AN ELLIPTIC SYSTEM WITH DEGENERATE COERCIVITY
Lucio Boccardo, Gisella Croce, Chiara Tanteri

To cite this version:
Lucio Boccardo, Gisella Croce, Chiara Tanteri. AN ELLIPTIC SYSTEM WITH DEGENERATE COERCIVITY. Rendiconti di Matematica, 2015, 36. hal-01302646

HAL Id: hal-01302646
https://hal.archives-ouvertes.fr/hal-01302646
Submitted on 14 Apr 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
AN ELLIPTIC SYSTEM WITH DEGENERATE COERCIVITY

LUCIO BOCCARDO, GISSELLA CROCE, CHIARA TANTERI

1. Introduction

1.1. Setting. In this paper we study the existence of solutions of the degenerate elliptic system

\[
\begin{align*}
-\text{div} \left(\frac{a(x)\nabla u}{(b(x) + |z|)^2} \right) + u &= f(x), \\
-\text{div} \left(\frac{A(x)\nabla z}{(B(x) + |u|)^2} \right) + z &= F(x),
\end{align*}
\]

(1.1)

where \(\Omega \) is a bounded, open subset of \(\mathbb{R}^N \), with \(N > 2 \), \(a(x) \) and \(A(x) \) are measurable matrices such that, for \(\alpha, \beta \in \mathbb{R}^+ \),

\[
\alpha |\xi|^2 \leq a(x)\xi \xi, \quad \alpha |\xi|^2 \leq A(x)\xi \xi; \quad |a(x)| \leq \beta, \quad |A(x)| \leq \beta.
\]

(1.2)

Moreover we assume

\[
0 < \lambda \leq b(x), \quad B(x) \leq \gamma,
\]

(1.3)

for some \(\lambda, \gamma \in \mathbb{R}^+ \) and

\[
f(x), \quad F(x) \in L^2(\Omega).
\]

(1.4)

Theorem 1.1. Under the assumptions (1.2), (1.3), (1.4), there exist \(u \in W^{1,1}_0(\Omega) \) and \(z \in W^{1,1}_0(\Omega) \), distributional solutions of the system (1.1).

1.2. Comments. First of all, we note that existence of solutions belonging to the nonreflexive space \(W^{1,1}_0(\Omega) \) is not so usual in the study of elliptic problems. Recently the existence of solutions in \(W^{1,1}_0(\Omega) \) was proved in [3], [4], [5], for elliptic scalar problems with degenerate coercivity (so that this paper is an extension to the systems of some of those results) and in some borderline cases of the Calderon-Zygmund theory of nonlinear Dirichlet problems in [9].

The main difficulty of the problem is that even if the differential operator is well defined between \(W^{1,2}_0(\Omega) \) and its dual, it is not coercive on \(W^{1,2}_0(\Omega) \): degenerate coercivity means that when \(|v| \) is “large”, \(\frac{1}{(a(x)+|v|)^2} \) goes to zero: for an explicit example see [18].
The study of problems involving degenerate equations begins with the paper [8] and it is developed in [1], [10], [11], [12], [3], [4], [5] (see also [2]).

2. Existence

2.1. A priori estimates. The first existence result is concerned with the case of a bounded data.

We recall the following definitions.

\[T_k(s) = \begin{cases}
 s, & \text{if } |s| \leq k; \\
 \frac{k}{|s|}, & \text{if } |s| > k;
\end{cases} \]

\[G_k(s) = s - T_k(s). \]

Proposition 2.1. Let \(\rho > 0, \sigma > 0 \) and \(g, G \in L^\infty(\Omega) \). Then there exist weak solutions \(w, W \) belonging to \(W^{1,2}_0(\Omega) \) of the system

\[
\begin{align*}
 w &\in W^{1,2}_0(\Omega) \cap L^\infty(\Omega) : -\div(a(x)\nabla w) + w = g(x), \\
 W &\in W^{1,2}_0(\Omega) \cap L^\infty(\Omega) : -\div(A(x)\nabla W) + W = G(x).
\end{align*}
\]

Proof. The existence is a consequence of the Leray-Lions theorem (or Schauder theorem) since the principal part is not degenerate, thanks to the presence of \(T_\rho \) and \(T_\sigma \). Moreover, if we take \(G_h(w) \) as test function in the first equation and \(G_k(W) \) as test function in the second equation, we have, dropping two positive terms,

\[
\begin{align*}
 \int_\Omega [||w|| - |g(x)||] |G_h(w)| &\leq 0, \\
 \int_\Omega [||W|| - |G(x)||] |G_k(w)| &\leq 0.
\end{align*}
\]

Then the choice \(h = \|g\|_{L^\infty(\Omega)} \), \(k = \|G\|_{L^\infty(\Omega)} \) implies

\[
\begin{align*}
 ||w|| &\leq \|g\|_{L^\infty(\Omega)}, \\
 ||W|| &\leq \|G\|_{L^\infty(\Omega)}.
\end{align*}
\]

Thus, if we set \(\rho = \|g\|_{L^\infty(\Omega)} \) and \(\sigma = \|G\|_{L^\infty(\Omega)} \), we can say that \(w \) and \(W \) are bounded weak solutions of the system

\[
\begin{align*}
 w &\in W^{1,2}_0(\Omega) \cap L^\infty(\Omega) : -\div(a(x)\nabla w) + w = g(x), \\
 W &\in W^{1,2}_0(\Omega) \cap L^\infty(\Omega) : -\div(A(x)\nabla W) + W = G(x).
\end{align*}
\]

\[\square \]
Now we define
\[f_n = \frac{f}{1 + \frac{1}{n}|f|}, \quad F_n = \frac{F}{1 + \frac{1}{n}|F|}, \]
so that
\[(2.1) \quad \|f_n - f\|_{L^2(\Omega)} \to 0, \quad \|F_n - F\|_{L^2(\Omega)} \to 0. \]
Thanks to the Proposition 2.1, there exists a solution \((u_n, z_n)\) of the system
\[
\begin{cases}
 u_n \in W^{1,2}_0(\Omega) : -\text{div} \left(\frac{a(x)\nabla u_n}{(b(x) + |z_n|)^2} \right) + u_n = f_n(x), \\
 z_n \in W^{1,2}_0(\Omega) : -\text{div} \left(\frac{A(x)\nabla z_n}{(B(x) + |u_n|)^2} \right) + z_n = F_n(x),
\end{cases}
\]
Now we prove our first estimates.

Lemma 2.2. The sequences \(\{u_n\}\) and \(\{z_n\}\) are bounded in \(L^2(\Omega)\).

Proof. We take \(G_k(u_n)\) as a test function in the first equation and we have
\[
(2.3) \quad \alpha \int_{\Omega} \frac{|
abla G_k(u_n)|^2}{(b(x) + |z_n|)^2} + \int_{\Omega} |G_k(u_n)|^2 \leq \int_{\Omega} |f||G_k(u_n)|
\]
If we drop the first positive term and we use the Hölder inequality, then we have
\[
(2.4) \quad \left[\int_{\Omega} |G_k(u_n)|^2 \right]^{\frac{1}{2}} \leq \left[\int_{\{k \leq |u_n|\}} |f| \right]^{\frac{1}{2}}.
\]
Similar estimates hold true for \(z_n\). In particular, taking \(k = 0\), we have the boundedness of the sequences \(\{u_n\}\) and \(\{z_n\}\) in \(L^2(\Omega)\). So we have that there exist \(u, z\) such that, up to subsequences,
\[
(2.5) \quad u_n \rightharpoonup u, \quad z_n \rightharpoonup z \quad \text{weakly in} \quad L^2(\Omega).
\]
Then if we drop the second term in (2.3), we have
\[
(2.6) \quad \alpha \int_{\Omega} \frac{|
abla G_k(u_n)|^2}{(b(x) + |z_n|)^2} \leq \int_{\{k \leq |u_n|\}} |f|^2.
\]
A similar estimate for \(z_n\) comes from the second equation.

Lemma 2.3. The sequences \(\{u_n\}\) and \(\{z_n\}\) are bounded in \(W^{1,1}_0(\Omega)\).

Proof. A consequence of (2.6) and of the Hölder inequality is
\[
\int_{\Omega} |\nabla G_k(u_n)| = \int_{\Omega} \frac{|
abla G_k(u_n)|}{(b(x) + |z_n|)} (b(x) + |z_n|) \leq \left[\int_{\{k \leq |u_n|\}} |f|^2 \frac{1}{\alpha} \right] \left(\|b\|_{L^2(\Omega)} + \|f\|_{L^2(\Omega)} \right).
\]
Similar estimates hold true for \(z_n \). In particular, with \(k = 0 \), we have

\[
\begin{align*}
\int_\Omega |\nabla u_n| & \leq \frac{\|f\|_{L^2(\Omega)} \left(\|b\|_{L^2(\Omega)} + \|f\|_{L^2(\Omega)} \right)}{\alpha^2}, \\
\int_\Omega |\nabla z_n| & \leq \frac{\|F\|_{L^2(\Omega)} \left(\|b\|_{L^2(\Omega)} + \|f\|_{L^2(\Omega)} \right)}{\alpha^2}.
\end{align*}
\]

(2.7)

Now we improve the convergence (2.5).

Lemma 2.4. The sequences \(\{u_n\} \) and \(\{z_n\} \) are compact in \(L^2(\Omega) \).

Proof. The estimates (2.7) imply, thanks to the Rellich embedding Theorem, the \(L^1 \) compactenss and then the a.e. convergences

\[
(2.8) \quad u_n(x) \to u(x), \quad z_n(x) \to z(x).
\]

Now we use the Vitali Theorem: since we have the a.e. convergences (2.8), the compactness is achieved if we prove the equiintegrability.

Let \(E \) be a measurable subset of \(\Omega \). Since \(u_n = T_k(u_n) + G_k(u_n) \), we have (we use (2.4))

\[
\int_E |u_n|^2 \leq 2 \int_E |T_k(u_n)|^2 + 2 \int_E |G_k(u_n)|^2 \leq 2 k^2 |E| + \int_\Omega |G_k(u_n)|^2 \leq 2 k^2 |E| + 2 \int_{\{k \leq |u_n|\}} |f|^2,
\]

where \(|E| \) denotes the measure of \(E \). Now we recall that a consequence of Lemma 2.3 is that the sequence \(\{u_n\} \) is bounded in \(L^1(\Omega) \), so that if we fix \(\epsilon > 0 \), there exists \(k_\epsilon \) such that (uniformly with respect to \(n \))

\[
\int_{\{k \leq |u_n|\}} |f|^2 \leq \epsilon, \quad k \geq k_\epsilon.
\]

Then

\[
\int_E |u_n|^2 \leq 2 k^2 |E| + 2 \epsilon
\]

implies

\[
\lim_{|E| \to 0} \int_E |u_n|^2 \leq 2 \epsilon, \text{ uniformly with respect to } n.
\]

Similar inequality holds true for \(z_n \).

Lemma 2.5. The sequences \(\{u_n\} \) and \(\{z_n\} \) are weakly compact in \(W_0^{1,1}(\Omega) \).
Proof. Here we follow [4], [5]. Let again \(E \) be a measurable subset of \(\Omega \), and let \(i \) be in \(\{1, \ldots, N\} \). Then
\[
\int_E |\partial_i u_n| \leq \int_E |\nabla u_n| = \int_E \frac{|\nabla u_n|}{b(x) + |z_n|} (b(x) + |z_n|)
\]
\[
\leq \left[\int_\Omega \frac{|\nabla u_n|^2}{(b(x) + |z_n|)^2} \right]^{\frac{1}{2}} \left[\int_E (b(x) + |z_n|)^2 \right]^{\frac{1}{2}}
\]
\[
\leq \left[\frac{1}{\alpha} \int_\Omega |f|^2 \right]^{\frac{1}{2}} \left\{ \left[\int_\Omega b(x) \right] \frac{1}{2} + \left[\int_E |z_n|^2 \right] \frac{1}{2} \right\},
\]
where we have used the inequality (2.6) in the last passage. Since the sequence \(\{u_n\} \) is compact in \(L^2(\Omega) \), we have that the sequence \(\{\partial_i u_n\} \) is equiintegrable. Thus, by Dunford-Pettis theorem, and up to subsequences, there exists \(Y_i \) in \(L^1(\Omega) \) such that \(\partial_i u_n \) weakly converges to \(Y_i \) in \(L^1(\Omega) \). Since \(\partial_i u_n \) is the distributional derivative of \(u_n \), we have, for every \(n \) in \(\mathbb{N} \),
\[
\int_\Omega \partial_i u_n \phi = -\int_\Omega u_n \partial_i \phi, \quad \forall \phi \in C_0^\infty(\Omega).
\]
We now pass to the limit in the above identities, using that \(\partial_i u_n \) weakly converges to \(Y_i \) in \(L^1(\Omega) \), and that \(u_n \) strongly converges to \(u \) in \(L^2(\Omega) \); we obtain
\[
\int_\Omega Y_i \phi = -\int_\Omega u \partial_i \phi, \quad \forall \phi \in C_0^\infty(\Omega),
\]
which implies that \(Y_i = \partial_i u \), and this result is true for every \(i \). Since \(Y_i \) belongs to \(L^1(\Omega) \) for every \(i \), \(u \) belongs to \(W^{1,1}_0(\Omega) \). A similar result holds true for \(z_n \).

Thus, thanks to Lemma 2.4 and Lemma 2.5, we can improve the convergence (2.5):
\[
(2.9) \quad \begin{cases} u_n \text{ converges weakly in } W^{1,1}_0(\Omega) \text{ and strongly in } L^2(\Omega) \text{ to } u, \\ z_n \text{ converges weakly in } W^{1,1}_0(\Omega) \text{ and strongly in } L^2(\Omega) \text{ to } z. \end{cases}
\]

2.2. Proof of Theorem 1.1 - First of all, we use the equiintegrability proved in Lemma 2.5: fix \(\varepsilon > 0 \), there exists \(\delta(\varepsilon) > 0 \) such that, for every measurable subset \(E \) with \(|E| \leq \delta(\varepsilon) \), we have
\[
\int_E |\nabla u_n| \leq \varepsilon.
\]
Taking into account the absolute continuity of the Lebesgue integral, we have, for some \(\tilde{\delta}(\varepsilon) > 0 \),
\[
\int_E |\nabla u_n| \leq \varepsilon, \quad \int_E |\nabla u| \leq \varepsilon,
\]
for every measurable subset \(E \) with \(|E| \leq \tilde{\delta}(\varepsilon) \).
On the other hand, since $|\Omega|$ is finite and the sequence

$$D_n = \frac{a(x)}{(b(x) + |z_n|)^2}$$

converges almost everywhere (recall (2.9)), the Egorov theorem says that for every $q > 0$, there exists a measurable subset F of Ω such that $|F| < q$, and D_n converges to D uniformly on $\Omega \setminus F$. We choose $q = \delta$ so that we have, for every $\varphi \in \text{Lip}(\Omega)$,

$$\left| \int_{\Omega} [D_n \nabla u_n \nabla \varphi - D \nabla u \nabla \varphi] \right| \leq \left| \int_{\Omega \setminus F} [D_n \nabla u_n \nabla \varphi - D \nabla u \nabla \varphi] \right| + \left| \int_F [D_n \nabla u_n \nabla \varphi - D \nabla u \nabla \varphi] \right| \leq \left| \int_{\Omega \setminus F} [D_n \nabla u_n \nabla \varphi - D \nabla u \nabla \varphi] \right| + \frac{\beta}{\lambda^2} \| \nabla \varphi \|_{L^\infty(\Omega)} \left(\int_F |\nabla u_n| + \int_F |\nabla u| \right) \leq \left| \int_{\Omega \setminus F} [D_n \nabla u_n \nabla \varphi - D \nabla u \nabla \varphi] \right| + 2 \varepsilon \frac{\beta}{\lambda^2} \| \nabla \varphi \|_{L^\infty(\Omega)},$$

which proves that

$$\int_{\Omega} \frac{a(x)}{(b(x) + |z_n|)^2} \to \int_{\Omega} \frac{a(x)}{(b(x) + |z|)^2}. \tag{2.10}$$

Thus, thanks to the above limit, (2.1) and Lemma 2.4, it is possible to pass to the limit in the weak formulation of (2.2), for every $\varphi, \psi \in \text{Lip}(\Omega)$,

$$\begin{cases} \int_{\Omega} \frac{a(x)}{(b(x) + |z_n|)^2} + \int_{\Omega} u_n \varphi = \int_{\Omega} f_n(x) \varphi, \\ \int_{\Omega} \frac{A(x)}{(B(x) + |u_n|)^2} \nabla z_n \nabla \psi = \int_{\Omega} z_n \psi = \int_{\Omega} F_n(x); \end{cases} \tag{2.11}$$

and we prove that u and z are solutions of our system, in the following distributional sense

$$\begin{cases} \int \frac{a(x)}{(b(x) + |z|)^2} + \int_u \varphi = \int f(x) \varphi, \quad \forall \varphi \in \text{Lip}(\Omega); \\ \int \frac{A(x)}{(B(x) + |u|)^2} \nabla z \nabla \psi = \int z \psi = \int F(x) \psi, \quad \forall \psi \in \text{Lip}(\Omega). \end{cases} \tag{2.12}$$

Now we show that, in the above definition of solution, it is possible to use less regular test functions: it possible to use functions only belonging to $W^{1,2}_0(\Omega)$.
Proposition 2.6. The above functions u and z are solutions of our system, in the following sense:

\begin{equation}
\begin{cases}
\int_{\Omega} \frac{a(x)\nabla u \nabla w}{(b(x) + |z|)^2} + \int_{\Omega} u v = \int_{\Omega} f(x) v, \quad \forall v \in W^{1,2}_0(\Omega); \\
\int_{\Omega} \frac{A(x)\nabla z \nabla w}{(B(x) + |u|)^2} + \int_{\Omega} z w = \int_{\Omega} F(x) w, \quad \forall w \in W^{1,2}_0(\Omega).
\end{cases}
\end{equation}

Proof. In order to avoid technicalities, here we also assume that

\begin{equation}
a(x) \quad \text{and} \quad A(x) \quad \text{are scalar functions.}
\end{equation}

We start with the following inequalities (we use (2.6) with $k = 0$)

\[\int_{\Omega} \left| \frac{a(x)\nabla u_n}{(b(x) + |z_n|)^2} \right|^2 \leq \frac{\alpha^2}{\lambda^2} \int_{\Omega} \frac{|\nabla u_n|^2}{(b(x) + |z_n|)^2} \leq \frac{\alpha^2}{\lambda^2} \int_{\Omega} |f|^2. \]

Thus, up to subsequences, we can say that, for some $\Psi \in (L^2(\Omega))^N$,

\begin{equation}
\int_{\Omega} \frac{a(x)\nabla u_n}{(b(x) + |z_n|)^2} \Phi \to \int_{\Omega} \Psi \Phi,
\end{equation}

for every $\Phi \in (L^2(\Omega))^N$. Now we compare the limit (2.10) with the limit (2.15), taking $\Phi = \nabla \varphi$, and we deduce that

\[\int_{\Omega} \left[\frac{a(x)\nabla u}{(b(x) + |z|)^2} - \Psi \right] \Phi = 0. \]

Thus we proved that

\[\frac{a(x)\nabla u_n}{(b(x) + |z_n|)^2} \quad \text{weakly converges in} \quad (L^2(\Omega))^N \text{ to} \quad \frac{a(x)\nabla u}{(b(x) + |z|)^2}, \]

which allows us to pass to the limit in (2.11) only assuming $\varphi, \psi \in W^{1,2}_0(\Omega)$.

Acknowledgments

This paper contains the unpublished part of the results presented by the first author in a talk at the conference “Calculus of Variations and Differential Equations - Conférence en l'honneur du 60ème anniversaire de Bernard Dacorogna” (Lausanne, 10-12 juin 2013).

References

8 L. BOCCARDO, G. CROCE, C. TANTERI

La sapienza Università di Roma.
E-mail address: boccardo@mat.uniroma1.it

Université du Havre
E-mail address: gisella.croce@univ-lehavre.fr

École polytechnique fédérale de Lausanne
E-mail address: chiara.tanteri@epfl.ch