Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics

Abstract : We study the optimal control of general stochastic McKean-Vlasov equation. Such problem is motivated originally from the asymptotic formulation of cooperative equilibrium for a large population of particles (players) in mean-field interaction under common noise. Our first main result is to state a dynamic programming principle for the value function in the Wasserstein space of probability measures, which is proved from a flow property of the conditional law of the controlled state process. Next, by relying on the notion of differentiability with respect to probability measures due to P.L. Lions [32], and Itô's formula along a flow of conditional measures, we derive the dynamic programming Hamilton-Jacobi-Bellman equation, and prove the viscosity property together with a uniqueness result for the value function. Finally, we solve explicitly the linear-quadratic stochastic McKean-Vlasov control problem and give an application to an interbank systemic risk model with common noise.
Type de document :
Pré-publication, Document de travail
30 pages. 2016
Liste complète des métadonnées

Contributeur : Huyen Pham <>
Soumis le : mercredi 13 avril 2016 - 21:53:51
Dernière modification le : mercredi 25 avril 2018 - 10:45:26
Document(s) archivé(s) le : jeudi 14 juillet 2016 - 17:31:15


Fichiers produits par l'(les) auteur(s)


  • HAL Id : hal-01302289, version 1
  • ARXIV : 1604.04057


Huyên Pham, Xiaoli Wei. Dynamic programming for optimal control of stochastic McKean-Vlasov dynamics . 30 pages. 2016. 〈hal-01302289v1〉



Consultations de la notice


Téléchargements de fichiers