Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method

Abstract : We prove a bound for quintilinear sums of Kloosterman sums, with congruence conditions on the "smooth" summation variables. This generalizes classical work of Deshouillers and Iwaniec, and is key to obtaining power-saving error terms in applications, notably the dispersion method. As a consequence, assuming the Riemann hypothesis for Dirichlet $L$-functions, we prove a power-saving error term in the Titchmarsh divisor problem of estimating $\sum_{p\leq x}\tau(p-1)$. Unconditionally, we isolate the possible contribution of Siegel zeroes, showing it is always negative. Extending work of Fouvry and Tenenbaum, we obtain power-saving in the asymptotic formula for $\sum_{n\leq x}\tau_k(n)\tau(n+1)$, reproving a result announced by Bykovski\u{i} and Vinogradov by a different method. The gain in the exponent is shown to be independent of $k$ if a generalized Lindel\"of hypothesis is assumed.
Type de document :
Article dans une revue
Proceedings of the London Mathematical Society, London Mathematical Society, 2017, 〈10.1112/plms.12022〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01302604
Contributeur : Sary Drappeau <>
Soumis le : jeudi 14 avril 2016 - 16:10:34
Dernière modification le : dimanche 26 février 2017 - 08:12:03
Document(s) archivé(s) le : vendredi 15 juillet 2016 - 13:40:13

Fichier

1504.05549v3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sary Drappeau. Sums of Kloosterman sums in arithmetic progressions, and the error term in the dispersion method. Proceedings of the London Mathematical Society, London Mathematical Society, 2017, 〈10.1112/plms.12022〉. 〈hal-01302604〉

Partager

Métriques

Consultations de la notice

118

Téléchargements de fichiers

82