, vol.40, issue.9, pp.1988-1994, 2007.
DOI : 10.1016/j.jbiomech.2006.09.024

P. Dyverfeldt, M. Bissell, A. J. Barker, A. F. Bolger, C. Carlhäll et al., 4D flow cardiovascular magnetic resonance consensus statement, Journal of Cardiovascular Magnetic Resonance, vol.50, issue.10, p.72, 2015.
DOI : 10.1186/s12968-015-0174-5

P. Dyverfeldt, M. D. Hope, E. E. Tseng, and D. Saloner, Magnetic Resonance Measurement of Turbulent Kinetic Energy for the Estimation of Irreversible Pressure Loss in Aortic Stenosis, JACC: Cardiovascular Imaging, vol.6, issue.1, pp.64-71, 2013.
DOI : 10.1016/j.jcmg.2012.07.017

P. Dyverfeldt, J. P. Kvitting, A. Sigfridsson, J. Engvall, A. F. Bolger et al., Assessment of fluctuating velocities in disturbed cardiovascular blood flow: In vivo feasibility of generalized phase-contrast MRI, Journal of Magnetic Resonance Imaging, vol.43, issue.3, pp.655-663, 2008.
DOI : 10.1002/jmri.21475

P. Dyverfeldt, J. E. Kvitting, C. J. Carlhäll, G. Boano, A. Sigfridsson et al., Hemodynamic aspects of mitral regurgitation assessed by generalized phase-contrast MRI, Journal of Magnetic Resonance Imaging, vol.85, issue.suppl B, pp.582-590, 2011.
DOI : 10.1002/jmri.22407

A. Falahatpisheh, A. Kheradvar, D. D. , R. L. Murrah, C. O. Olsen et al., High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation, European Journal of Mechanics - B/Fluids, vol.35, issue.19, pp.2-8450, 1992.
DOI : 10.1016/j.euromechflu.2012.01.019

S. Hendabadi, J. Bermejo, Y. Benito, R. Yotti, F. Fernández-avilés et al., Topology of Blood Transport in the Human Left Ventricle by Novel Processing of Doppler Echocardiography, Annals of Biomedical Engineering, vol.5, issue.5, pp.2603-2616, 2013.
DOI : 10.1007/s10439-013-0853-z

P. Hult, T. Fjällbrant, B. Wranne, and P. Ask, Detection of the third heart sound using a tailored wavelet approach, Medical & Biological Engineering & Computing, vol.47, issue.2, pp.253-258, 2004.
DOI : 10.1007/BF02344639

M. Kanski, P. M. Arvidsson, J. Töger, R. Borgquist, E. Heiberg et al., Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data, Journal of Cardiovascular Magnetic Resonance, vol.12, issue.December 2002, p.111, 2015.
DOI : 10.1186/s12968-015-0211-4

S. S. Khalafvand, E. Y. Ng, L. Zhong, and T. K. Hung, Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: Preliminary study, Computers in Biology and Medicine, vol.42, issue.8, pp.863-870, 2012.
DOI : 10.1016/j.compbiomed.2012.06.010

A. Kheradvar and M. Gharib, On Mitral Valve Dynamics and its Connection to Early Diastolic Flow, Annals of Biomedical Engineering, vol.105, issue.7, pp.1-13, 2009.
DOI : 10.1007/s10439-008-9588-7

P. J. Kilner, G. Z. Yang, J. Wilkes, R. H. Mohiaddin, D. N. Firmin et al., Asymmetric redirection of flow through the heart Hemodynamic correlates of the third heart sound during the evolution of chronic heart failure, Nature Am. J. Med, vol.404, issue.21, pp.759-761419, 1992.

T. B. Le and F. Sotiropoulos, On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle, Proc. Inst, pp.20-24475, 2008.
DOI : 10.1016/j.euromechflu.2012.01.013

P. C. Lu, H. C. Lai, and J. S. Liu, A reevaluation and discussion on the threshold limit for hemolysis in a turbulent shear flow, Journal of Biomechanics, vol.34, issue.10, pp.1361-1365, 2001.
DOI : 10.1016/S0021-9290(01)00084-7

D. L. Mann, D. P. Zipes, P. Libby, and R. O. Bonow, Braunwald's Heart Disease: A Textbook of Cardiovascular Medicine, p.2136, 2014.

M. Markl, P. J. Kilner, and T. Ebbers, Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance, Journal of Cardiovascular Magnetic Resonance, vol.13, issue.1, p.7, 2011.
DOI : 10.1186/1532-429X-13-7

S. Mendez, E. Gibaud, and F. Nicoud, An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, Journal of Computational Physics, vol.256, pp.465-483, 2014.
DOI : 10.1016/j.jcp.2013.08.061

URL : https://hal.archives-ouvertes.fr/hal-00871557

V. Mihalef, R. I. Ionasec, P. Sharma, B. Georgescu, I. Voigt et al., Patient-specific modelling of whole heart anatomy, dynamics and haemodynamics from four-dimensional cardiac CT images, Interface Focus, vol.125, issue.6, pp.286-296, 2011.
DOI : 10.1115/1.1635404

F. Nicoud, H. B. Toda, O. Cabrit, S. Bose, and J. Lee, Using singular values to build a subgridscale model for large eddy simulations, Phys. Fluids, vol.23, pp.1-35, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00802472

S. P. Olesen, D. E. Clapham, and P. F. Davies, Haemodynamic shear stress activates a K+ current in vascular endothelial cells 37. Pasipoularides, A. Diastolic filling vortex forces and cardiac adaptations: Probing the epigenetic nexus. Hell Mechanotransduction mechanisms for intraventricular diastolic vortex forces and myocardial deformations: part 1, Nature J. Cardiol. J. Cardiovasc. Transl. Res, vol.331, issue.8, pp.168-70458, 1988.

G. Pedrizzetti, G. L. Canna, O. Alfieri, and G. Tonti, The vortex???an early predictor of cardiovascular outcome?, Nature Reviews Cardiology, vol.4, issue.9, pp.545-53, 2014.
DOI : 10.1038/nrcardio.2014.75

G. Pedrizzetti and F. Domenichini, Left Ventricular Fluid Mechanics: The Long Way from Theoretical Models to Clinical Applications, Annals of Biomedical Engineering, vol.35, issue.3, pp.26-40, 2015.
DOI : 10.1007/s10439-014-1101-x

G. Pedrizzetti, F. Domenichini, and G. Tonti, On the Left Ventricular Vortex Reversal after Mitral Valve Replacement, Annals of Biomedical Engineering, vol.95, issue.3, pp.769-773, 2010.
DOI : 10.1007/s10439-010-9928-2

D. L. Pham, C. Xu, and J. L. Prince, Current Methods in Medical Image Segmentation, Annual Review of Biomedical Engineering, vol.2, issue.1, pp.315-352, 2000.
DOI : 10.1146/annurev.bioeng.2.1.315

S. B. Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New Journal of Physics, vol.6, 2004.
DOI : 10.1088/1367-2630/6/1/035

G. Querzoli, S. Fortini, and A. Cenedese, Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow Turbulent blood flow in humans: its primary role in the production of ejection murmurs, Phys. Fluids Circ. Res, vol.22, issue.38, pp.1-10513, 1976.

D. N. Gatehouse and . Firmin, Progress towards patient-specific computational flow modeling of the left heart via combination of magnetic resonance imaging with computational fluid dynamics, Ann. Biomed. Eng, vol.31, pp.42-52, 2003.

T. Schenkel, M. Malve, M. Reik, M. Markl, B. Jung et al., MRI-Based CFD Analysis of Flow in a Human Left Ventricle: Methodology and Application to a Healthy Heart, Annals of Biomedical Engineering, vol.87, issue.4, pp.503-515, 2009.
DOI : 10.1007/s10439-008-9627-4

J. Töger, M. Kanski, M. Carlsson, S. J. Kovács, G. Söderlind et al., Vortex Ring Formation in the Left Ventricle of the Heart: Analysis by 4D Flow MRI and Lagrangian Coherent Structures, Annals of Biomedical Engineering, vol.109, issue.12, pp.1-11, 2012.
DOI : 10.1007/s10439-012-0615-3

K. Valen-sendstad and D. A. Steinman, Mind the Gap: Impact of Computational Fluid Dynamics Solution Strategy on Prediction of Intracranial Aneurysm Hemodynamics and Rupture Status Indicators, American Journal of Neuroradiology, vol.35, issue.3, pp.536-543, 2014.
DOI : 10.3174/ajnr.A3793

V. Vedula, J. Seo, A. C. Lardo, and R. Mittal, Effect of trabeculae and papillary muscles on the hemodynamics of the left ventricle, Theoretical and Computational Fluid Dynamics, vol.30, issue.10, pp.10-1007, 2015.
DOI : 10.1007/s00162-015-0349-6

H. Watanabe, S. Sugiura, and T. Hisada, The looped heart does not save energy by maintaining the momentum of blood flowing in the ventricle, AJP: Heart and Circulatory Physiology, vol.294, issue.5, pp.2191-2196, 2008.
DOI : 10.1152/ajpheart.00041.2008

J. Zajac, J. Eriksson, P. Dyverfeldt, A. F. Bolger, T. Ebbers et al., Turbulent kinetic energy in normal and myopathic left ventricles, Journal of Magnetic Resonance Imaging, vol.68, issue.4, pp.1021-1030, 2015.
DOI : 10.1002/jmri.24633