Hierarchical Segmentation Using Tree-Based Shape Spaces

Abstract : Current trends in image segmentation are to compute a hierarchy of image segmentations from fine to coarse. A classical approach to obtain a single meaningful image partition from a given hierarchy is to cut it in an optimal way, following the seminal approach of the scale-set theory. While interesting in many cases, the resulting segmentation, being a non-horizontal cut, is limited by the structure of the hierarchy. In this paper, we propose a novel approach that acts by transforming an input hierarchy into a new saliency map. It relies on the notion of shape space: a graph representation of a set of regions extracted from the image. Each region is characterized with an attribute describing it. We weigh the boundaries of a subset of meaningful regions (local minima) in the shape space by extinction values based on the attribute. This extinction-based saliency map represents a new hierarchy of segmentations highlighting regions having some specific characteristics. Each threshold of this map represents a segmentation which is generally different from any cut of the original hierarchy. This new approach thus enlarges the set of possible partition results that can be extracted from a given hierarchy. Qualitative and quantitative illustrations demonstrate the usefulness of the proposed method.
Type de document :
Article dans une revue
IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2017, 39 (3), pp.457-469. <10.1109/TPAMI.2016.2554550>
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01301966
Contributeur : Laurent Najman <>
Soumis le : mercredi 13 avril 2016 - 13:21:07
Dernière modification le : mardi 28 février 2017 - 01:02:28
Document(s) archivé(s) le : jeudi 14 juillet 2016 - 17:35:44

Fichier

xu.saliencymap.final.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Yongchao Xu, Edwin Carlinet, Thierry Géraud, Laurent Najman. Hierarchical Segmentation Using Tree-Based Shape Spaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, Institute of Electrical and Electronics Engineers, 2017, 39 (3), pp.457-469. <10.1109/TPAMI.2016.2554550>. <hal-01301966>

Partager

Métriques

Consultations de
la notice

218

Téléchargements du document

1119