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Abstract 

 

This paper raises questions about the consistency of the Z-score, which is the most applied 

accounting-based measure of bank risk. In spite of its advantage, namely the concept of risk 

on which it relies, the traditional formula is precisely inconsistent with its own concept. The 

Z-score is deduced from the probability that bank’s losses exceed its capital, but under the 

very unrealistic assumption of normally distributed returns on assets. Consequently, we show 

that the traditional Z-score fails to consider correctly the distribution of banks’ returns. To 

make the Z-score consistent and preserve its original concept of risk, we propose more 

flexible distribution functions. Between skew normal and stable distributions, we prove that 

the latter fits the best the distribution of banks’ returns and therefore provides more reliable 

results for the Z-score. An application on the experience of the Central and Eastern European 

banks confirms this theoretical prove. 

 

JEL classification: G21 

 

Keywords: Z-score; Bank risk; Central and Eastern European economies. 
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1. Introduction 

A major challenge in the banking empirical literature is to conceive good measures of 

bank risk, especially based on accounting data. This issue is of a particular importance and 

interest: many banks are not listed, especially in emerging and developing countries, and there 

is no a consistent measure to gauge their risk. Some authors apply ratios of loan loss 

provisions and of impaired loans to total loans as measures of bank risk, others consider them 

as asset quality indicators. Indeed, it is not clear what the concept of risk behind these ratios is 

and to what extent the worsening of the bank’s asset quality will engender its default. 

Standard deviations of Returns on Assets (𝑅𝑅𝑅𝑅𝑅𝑅) and of Returns on Equities (𝑅𝑅𝑅𝑅𝑅𝑅) are also 

considered. However, with these measures, a bank is considered risky if it engages in 

activities that generate returns that are either higher or lower than the average return, which 

seems to be contradictory.  

The Z-score is the only account-based risk measure that is founded on the risk concept 

and is also the most applied in the banking literature. Computed as the ratio of a bank’s 

leverage (capital on assets) and the mean of its 𝑅𝑅𝑅𝑅𝑅𝑅 on the volatility of its 𝑅𝑅𝑅𝑅𝑅𝑅, this risk 

measure has been conceived from the concept of a bank’s probability of default (Boyd and 

Graham, 1986; Hannan and Hanweck, 1988; Boyd and Runkle, 1993; Boyd et al., 1993). It is 

often applied either to measure the banking system stability (Lee and Hsieh, 2014) or the 

individual probability of default of banks (Laeven and Levine, 2009; Fiordelisi and Salvatore 

Mare, 2014; Williams, 2014). 

However, this latter feature is a misinterpretation of the Z-score, because it can reflect the 

inverse probability of insolvency of a bank only if the returns on assets, as a random variable, 

are normally distributed. Its authors have warned against this important constraint (for 

instance, Boyd and Graham, 1986 p. 5; Boyd and Runkle, 1993 p. 53) and have proposed to 

apply the convergence properties of the 𝑅𝑅𝑅𝑅𝑅𝑅 random variable, through the Bienaymé–
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Tchebycheff inequality. The great strength of the Z-score is its foundation on the risk concept, 

which completely vanishes if normal distribution assumption is not respected. As we will 

show, the 𝑅𝑅𝑅𝑅𝑅𝑅 distribution is, in reality, rather skewed and has an excess of kurtosis, and 

therefore its original definition and formula do not more express the inverse probability of 

default. Moreover, with the Bienaymé–Tchebycheff inequality the value of the probability of 

default approaches to its maximum value only with the increase in the sample size. But, with 

a sample of few years1, the probability of default can be, in reality, far from its upper level, 

which, in consequence, makes the Z-score inconsistent to measure the bank risk. 

In this paper, we discuss the shortcomings of this most applied bank risk measure in the 

banking empirical literature and show why different proposals, as, for example, the 

Bienaymé–Tchebycheff inequality or the taking of the natural logarithm of the Z-score 

suggested by Laeven and Levine (2009), do not eliminate the problems they might face. The 

most important constraint with which the computation of the Z-score is confronted is the 

statistical distribution of 𝑅𝑅𝑅𝑅𝑅𝑅. Thus, in order to examine how its misspecification, with an 

implicit hypothesis of a normal distribution, leads to inconsistent estimates, we apply three 

different distributions: stable distribution, skew normal distribution and normal distribution. 

The first distribution is the most flexible and allows the best fit of banks’ 𝑅𝑅𝑅𝑅𝑅𝑅 data. It takes 

into consideration both the skewness of data, a major shortcoming mentioned many times in 

the banking literature, and the kurtosis and sharpness of data. The skew normal distribution is 

the modified version of normal distribution, whose cumulative function is constructed with 

the Owen (1956) function. Its only advantage is to account for the asymmetry of 𝑅𝑅𝑅𝑅𝑅𝑅 

distribution, which is not the case of the normal distribution. The latter is considered precisely 

to show its inconsistency to fit correctly 𝑅𝑅𝑅𝑅𝑅𝑅 data.  

First, we check how each of our distributions fits simulated data with different skewness 

                                                 
1 Bankscope Fitch IBCA, which is the most used bank database, provides annual data only for the last sixteen 
years. 
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and sharpness parameters. Unsurprisingly, the stable distribution fits the best these data and 

the normal distribution the worst. Consequently, our (in)consistency tests based on Monte 

Carlo simulations prove that, for skewed and/or sharp 𝑅𝑅𝑅𝑅𝑅𝑅 distributions, the application of 

the normal distribution and traditional approach, but also the logarithmic transformation do 

not reduce the skewness and also fails to provide appropriate results. 

Second, we make distribution fit tests for 𝑅𝑅𝑅𝑅𝑅𝑅 of Central and Eastern European banks 

over the period 1995-2013. Our choice of countries and period is supported by many troubles 

these banks faced: entry of foreign banks on these markets with new products and services, 

and better experience and knowledge, bank crisis events of nineties and the actual crisis, and 

tightening of banking regulatory environment. All of them shaped 𝑅𝑅𝑅𝑅𝑅𝑅 data of these banks 

very differently with respect to a normal distribution. Moreover, for such banking institutions, 

which for the most are not listed, a consistent accounting-based measure of risk is the only 

solution for researchers to assess their (in)solvency.  

Finally, this paper makes a methodological contribution to the literature on bank risk. No 

work, to the best of our knowledge, has taken into account the skeweness and the kurtosis of 

𝑅𝑅𝑅𝑅𝑅𝑅 data. Some endeavours were undertaken with the natural logarithm of the Z-score, 

instead of the Z-score itself (Laeven and Levine, 2009), but they are invalidated by our tests 

and findings. Beyond these remarks about the Z-score, our work hopefully contributes to 

reflections on accounting-based measures of bank risk. 

The next section reviews the related literature and mentions the principal shortcomings of 

applied Z-score measures. Section 3 makes a technical review of shortcomings of the 

traditional approach to measure the Z-score. Section 4 explains the stable and skew normal 

distributions and presents consistency tests of these approaches with traditional estimates of 

the Z-score. Section 5 evaluates this risk measure for a panel of Central and Eastern European 

banks, and Section 6 summarises our main findings and concludes. 
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2. Z-score: how it is applied in the banking literature? 

In the banking literature, researchers apply very different versions of the Z-score. Some 

of them use the traditional formula, i.e. Zscore = mean(𝑅𝑅𝑅𝑅𝑅𝑅)+𝐶𝐶𝐶𝐶𝐶𝐶
std(𝑅𝑅𝑅𝑅𝑅𝑅)

, where 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐶𝐶𝐶𝐶𝐶𝐶 are 

returns on assets and capital on assets ratios, respectively, and mean(𝑅𝑅𝑅𝑅𝑅𝑅) and sigma(𝑅𝑅𝑅𝑅𝑅𝑅) 

are empirical estimates of mean and of standard deviation of 𝑅𝑅𝑅𝑅𝑅𝑅, respectively. Others apply 

kinds of modifications (see table 1), which aim either to overcome some shortcomings 

inherent to this accounting-based risk measure or to make this measure more changing.  

Table 1 proposes a summary of empirical studies in the banking literature that apply the 

Z-score as a bank risk measure. It reviews only revealing examples about the main approaches 

in estimating the Z-score. As explained below, the traditional approach is the closest to the 

concept of this risk measure. It considers 𝑅𝑅𝑅𝑅𝑅𝑅 as a random variable, distribution of which is 

taken in the determination of the Z-score using the formula of the probability of default. 

According to its founders, Hannan and Hanweck (1988), Boyd and Runkle, (1993), and Boyd 

et al. (1993), the default event occurs when current losses exceed capital. Normalising by a 

bank’s assets, the probability of default is thus Pr[𝑅𝑅𝑅𝑅𝑅𝑅 ≤ −𝐶𝐶𝐶𝐶𝐶𝐶]. Taking empirical mean 

and empirical standard deviation of 𝑅𝑅𝑅𝑅𝑅𝑅 random variable on entire period sample, the 

traditional method allows the determination of the Z-score but only with the assumption of a 

normally distributed 𝑅𝑅𝑅𝑅𝑅𝑅 (Demirgüç-Kunt and Huizinga, 2010).  

However, in practice, in most of cases 𝑅𝑅𝑅𝑅𝑅𝑅 distributions are skewed and have an excess 

of kurtosis. There are much of 𝑅𝑅𝑅𝑅𝑅𝑅 that are lower than their average level and the distribution 

is left-skewed for countries whose banking industries encounter some trouble and crisis 

events. Conversely, if the banking industries are coming out of such events, there are much of 

𝑅𝑅𝑅𝑅𝑅𝑅 that are higher than their average level and the distribution is right-skewed. Moreover, 

the extreme values of 𝑅𝑅𝑅𝑅𝑅𝑅 are more frequent than those described by a normal distribution. In 

order to mitigate the effects of these shortcomings, Laeven and Levine (2009) and Demirgüç-
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Kunt et al. (2008), for instance, propose to use natural logarithm of the Z-score and of one 

plus Z-score, respectively. The latter is only to be able to consider the negative values of this 

bank risk measure. As explained and shown below, our tests however refute the improvement 

supposed to be provided by the logarithmic transformation.  

All other versions of the Z-score depart even more from the original concept. Estimating 

the empirical mean and empirical standard deviation of 𝑅𝑅𝑅𝑅𝑅𝑅 only on a part of the time sample 

(2, 3, 4 or 5 years) and rolling these calculus on this time window on the rest of the sample 

make the Z-score more sensitive and therefore more fluctuating (Anginer et al., 2014; 

Williams, 2014; among others). Authors consider probably that in this way they can better 

capture instantaneous changes in a bank’s situation. Nevertheless, assimilating the expected 

value and the theoretical standard deviation of the 𝑅𝑅𝑅𝑅𝑅𝑅 distribution to their empirical 

estimates only on a part of the time window, this approach avoids even more the concept of 

risk. Other authors consider even a more sensitive Z-score, by estimating yearly risk measure 

with quarterly average and standard deviation of 𝑅𝑅𝑅𝑅𝑅𝑅 and quarterly average of 𝐶𝐶𝐶𝐶𝐶𝐶 (Anolli 

et al., 2014; De Haan and Poghosyan, 2012). It is the same as to take all these values in level 

with yearly frequency. Overall, this makes no more sense with the concept of Z-score, where 

the distribution of the 𝑅𝑅𝑅𝑅𝑅𝑅 random variable must be taken into account. The sense of the Z-

score completely disappears when, instead of the 𝑅𝑅𝑅𝑅𝑅𝑅, some authors use 𝑅𝑅𝑅𝑅𝑅𝑅, i.e. returns on 

equity, as random variable (De Haan and Poghosyan, 2012; Lee and Hsieh, 2014). 

Many papers in banking literature treat the risk of banks using a Z-score with 𝑅𝑅𝑅𝑅𝑅𝑅 in 

level instead of average in the numerator, and standard deviation on rolling window (Lee and 

Hsieh, 2014; Chortareas et al., 2012) or on entire time sample (Niu, 2012) in the denominator. 

As explained above, this approach does not more consider the distribution of the 𝑅𝑅𝑅𝑅𝑅𝑅 random 

variable, which is at the heart of the concept of this bank risk measure. The probability of 

default, Pr[𝑅𝑅𝑅𝑅𝑅𝑅 ≤ −𝐶𝐶𝐶𝐶𝐶𝐶], has no more sense since it does not more participate to the 
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deduction of the Z-score formula, especially when some authors apply a standard deviation 

across banks (Fiordelisi and Mare, 2014). Such measures cannot be considered as proxy for 

bank risk because they do not express the bank (in)solvency. 

To summarise, one may mention the following main shortcomings of different 

approaches to measure the Z-score. First, the closest method to this concept of bank risk, 

which is the traditional approach, is strongly related to the normal distribution hypothesis of 

the 𝑅𝑅𝑅𝑅𝑅𝑅 random variable. However, in practice, the latter is often skewed and has an excess 

of kurtosis, and some attempts to mitigate this shortcoming fail to provide appropriate results. 

Second, all versions of the Z-score that make it more sensitive consist in the determination of 

the empirical mean and empirical standard deviation of the 𝑅𝑅𝑅𝑅𝑅𝑅 only on a certain part of the 

time sample, which makes these estimations different from the expected value and the 

theoretical standard deviation of the 𝑅𝑅𝑅𝑅𝑅𝑅. Third, the use of this random variable in level 

instead of its average value takes away any feature of randomness and therefore any feature of 

the 𝑅𝑅𝑅𝑅𝑅𝑅 distribution and of the probability of default from the concept of bank risk. Finally, 

values of the Z-score higher than 4 bring to naught any attempt to explain them through the 

probability of default and under the assumption of normal distribution, as is the case for all 

cited papers. For example, the Z-score equals to 14 corresponds to the probability of default 

equals to 8.8�10−45, and the value of 22.6 is in line with the probability of default of 

2.6�10−113. How to interpret these results? More precisely, how to explain such probabilities 

of default, whose values are very close to zero? Does the increase of the probability of default 

by 1068 times, till 8.8�10−45, signify that the bank risk rises as much?  

 

3. Inconsistency of the traditional Z-score 

Among all these different versions of the Z-score, we will explore the consistency of the 

traditional approach since it is the closest to the concept of bank risk. This approach, i.e. 
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𝑍𝑍 = 𝐶𝐶𝐶𝐶𝐶𝐶+𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅)
𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅) , defines the default event when current losses exceed capital and the 

probability of default is, in consequence, Pr[−𝛱𝛱 > 𝐶𝐶], where 𝛱𝛱 is the bank’s profit and 𝐶𝐶 its 

capital. Normalising by the bank’s size, expressed by its assets’ level 𝐴𝐴, the probability of default 

becomes Pr[𝛱𝛱 ≤ −𝐶𝐶] = Pr[𝑅𝑅𝑅𝑅𝑅𝑅 ≤ −𝐶𝐶𝐴𝐴𝐴𝐴], where 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛱𝛱 𝐴𝐴⁄  is the returns on assets ratio 

and 𝐶𝐶𝐶𝐶𝐶𝐶 = 𝐶𝐶 𝐴𝐴⁄  is the capital on assets ratio. The bank’s performance, expressed by its profit 

or returns on assets, is a random event and is reflected by its distribution. Within the 

traditional approach, according to Boyd and Runkle, (1993), Hannan and Hanweck (1988), 

and Boyd et al. (1993), one assumes that 𝑅𝑅𝑅𝑅𝑅𝑅 is normally distributed and the probability of 

default is therefore given by 

Pr[𝑅𝑅𝑅𝑅𝑅𝑅 ≤ −𝐶𝐶𝐶𝐶𝐶𝐶] = Pr �𝑅𝑅𝑅𝑅𝑅𝑅−𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅)
𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅)

≤ − 𝐶𝐶𝐶𝐶𝐶𝐶+𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅)
𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅) � = 𝑁𝑁(−Z) = 1 − 𝑁𝑁(Z),  

where 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅) is the expected value of 𝑅𝑅𝑅𝑅𝑅𝑅, 𝜎𝜎(𝑅𝑅𝑅𝑅𝑅𝑅) its standard deviation and 𝑁𝑁(. ) is the 

normal cumulative distribution function.  

Graphical presentation of the Z-score with the normal distribution assumption of the 𝑅𝑅𝑅𝑅𝑅𝑅 

clearly shows that this risk measure cannot obtain values higher than 4, otherwise, they cannot 

be explained because the probability of default is very close to zero (see Figure 1). However, 

with more left-skewed probability density function higher values of the Z-score have more 

sense, because the probability of default obtains values different from zero. 

Thus, the assumption of normally distributed 𝑅𝑅𝑅𝑅𝑅𝑅 allows the derivation of a simple and 

easily calculable, but also inconsistent, formula for the Z-score. Indeed, the distribution of the 

𝑅𝑅𝑅𝑅𝑅𝑅 is, in reality, asymmetric (skewed) and has an excess of kurtosis. According to Boyd and 

Runkle, (1993), Hannan and Hanweck (1988), and Boyd et al. (1993), even if the 𝑅𝑅𝑅𝑅𝐴𝐴 is not 

normally distributed, using the Bienaymé–Tchebycheff inequality, the Z-score remains still a 

good measure of bank risk and becomes the inverse measure of the upper bound of the 

probability of default: 
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Pr[𝑅𝑅𝑅𝑅𝑅𝑅 ≤ −𝐶𝐶𝐶𝐶𝐶𝐶] = Pr�𝑅𝑅𝑅𝑅𝑅𝑅 − 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅) ≤ −�𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅)�� ≤
𝜎𝜎2(𝑅𝑅𝑅𝑅𝑅𝑅)

2�𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅)�2
=

1
2𝑍𝑍2

 . 

But this is still valid only for a symmetric distribution of the 𝑅𝑅𝑅𝑅𝑅𝑅. Otherwise, one might 

apply Cantelli’s inequality that lead to the following expression for the probability of default: 

Pr[𝑅𝑅𝑅𝑅𝑅𝑅 ≤ −𝐶𝐶𝐶𝐶𝐶𝐶]

⎩
⎨

⎧≤
1

1 + 𝑍𝑍2
, if 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅) > 0

≥
𝑍𝑍2

1 + 𝑍𝑍2
, if 𝐶𝐶𝐶𝐶𝐶𝐶 + 𝐸𝐸(𝑅𝑅𝑅𝑅𝑅𝑅) < 0,

 

which changes the relationship between the Z-score and the probability of default: the 

increase in the Z-score reduces the upper limit and raises the lower limit, and vice versa. 

Anyway, having an interval for the probability of default provides no information about its 

true value, or at least its mean value. For this reason, the Z-score, without normal distribution 

assumption, cannot ensure the comparability of bank risk data. Moreover, the convergence of 

the true value of the probability of default to its upper limit will depend on the properties of 

the statistical law of the 𝑅𝑅𝑅𝑅𝑅𝑅 random variable.  

The only way to compute consistently the Z-score is therefore by using its original 

concept of probability of default, where the probability of default is the cumulative 

distribution function at the minus Z-score. Thus, its correctness depends on the goodness of fit 

of the applied distribution to the left tail of the 𝑅𝑅𝑅𝑅𝑅𝑅 distribution. Generating some 𝑅𝑅𝑅𝑅𝑅𝑅 

samples with location parameter 2.5 and scale parameter 1.5, we show in Figure 2 that normal 

distribution fits, generally, not very well the smooth kernel distribution of generated samples 

(we explain later how it is constructed). The fit is worst for high sharpened and skewed 𝑅𝑅𝑅𝑅𝑅𝑅 

distributions (|𝑆𝑆| > 0.5, namely the cases 1-4 and 6). A better fit provides the skew normal 

distribution (we explain later how it is constructed). As an asymmetric version of the normal 

distribution, it takes into account the skewness of distributions, which is shown by the cases 1 

and 3 of Figure 2. However, as stated later, it is not the best way to address the problem of 

excess of kurtosis (K>3), and cannot therefore provide an excellent goodness of fit. 
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Among those presented in Figure 2, the stable distribution is the best. As for previous 

one, the details are presented in next section. Its four parameters – location parameter, scale 

parameter, skewness parameter (𝛼𝛼) and stability parameter (𝛽𝛽) – make it very flexible and 

allow a perfect shape, which fits very well the contour of the smooth kernel distribution of 

randomly generated 𝑅𝑅𝑅𝑅𝑅𝑅. The latter parameter describes the sharpness of the distribution: 

lower it is, sharper is the distribution. It takes positive values with highest equal to 2 for a 

normal distribution. In the next section, we examine thoroughly the properties of all these 

distributions and make consistency tests for Z-score measures estimated using the concept of 

probability of default. However, we can already assign a certain performance of the stable 

distribution in comparison with the other two. 

 

4. The consideration of the skewness and of the kurtosis for the 𝑹𝑹𝑹𝑹𝑹𝑹 distribution and 

consistency tests with the traditional Z-score 

As main shortcoming of the traditional Z-score is the assumption of the normal 

distribution for the 𝑅𝑅𝑅𝑅𝑅𝑅 variable, we propose in this section other methods to compute this 

accounting-based risk measure. Then, we submit them to consistency tests, using Monte Carlo 

simulations. 

 

4.1 Some proposals to consider the skewness and the kurtosis 

The most simple and direct way to mitigate the above-mentioned shortcomings of the 

normal distribution, at least some of them, is to adjust this distribution. The first proposal is 

therefore to use the skew normal distribution, which adds the skewness to a normal 

distribution shape by applying the Owen (1956) function 

𝑇𝑇(𝑥𝑥; µ, σ, α) =
1

2π
�

exp �−1
2 �
𝑥𝑥 − µ
σ �

2
(1 + 𝑡𝑡2)�

1 + 𝑡𝑡2
d𝑡𝑡

α

0
 . 
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Consequently, the cumulative distribution function is 

𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥; µ, σ, α) = 𝑁𝑁(𝑥𝑥; µ, σ) − 2𝑇𝑇(𝑥𝑥; µ, σ, α),                                                                       (1) 

where 𝑁𝑁(𝑥𝑥; µ, σ) is normal cumulative distribution function for a distribution with scale 

parameter σ and location parameter µ. The skewness parameter 𝛼𝛼 allows the consideration of 

the asymmetry. For α = 0, 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥; µ, σ, 0) = 𝑁𝑁(𝑥𝑥; µ, σ) and the distribution is symmetric. 

Otherwise, if α < 0, then 𝑇𝑇(𝑥𝑥; µ, σ, α) < 0 and 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥; µ, σ, α) > 𝑁𝑁(𝑥𝑥; µ, σ), and the 

distribution is left-skewed. For α > 0, we obtain 𝑇𝑇(𝑥𝑥; µ, σ, α) > 0, 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(𝑥𝑥; µ, σ, α) <

𝑁𝑁(𝑥𝑥; µ, σ) and a right-skewed distribution. 

The skewness of this distribution, which is √2(4 − 𝜋𝜋)𝛼𝛼3 (𝜋𝜋 + (𝜋𝜋 − 2)𝛼𝛼2)3 2⁄⁄ , takes 

values ranging from -0.995 (for 𝛼𝛼 → −∞) to 0.995 (for 𝛼𝛼 → +∞). Its kurtosis, which is 

computed by the following formula 3 + 8(𝜋𝜋 − 3)𝛼𝛼4 (𝜋𝜋 + (𝜋𝜋 − 2)𝛼𝛼2)2⁄ , is equal to 3 for 

𝛼𝛼 = 0 and takes the maximum value of 3.87 for 𝛼𝛼 → ±∞, and the skew normal distribution 

has therefore an excess of kurtosis. Even though the 𝑅𝑅𝑅𝑅𝑅𝑅 distribution in banking is rather 

characterised by an excess of kurtosis, the skew normal distribution function cannot take into 

account few of cases where the kurtosis could be lower than 3 and many of cases where the 

kurtosis exceeds 3.87 (see Figure 2). 

The second proposal is the stable distribution, which is very flexible and allows the 

consideration of most of distribution cases. The difficulty is that it does not have a general 

analytical expression for probability distribution and cumulative distribution functions. A 

random variable is called stable if its characteristic function can be written as 

𝜑𝜑(𝑡𝑡; β, α, µ, σ) = exp�𝑖𝑖𝑖𝑖µ − |σ𝑡𝑡|β(1 − 𝑖𝑖αsgn(𝑡𝑡)Φ)�, where 

Φ = �
tan �

𝜋𝜋β
2
� ,   𝑖𝑖𝑖𝑖 β ≠ 1

−
2
𝜋𝜋

log|𝑡𝑡|,    𝑖𝑖𝑖𝑖 β = 1,
                                                                                                               (2) 

and 0 < β ≤ 2 represents the stability index, −1 ≤ α ≤ 1 the skewness parameter, µ ∈ ℝ the 
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location parameter and 𝜎𝜎 > 0 is the scale parameter. The huge advantage of the stable 

distribution is its quasi-general form that comprises some well-known distributions. For 

β = 2, it is transformed to a normal distribution with variance 2σ2 and expectation µ, and 

therefore the skewness parameter α has no effect. For β = 1 and α = 0, one obtains Cauchy 

distribution and for β = 1/2 and α = 1 Lévy distribution, both distributions with scale 

parameter σ and location parameter µ. 

The main advantage of the stable distribution is its flexibility and therefore a better 

coverage of the 𝑅𝑅𝑅𝑅𝑅𝑅 data. We further test which of these three distributions – stable, skew 

normal and normal distributions – fits the best randomly generated data with different shape. 

 

4.2 Consistency tests of the traditional Z-score 

In order to make distribution fit tests and afterwards the consistency tests of the 

traditional Z-score, we simulate twenty values of 𝑅𝑅𝑅𝑅𝑅𝑅 for each of fifty banks and nine cases, 

which are the same as in Figure 2. The twenty values correspond to maximum number of 

years considered in the banking literature and nine cases are three cases with different 

sharpness of the probability density function each of them with three different skewnesses 

(left skewed, symmetric and right skewed distributions). More precisely, the nine randomly 

generated series are with the same location, µ = 2.5, and scale, σ = 1.5, parameters, and with 

three different sharpness or stability index: β = 0.25, β = 1 and β = 1.75, each of them with 

three different skewness parameters, α = −0.75, α = 0 and α = 0.75. 

First, we determine the distribution parameters that fit the best the randomly generated 

𝑅𝑅𝑅𝑅𝑅𝑅 values, and, afterwards, we make distribution fit tests. While the parameters of skew 

normal and normal distributions can be estimated using analytical methods, as Maximum 

Likelihood estimator or estimator of Moments, those of the stable distribution lack such 

methods for their determination because this distribution has no analytical probability density 
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function, except for some parameter values. This is why we apply the same empirical 

computational method for all three distributions, which consists to find the parameters that 

draw the probability distribution function the nearest to the smooth kernel distribution. The 

latter has a probability density function for a value x that is given by a linearly interpolated 

version of 1
𝑛𝑛ℎ
∑ 𝑘𝑘 �𝑥𝑥−𝑥𝑥𝑖𝑖

ℎ
�𝑛𝑛

𝑖𝑖=1  for a smoothing kernel 𝑘𝑘(𝑥𝑥) and bandwidth parameter ℎ, where n 

is the number of observations of the sample composed by 𝑥𝑥𝑖𝑖 values. We consider a Gaussian 

kernel specification, whose the bandwidth selection method is Silverman’s (1998) rule. The 

optimal choice provided by this rule is ℎ = (4𝜎𝜎�5 3𝑛𝑛⁄ )
1
5, where 𝜎𝜎� is the standard deviation of 

the sample.  

Second, we make three distribution fit tests, i.e. Anderson-Darling test, Cramer-von-

Mises test, and Kolmogorov-Smirnov test. We test whether the randomly generated samples 

with twenty values of 𝑅𝑅𝑅𝑅𝑅𝑅 are drawn from these three probability distribution functions. The 

Anderson-Darling and Cramer-von-Mises statistics belong to the class of quadratic empirical 

distribution function statistics. If the hypothesised distribution is 𝐹𝐹 and empirical cumulative 

distribution function is 𝐹𝐹𝑛𝑛, then this type of statistics measures the distance between these two 

cumulative distribution functions by 𝑛𝑛 ∫ �𝐹𝐹𝑛𝑛(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)�
2
𝑤𝑤(𝑥𝑥)𝑑𝑑𝑑𝑑(𝑥𝑥)+∞

−∞ , where 𝑤𝑤(𝑥𝑥) is a 

weighting function. When the weighting function is 𝑤𝑤(𝑥𝑥) = 1, one obtains the Cramer-von-

Mises statistic, and when it is 𝑤𝑤(𝑥𝑥) = �𝐹𝐹(𝑥𝑥)�1 − 𝐹𝐹(𝑥𝑥)��
−1

, it is the Anderson-Darling 

statistic. The Kolmogorov-Smirnov statistic is equivalent to that of Cramer-von-Mises with 

the difference that it uses the absolute value, i.e. |𝐹𝐹𝑛𝑛(𝑥𝑥) − 𝐹𝐹(𝑥𝑥)|, instead of squared value. 

Thus, compared to the Cramer-von-Mises and Kolmogorov-Smirnov distances, the Anderson-

Darling distance places more weight on observations in the tails of the distribution. Regarding 

the original concept of the Z-score whose minus value allows the determination of the 

probability of default, we will therefore focus on this last test. Our choice is also motivated by 
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a worse distribution fit on tails by the normal and skew normal probability density functions 

(see Figures 1 and 2).  

The estimated parameters for all three distributions and all nine cases are presented in 

table 2. When randomly simulated 𝑅𝑅𝑅𝑅𝑅𝑅 samples are skewed, both the stable and skew normal 

distributions capture this configuration with 𝛼𝛼 < 0 for left-skewed samples (cases 1, 4, and 7) 

and with 𝛼𝛼 > 0 for right-skewed samples (cases 3, 6, and 9).  

As for distribution fit tests presented in table 3, they confirm our previous assumptions. 

The stable distribution fits the best randomly distributed values, especially those with highest 

sharpness of the probability density function. The first three cases, with sharpness parameter 

β = 0.25, show that among fifty Anderson-Darling tests more than forty reject the hypothesis 

that skew normal and normal distributions fit randomly generated samples with twenty 

values. And this test rejects this hypothesis only three or two times (cases 2 or 3, respectively) 

or not at all for stable distribution. Even though this difference is less overwhelming with 

Kolmogorov-Smirnov and Cramer-von-Mises statistics, more than half of tests are still 

rejected with the Kolmogorov-Smirnov statistic for the left-skewed distribution (case 1).  

Consequently, the distribution fit tests on strongly sharpened distributions support the 

idea that the stable distribution fits the best 𝑅𝑅𝑅𝑅𝑅𝑅 data and is therefore the best distribution. 

With the reduction of the distribution’s sharpness and with the increase of this parameter to 

β = 1.25, its advantage diminishes. Even though the three statistics cannot reject for each of 

fifty samples the goodness of fit of the stable distribution, the rejection is present only 

approximately for ten samples for skew normal and normal distributions with Anderson-

Darling statistic, and for none of them with other two statistics. Once again, the stable 

distribution fits the best the tails of a distribution and therefore corresponds better to the 

concept of the Z-score. Finally, with a shape closer to that of a normal distribution, i.e. with 

β = 1.75, all three distributions fit well the randomly generated data (cases 7, 8, and 9). All of 
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these tests correspond to graphics depicted in Figure 2 and confirm that the normal 

distribution fails to cover many cases of banks’ 𝑅𝑅𝑅𝑅𝑅𝑅 distribution. The stable distribution do 

better and can therefore be applied to keep the concept of risk in the Z-score computations.  

We will now check the consistency of the traditional Z-score with methods based on 

stable, skew normal and normal distributions. For this, we follow the approach explained 

above according to which minus Z-score will be the point at which the 𝑁𝑁(. ) function is equal 

to the probability of default computed with different cumulative distribution functions: 

Zscore1 = −𝑁𝑁−1�𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆(−𝐶𝐶𝐶𝐶𝐶𝐶; 𝛽𝛽, α1, µ1, σ1)�,                                                                        (3) 

Zscore2 = −𝑁𝑁−1�𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(−𝐶𝐶𝐶𝐶𝐶𝐶; α2, µ2, σ2)�,                                                                         (4) 

Zscore3 = −𝑁𝑁−1�𝑁𝑁(−𝐶𝐶𝐶𝐶𝐶𝐶; µ3, σ3)� =
𝐶𝐶𝐶𝐶𝐶𝐶 + µ3

σ3
,                                                              (5) 

where 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆(. ) and 𝐹𝐹𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆(. ) are stable and skew normal cumulative distribution functions, 

respectively. As the former does not have an analytical expression, we apply the characteristic 

function of the stable distribution (Eq. 2) to compute the Zscore1. We use equation (1) for the 

cumulative distribution function of the skew normal distribution to estimate the Zscore2. 

Finally, the traditional Z-score measure is computed as 

Zscore4 =
𝐶𝐶𝐶𝐶𝐶𝐶 + mean(𝑅𝑅𝑅𝑅𝑅𝑅)

sigma(𝑅𝑅𝑅𝑅𝑅𝑅)
,                                                                                                (6) 

where mean(𝑅𝑅𝑅𝑅𝑅𝑅) and sigma(𝑅𝑅𝑅𝑅𝑅𝑅) are empirical estimates of mean and of standard 

deviation of 𝑅𝑅𝑅𝑅𝑅𝑅, respectively.  

We conduct a Monte Carlo simulation to test the consistency of different Z-score 

measures. We take an expected value of 𝑅𝑅𝑅𝑅𝑅𝑅 of 2.5%, µ = 2.5, and a standard deviation of 

𝑅𝑅𝑅𝑅𝑅𝑅 of 1.5%, σ = 1.5, which are empirical levels observed over our sample of CEE banks. 

We thus generate 50 samples of years from stable distributions with such parameters and with 

different values of skew parameter α and of sharpness parameter β, and with values of 𝑅𝑅𝑅𝑅𝑅𝑅 

ranging from -20% to 20%. For each value of β, which ranges from 0.25 to 2 with a step of 
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0.25, we make estimations with parameter α from -1 to 1 with a step of 0.2. We thus 

randomly generate 𝑅𝑅𝑅𝑅𝑅𝑅 samples with 20 years based on these different stable distributions. 

To find the corresponding skew normal and normal distributions, for each of these samples 

we estimate the parameters of these distributions using the procedure explained above (point 

4.2). These parameters must bring closer as possible the skew normal and normal 

distributions to the smooth kernel distribution using 10000 values of 𝑅𝑅𝑅𝑅𝑅𝑅 randomly generated 

by the stable distribution.  

The Z-score and its natural logarithm are computed for a capital assets ratio, 𝐶𝐶𝐶𝐶𝐶𝐶, 

varying from 0 to 5% with a step of 0.25%, i.e., with 21 values. For each value of α and β 

parameters, we make the consistency test between, on the one hand, stable, skew normal, and 

normal distributions, and, on the other hand, the traditional approach. The tests are repeated 

for each value of 𝐶𝐶𝐶𝐶𝐶𝐶 for which we repeat the calculus 50 times, each of them with 50 

samples of years. Thus, Figures 3-5 present the fraction of cases that do not reject the null 

hypothesis of consistency for the total number of cases, which is 1050=50�21. Thus, for each 

of these 1050 cases, we perform 50 estimates, and the consistency test is therefore realised for 

each value of α and β parameters with 52500=50�1050 computations, and for each we 

estimate the parameters of the corresponding skew normal and normal distributions. 

According to simulation results, both risk measures, i.e., the Z-score (eqs. 3, 4, 5 or 6) 

and its logarithm, reject the null hypothesis of consistency for highly skewed and highly 

sharpened 𝑅𝑅𝑅𝑅𝑅𝑅 distributions, at 5% significance level. More precisely, for the sample of 20 

years, only about 80% of cases do not reject the null hypothesis of equality between the risk 

measure computed with stable distribution function and the Z-score computed with traditional 

approach, but this is the case only for β closer to 2 (Figure 3). The result is in the same vein as 

for the null hypothesis of equality between the risk measure computed with skew normal 

distribution function and the traditional approach (Figure 4), and between the Z-score 
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estimated with normal distribution function and the traditional approach (Figure 5). This last 

outcome corresponds only for parameter α closer to 1. Moreover, the logarithmic 

transformation does not improve the results of these simulations and therefore does not 

mitigate the skewness and kurtosis problems of 𝑅𝑅𝑅𝑅𝑅𝑅 distributions.  

We can thus draw two useful conclusions. First, if 𝑅𝑅𝑅𝑅𝑅𝑅 distribution is skewed and/or has 

an excess of kurtosis, the application of the traditional approach provides inconsistent results. 

Second, the logarithmic transformation does not reduce the skewness and therefore fails to 

provide appropriate results. In addition, the traditional approach and the normal distribution 

assumption are not equal (Figure 5), probably because the empirical estimates of mean and of 

standard deviation of 𝑅𝑅𝑅𝑅𝐴𝐴 are not really good proxies for expected value and standard 

deviation of normal distribution. These are some of reasons why the traditional Z-score is 

inappropriate to measure the bank risk, based on the original concept of probability of default.  

 

5. Traditional and improved Z-scores: Evidence from Central and Eastern European 

banks 

We now apply the three explored distribution functions in estimating the Z-score and 

compare these risk measures with the traditional Z-score in the case of Central and Eastern 

European banks. Many reasons guided us in the choice of these countries. First, at the 

beginning of the transition period, lax entry requirements led to the appearance of many new 

domestic private banks, some of which were of dubious quality or even fraudulent (Bonin et 

al, 1998). Even those that had real intentions to carry out profit- and development-oriented 

banking activities had no experience in monitoring and producing information about their 

investments (Bonin et al., 2015). 

Second, given the risky nature of their activities and the troubles characterising these 

transition economies, in the mid-1990s, crises occurred in most CEE countries. Third, after 
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these episodes and restructuring processes that followed, and as a result of new regulatory 

constraints, new experiences and bank practices, the risk-taking behaviour of these banks 

changed.  

Finally, CEE banking markets are characterised with large foreign banks, which are 

essentially from Western Europe, and large state-owned banks, which, at the beginning of the 

transition, maintained banking relationships with their large, inefficient state-owned 

enterprises (Bonin et al., 2015). Moreover, as sectoral or regional banks, the public banks 

were a financial instrument of the political and social policies of successive governments 

(OECD, 1996, Bonin et al., 1998), which weakened these institutions and probably made 

them riskier. On the other hand, foreign banks in CEE countries, at the beginning, had 

exclusively the expertise, technology and know-how for credit screening and risk 

management, among other risk-reducing skills. All these reasons involve samples of banks’ 

𝑅𝑅𝑅𝑅𝑅𝑅 that might be skewed and might have an excess of kurtosis, i.e., samples that are not 

normally distributed. 

Returns on assets, 𝑅𝑅𝑅𝑅𝑅𝑅, and capital on assets, 𝐶𝐶𝐶𝐶𝐶𝐶, data are extracted on an annual basis 

from Bankscope Fitch IBCA over 1995-2013 period. This period covers early transition 

restructuring processes, entry of foreign banks into these markets, and two banking crisis 

events: those of the 1990s and the recent financial crisis. 

Our sample consists of 322 banks from ten CEE economies, including Bulgaria, the 

Czech Republic, Hungary, Estonia, Latvia, Lithuania, Poland, Romania, Slovakia and 

Slovenia. In order to assure the consistency of distribution fit tests and of estimated 

parameters, only banks with at least ten observations are considered. Our final bank sample 

contains 193 banks from these ten CEE countries.  

We first make distribution fit tests, whose results are presented in table 4. As previously, 

the parameters of distributions are estimated empirically based on method explained in 



21 

Section 4. These results indicate how many banks on entire bank sample do not conform to 

the estimated distributions according to their 𝑅𝑅𝑅𝑅𝑅𝑅 distribution’s shape. They clearly show 

that the stable distribution fits the best the 𝑅𝑅𝑅𝑅𝑅𝑅 data of CEE banks for all countries. As 

proved above with Monte Carlo simulations, its performance is revealed in the better 

consideration of tails. Only one bank from 23 for Bulgaria and one bank from 25 for Romania 

have 𝑅𝑅𝑅𝑅𝑅𝑅 data over 1995-2013 period that are not well fitted by the estimated stable 

distribution at tails (Anderson-Darling test). For all other countries, the 𝑅𝑅𝑅𝑅𝑅𝑅 samples of all 

banks comply well with the estimated stable distribution.  

As expected, the estimated skew normal and normal distributions fail to shape 𝑅𝑅𝑅𝑅𝑅𝑅 data 

for many banks of all CEE countries. For some countries, as Estonia, Latvia, Lithuania, 

Slovakia and Slovenia, the estimated normal distribution fails to comply well with 𝑅𝑅𝑅𝑅𝑅𝑅 data 

at tails, at least for the half of banks of the sample. This distribution is even rejected for one 

Polish bank with Cramer-von-Mises and Kolmogorov-Smirnov tests, too. Finally, excepting 

for Bulgaria and Hungary, the normal distribution fits the worst the 𝑅𝑅𝑅𝑅𝑅𝑅 data at tails.  

This discrepancy of the goodness of fit is therefore passed on the results of the Z-score, 

which are presented in table 5. First, the level of Zscore1, estimated using the stable 

distribution (eq. 3), is always, and for all countries, lower than all other three Z-score 

measures, i.e. Zscore2, computed using the skew normal distribution (eq. 4), Zscore3, 

determined using the normal distribution (eq. 5), and Zscore4, which is the traditional Z-score 

measure (eq. 6). This corresponds to the critics evoked in section 2, according to which the Z-

score cannot obtain high values because the probability of default is very close to zero (see 

Figures 1 and 2). How we can see, Zscore2, Zscore3 and Zscore4 are highly concerned with 

these critics and, on the contrary, Zscore1 is completely free of them.  

Second, while Zscore1 varies maximum with 1.5 points (Bulgaria in 2000, Czech 

Republic in 1999, Latvia in 1998), Zscore2 and Zscore3 can change with more than 45 points 
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and Zscore4 with more than 14 points (Latvia in 1996). As explained in section 2, values of 

55 (Zscore2 and Zscore3 for Latvia in 1995) are senseless, as any other value that is higher 

than a level for which the probability of default cannot be considered different from zero.  

Third, Zscore1 is also distinguishable by its trend. It shows, for example, the decrease in 

the Bulgarian banks’ risk in 1997, 1999, 2001, 2003, in that of Czech banks in 1999, 2000, 

2002, or in that of Latvian banking institutions in 1998 and 2004, whereas other three Z-score 

measures suggest the increase of these banks’ risk during the same periods. Likewise, the 

results show the inverse contradiction, as, for example, for Czech Republic in 1998 and 2004, 

for Latvia in 2001, for Hungary in 2000 and 2006, or for Romania in 2000, or no correlation 

at all between Zscore1 and other Z-score measures.  

Finally, all Z-score measures consider the banking crises in CEE economies during the 

nineties, but somewhat differently. Zscore 1 shows, for example, that the bank risk decreases 

continuously after the Bulgarian banking crisis in 1995, which is not the case of the other 

three Z-score measures registering a huge increase of the risk in 1997. It is much the same 

case with Latvian and Slovenian banks in 1998. An inverse situation is also present. While 

Zscore1 describes a higher risk for Czech, Hungarian and Slovakian banks in 1998, Zscore2, 

Zscore3 and Zscore4 show, on the contrary, that these banks reduced their risk-taking.  

 

6. Conclusion 

It is very important to have a good accounting-based measure of bank risk, because many 

banks are not listed and marked-based measures cannot be applied. The Z-score is the most 

used but it undergoes many shortcomings, which undermine its main advantage that is the 

concept of probability of default. In this paper, we investigated the weaknesses of the 

traditional Z-score and, namely, the hypothesis of normal distribution of the banks’ 𝑅𝑅𝑅𝑅𝑅𝑅. 

Some of its versions fail to overcome the problems inherent to normal distribution constraint, 
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as the skewness and the excess of kurtosis, or erase the original concept of probability of 

default. Using Monte Carlo simulations, our test, clearly rejects the assumption that the 

logarithmic transformation, as a way to deal with the skewness, provides better results.  

Because the normal distribution does not fit well the 𝑅𝑅𝑅𝑅𝑅𝑅 data, the tails are not correctly 

taken into account, and the probability of default and the Z-score are miscalculated. We 

propose to comply exactly with the concept of the probability of default and, at the same time, 

to overcome the shortcomings of the normal distribution. Instead of the latter, we therefore 

suggest considering the stable distribution, because it is the most flexible and fits the best 

different kinds of distributions. 

Our empirical application on the experience of CEE banks confirms the theoretical 

advantages of the stable distribution. The Anderson-Darling test, which places more weight 

on observations in the tails, does not reject the hypothesis that the 𝑅𝑅𝑅𝑅𝑅𝑅 data of all banks 

comply well with the estimated stable distribution. For skew normal and normal distributions, 

this test is sometimes rejected for more than a half of banks. Estimations of Z-score, based on 

stable, skew normal and normal distributions, but also on the traditional approach, provide 

results in the same vein. With stable distribution, the Z-score obtains values that make sense, 

which is not always the case with the other two distributions because of the too high and thus 

meaningless values of this risk measure.  

We thus emphasised the most important shortcomings of the most used accounting-based 

measure of banking risk in the banking empirical literature and proved them with different 

tests and estimations on CEE banks. Other limits may be raised, as the formulation of the 

default event, which is too restrictive and does not take into account other factors than bank 

losses in the determination of the probability of default. Nevertheless, any attempt to 

overcome them must to keep the original concept of risk.  
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Figure 1. Graphical presentation of the Z-score with different left-skewed probability density 

functions. 

 

Notes: This figure depict the graphical presentation of the Z-score with left-skewed (dashed line) and Gaussian 

(continued line) probability density functions for the 𝑅𝑅𝑅𝑅𝑅𝑅. Shaded part, p.d., represents the probability of 

default, Pr[𝑅𝑅𝑅𝑅𝑅𝑅 ≤ −𝐶𝐶𝐶𝐶𝐶𝐶] = 𝑁𝑁(−Z). Z1 is the Z-score of a normal distribution and Z2 is the Z-score of a left-

skewed distribution. 
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Figure 2. Distribution fit with different sharpness of the probability density function and with different skewnesses. 

                                

                                      

                                      
Notes: This figure depicts the goodness of fit of probability density functions of stable distribution (continued line), skew normal distribution (dashed line) and normal distribution (dotted line). 
Shaded area represents smooth kernel distribution of randomly generated samples of 1000 𝑅𝑅𝑅𝑅𝑅𝑅 data. 
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Figure 3. Test of equality between traditional and stable distribution estimates 

For Z-score     For Ln(1+Z) 

  
Figure 4. Test of equality between traditional and skew normal distribution estimates. 

For Z-score     For Ln(1+Z) 

  

Figure 5. Test of equality between traditional and normal distribution estimates. 

For Z-score     For Ln(1+Z) 
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Table 1. Summary of empirical studies in the banking literature applying the Z-score. 

Authors r.v. Mean 
value 

Presence of r.v. in 
the Z-score formula Estimation method 

Demirgüç-Kunt and 
Huizinga (2010) 𝑅𝑅𝑅𝑅𝑅𝑅 30.74 In average on entire 

sample Traditional 

Laeven and Levine 
(2009) 𝑅𝑅𝑅𝑅𝑅𝑅 17.81 In average on entire 

sample Traditional and the use of Ln(Z). 

Demirgüç-Kunt et 
al. (2008) 𝑅𝑅𝑅𝑅𝑅𝑅 - In average on entire 

sample Traditional and the use of Ln(1+Z). 

Anginer et al. 
(2014) 𝑅𝑅𝑅𝑅𝑅𝑅 33.12 In average on 5 years 

rolling window 

Yearly Z-score with average of 𝑅𝑅𝑅𝑅𝑅𝑅 and 
𝐶𝐶𝐶𝐶𝐶𝐶 divided on standard deviation of 
𝑅𝑅𝑅𝑅𝑅𝑅, with 5 years rolling window. The 
use of Ln(Z). 

Williams (2014) 𝑅𝑅𝑅𝑅𝑅𝑅 -0.22 
(-0.10) 

In 2 and 4 years 
average rolling window 

Yearly Z-score with average of 𝑅𝑅𝑅𝑅𝑅𝑅 and 
average of – 𝐶𝐶𝐶𝐶𝐶𝐶 divided on standard 
deviation of 𝑅𝑅𝑅𝑅𝑅𝑅, with 2 (4) years 
rolling window. 

Anolli et al. (2014) 𝑅𝑅𝑅𝑅𝑅𝑅 103-
129 In 4 quarters average  

Yearly Z-score with 4 quarters average 
and standard deviation of 𝑅𝑅𝑅𝑅𝑅𝑅 and 4 
quarters average of 𝐶𝐶𝐶𝐶𝐶𝐶. 

De Haan and 
Poghosyan (2012) 

𝑅𝑅𝑅𝑅𝑅𝑅 and 
𝑅𝑅𝑅𝑅𝑅𝑅 

261 
(185) 

In 4 and 8 quarters 
average 

Yearly Z-score with 4 (8) quarters 
average and standard deviation of 𝑅𝑅𝑅𝑅𝑅𝑅 
(𝑅𝑅𝑅𝑅𝑅𝑅) and 4 (8) quarters average of 
𝐶𝐶𝐶𝐶𝐶𝐶. 

Lee and Hsieh 
(2014) 

𝑅𝑅𝑅𝑅𝑅𝑅 and 
𝑅𝑅𝑅𝑅𝑅𝑅 

52 
(12) In level 

Yearly 𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅𝑅𝑅𝑅𝑅) and 𝐶𝐶𝐶𝐶𝐶𝐶 in levels 
and standard deviation on 3 years rolling 
window. 

Chortareas et al. 
(2012) 𝑅𝑅𝑅𝑅𝑅𝑅 8.91 In level 

Yearly 𝑅𝑅𝑅𝑅𝑅𝑅 (𝑅𝑅𝑅𝑅𝑅𝑅) and 𝐶𝐶𝐶𝐶𝐶𝐶 in levels 
and standard deviation on 5 years rolling 
window. 

Niu (2012) 𝑅𝑅𝑅𝑅𝑅𝑅 7.95 In level Yearly 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐶𝐶𝐶𝐶𝐶𝐶 in levels and 
standard deviation on entire year sample. 

Fiordelisi and Mare 
(2014) 𝑅𝑅𝑅𝑅𝑅𝑅 17.25 In level 

Yearly 𝑅𝑅𝑅𝑅𝑅𝑅 and 𝐶𝐶𝐶𝐶𝐶𝐶 in levels and 
yearly standard deviation within each 
individual country. 

Notes: This table provides summary of empirical studies in the banking literature applying the Z-score as an 

accounting-based bank risk measure and presents the main methods in estimating the Z-score. r.v. signifies 

random variable. 
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Table 2. Parameters of 𝑅𝑅𝑅𝑅𝑅𝑅 distribution laws. 

Distribution Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 
Stable Distr.          
µ -0.041 2.289 2.895 3.784 2.359 1.381 2.552 2.634 2.381 
σ 1.625 0.993 0.932 1.838 1.580 1.674 1.510 1.636 1.531 
α -0.644 0.051 0.442 -0.410 0.049 0.529 0.340 0.360 0.146 
β 1.194 0.952 1.045 1.453 1.510 1.398 1.754 1.715 1.700 
          
Skew Normal Distr.          
µ 2.056 2.433 2.614 5.492 2.227 -0.248 2.931 2.356 2.508 
σ 2.594 1.568 1.655 2.985 2.434 2.569 2.434 2.639 2.416 
α -1.242 0.311 1.305 -0.680 0.148 0.370 -0.194 0.191 0.063 
          
Normal Distr.          
µ 1.716 2.517 3.006 4.986 2.391 -0.019 2.655 2.498 2.536 
σ 2.207 1.347 1.32 2.629 2.239 2.376 2.154 2.356 2.208 
Notes: This table provides estimates of parameters of 𝑅𝑅𝑅𝑅𝑅𝑅 distribution laws, i.e. stable, skew normal and normal distributions. The nine cases correspond to three different 

sharpness of the distribution shape (β = 0.25, β = 1.25 and β = 1.75), each of them with three different skewnesses (α = −0.75, α = 0 and α = 0.75).  
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Table 3. Number of rejections on fifty tests that verify the conformity of estimated distribution with generated 𝑅𝑅𝑅𝑅𝑅𝑅 series. 

Distribution Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 
Stable Distr.          

AD 0 3 2 0 0 0 0 0 0 
CvM 0 2 1 0 0 0 0 0 0 
KS 8 2 4 0 0 0 0 0 0 

          
Skew Normal Distr.          

AD 40 45 44 5 10 13 0 0 0 
CvM 4 3 3 0 0 0 0 0 0 
KS 25 3 16 0 0 0 0 0 0 

          
Normal Distr.          

AD 42 45 46 10 9 13 0 0 0 
CvM 11 2 7 0 0 0 0 0 0 
KS 28 5 15 0 0 0 0 0 0 

Notes: This table presents the results of conformity tests of estimated distributions, i.e. stable, skew normal and normal distributions, with randomly generated 𝑅𝑅𝑅𝑅𝑅𝑅 series. The 

nine cases correspond to three different sharpness of the distribution shape (β = 0.25, β = 1.25 and β = 1.75), each of them with three different skewnesses (α = −0.75, α = 0 

and α = 0.75). For each case, fifty samples are randomly generated and three distribution fit tests, at 5% significance level, are considered, i.e. Anderson-Darling test (AD), 

Cramer-von-Mises test (CvM) and Kolmogorov-Smirnov test (KS). 
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Table 4. Number of fitted tests rejections on total number of estimates. 
 Bulgaria Czech Rp. Hungary Estonia Latvia Lithuania Poland Romania Slovakia Slovenia 
StD           

AD 1/23 0/20 0/21 0/6 0/22 0/9 0/37 1/25 0/16 0/14 
CvM 0/23 0/20 0/21 0/6 0/22 0/9 0/37 0/25 0/16 0/14 
KS 0/23 0/20 0/21 0/6 0/22 0/9 0/37 0/25 0/16 0/14 

           
SkND           

AD 9/23 3/20 5/21 1/6 7/22 3/9 4/37 4/25 7/16 5/14 
CvM 0/23 1/20 0/21 0/6 0/22 0/9 0/37 0/25 0/16 0/14 
KS 0/23 0/20 0/21 0/6 0/22 0/9 0/37 0/25 0/16 0/14 

           
ND           

AD 8/23 4/20 5/21 3/6 11/22 5/9 7/37 6/25 9/16 8/14 
CvM 0/23 0/20 0/21 0/6 0/22 0/9 1/37 0/25 0/16 0/14 
KS 0/23 0/20 0/21 0/6 0/22 0/9 1/37 0/25 0/16 0/14 

Notes: This table presents the results of conformity tests of estimated distributions, i.e. Stable Distribution (StD), Skew Normal Distribution (SkND) and Normal Distribution 

(ND), for CEE banks’ 𝑅𝑅𝑅𝑅𝑅𝑅. For each of ten countries, three distribution fit tests are considered, i.e. Anderson-Darling test (AD), Cramer-von-Mises test (CvM) and 

Kolmogorov-Smirnov test (KS), and the results indicate how many banks on entire bank sample do not conform to the estimated distributions according to their 𝑅𝑅𝑅𝑅𝑅𝑅 

distribution, at 5% significance level.  
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Table 5. Estimates of Z-score measures for CEE countries. 

Risk measure 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 
Bulgaria                    

Zscore1 2.60 3.00 3.13 4.38 4.42 5.74 5.80 4.58 4.63 4.33 4.21 4.04 3.70 4.58 5.24 4.52 4.07 4.17 4.18 
Zscore2 11.05 17.51 15.31 16.54 16.10 19.10 15.62 13.80 12.71 11.92 10.91 9.87 9.31 11.03 12.21 11.39 10.99 11.49 11.69 
Zscore3 13.60 23.02 18.30 21.05 20.00 24.03 19.01 16.57 14.79 13.71 12.36 10.72 10.04 12.39 13.96 12.89 12.32 13.06 13.34 
Zscore4 4.75 6.34 4.53 9.54 9.80 13.19 10.42 8.39 8.43 8.03 7.23 6.71 6.57 8.75 9.87 8.76 7.87 8.14 8.56 
                    

Czech Rep.                    
Zscore1 2.45 2.63 2.52 2.45 4.07 4.90 4.67 4.75 3.81 3.67 3.74 3.90 3.73 4.35 4.82 5.30 5.48 5.86 5.45 
Zscore2 10.46 24.66 15.58 17.86 16.27 14.01 14.76 14.11 13.74 13.95 14.29 13.54 12.23 12.80 13.75 14.70 14.35 14.87 14.53 
Zscore3 14.49 31.91 18.95 20.82 18.75 16.74 17.79 17.73 17.31 17.86 18.40 17.34 15.71 15.99 16.87 18.28 17.94 18.24 17.75 
Zscore4 10.75 21.47 12.53 14.28 13.71 12.60 12.29 11.66 11.87 12.44 12.84 12.20 10.78 11.08 12.29 13.34 13.33 13.55 12.88 
                    

Estonia                    
Zscore1 2.68 2.50 2.13 2.36 2.38 2.37 2.39 2.36 2.35 2.36 2.28 2.31 2.28 2.26 2.13 2.18 2.17 2.29 2.22 
Zscore2 13.67 11.04 6.19 9.75 10.33 9.14 8.96 8.93 8.98 9.30 8.42 7.89 7.57 7.74 6.89 7.90 9.24 10.57 10.91 
Zscore3 17.57 14.79 8.02 13.31 13.91 11.94 11.62 12.26 12.61 13.71 12.35 11.07 10.41 9.89 8.95 10.41 12.31 14.26 14.49 
Zscore4 9.25 7.65 3.77 6.27 6.75 5.95 5.86 7.45 7.85 8.15 6.95 6.52 5.96 5.48 4.75 5.50 6.13 7.20 7.21 
                    

Latvia                    
Zscore1 3.16 2.94 5.47 5.62 5.24 3.98 3.39 3.30 2.92 3.20 3.78 3.57 3.09 3.16 3.42 2.93 3.52 4.11 4.04 
Zscore2 55.70 10.93 12.08 11.43 9.77 7.87 9.81 7.78 7.93 7.23 8.17 7.31 7.37 7.51 7.06 6.64 7.46 8.97 9.03 
Zscore3 55.64 11.73 13.43 12.74 10.90 8.32 12.13 8.88 9.16 7.95 8.78 8.12 7.98 8.12 8.13 7.45 8.42 10.09 9.96 
Zscore4 19.20 5.35 8.08 8.12 7.14 5.02 7.96 5.04 5.40 4.77 5.26 4.85 4.77 5.06 5.08 4.25 4.77 5.87 6.30 
                    

Lithuania                    
Zscore1 2.31 2.51 2.46 2.68 2.73 2.60 2.51 2.49 2.47 2.38 2.36 2.36 2.38 2.40 2.39 2.24 2.40 2.45 2.44 
Zscore2 11.04 17.52 15.34 19.68 20.60 17.23 14.52 13.38 12.59 10.46 10.33 9.34 10.19 11.51 10.78 9.87 11.10 12.52 11.58 
Zscore3 10.89 22.65 19.84 26.51 26.93 22.19 19.03 17.76 16.83 13.98 13.27 11.70 12.66 14.72 13.77 12.59 14.36 16.18 15.19 
Zscore4 9.21 11.61 8.43 13.29 13.59 10.40 8.57 7.72 7.41 6.02 5.36 4.90 5.22 5.98 5.80 5.21 5.13 5.81 5.56 
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Table 5. Estimates of Z-score measures for CEE countries (continued). 

Risk measure 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 
Hungary                    

Zscore1 3.17 3.12 3.36 3.12 3.06 3.09 3.18 3.21 3.20 3.15 3.17 3.14 3.10 3.04 3.14 3.04 2.98 3.09 3.20 
Zscore2 9.80 9.42 9.97 10.81 10.51 11.07 10.67 10.38 9.63 9.84 9.75 13.60 10.20 9.39 10.10 10.20 9.41 9.80 9.81 
Zscore3 11.19 10.71 11.28 11.62 11.06 12.04 11.82 11.54 10.50 11.24 10.88 16.73 11.36 10.36 11.44 11.74 10.75 11.41 11.51 
Zscore4 8.95 8.41 9.44 9.01 8.52 9.17 9.20 8.70 8.19 9.00 8.59 10.28 8.65 8.07 9.02 9.39 8.95 9.52 9.78 
                    

Poland                    
Zscore1 2.97 2.97 2.97 3.00 2.98 3.07 3.04 3.06 2.92 2.97 2.96 2.96 2.96 2.91 2.96 2.96 2.96 3.00 3.03 
Zscore2 13.00 13.35 13.86 13.89 13.45 17.95 13.39 12.84 11.95 11.81 11.15 11.81 11.47 10.75 11.14 11.62 11.57 12.36 12.43 
Zscore3 16.11 16.49 16.92 16.71 15.90 20.83 15.61 15.19 14.08 13.62 12.70 13.58 12.87 11.81 12.67 13.17 13.01 14.11 14.18 
Zscore4 13.03 11.92 12.07 12.04 10.83 15.34 11.91 11.95 10.86 10.84 10.43 11.07 10.47 9.45 10.34 10.67 10.63 11.62 12.29 
                    

Romania                    
Zscore1 2.57 2.81 2.58 3.69 3.64 3.59 3.56 3.60 3.40 3.20 3.54 3.50 3.18 3.34 3.25 3.32 3.32 3.30 3.31 
Zscore2 9.29 16.96 9.50 11.42 10.25 11.30 10.07 9.36 8.66 8.12 7.70 7.66 7.08 7.21 6.60 7.11 7.40 7.21 7.04 
Zscore3 10.62 19.91 10.57 14.22 12.24 13.56 11.79 10.90 9.95 9.07 8.78 8.85 8.08 8.19 7.53 8.14 8.62 8.45 8.21 
Zscore4 6.63 7.48 4.86 8.29 7.12 8.26 7.36 6.95 6.31 6.00 6.00 5.66 4.91 5.22 4.94 5.40 5.65 5.29 5.26 
                    

Slovakia                    
Zscore1 2.59 2.55 2.64 2.58 2.54 2.65 2.65 2.69 2.71 2.69 2.66 2.64 2.64 2.61 2.58 2.54 2.64 2.66 2.64 
Zscore2 15.65 14.04 13.89 15.87 16.45 19.01 15.05 15.01 16.38 15.37 14.66 14.56 14.70 14.31 15.80 15.11 16.36 17.31 16.50 
Zscore3 21.72 16.34 16.50 19.74 21.39 23.67 18.58 18.63 20.23 18.85 17.98 18.17 18.21 17.67 20.00 19.08 20.90 22.33 21.79 
Zscore4 10.38 7.71 8.70 9.64 9.96 10.62 9.32 10.02 11.17 10.56 9.95 9.58 9.43 8.89 9.48 9.26 10.25 10.89 10.38 
                    

Slovenia                    
Zscore1 4.71 3.64 3.60 3.78 3.71 3.63 3.53 3.46 3.42 3.43 3.24 3.31 3.21 3.17 3.26 3.34 3.35 3.32 3.24 
Zscore2 13.26 10.82 24.09 21.21 20.31 18.60 16.03 13.09 12.14 11.70 11.84 10.91 10.13 9.76 10.32 9.93 9.71 9.39 9.25 
Zscore3 19.72 14.62 27.17 24.16 23.06 21.26 18.45 15.35 14.20 13.70 13.67 12.71 12.07 11.67 12.22 11.97 11.92 11.50 11.41 
Zscore4 8.76 6.51 17.85 15.77 15.04 13.66 11.54 9.00 8.01 7.57 7.64 7.01 6.06 5.73 6.34 6.09 6.11 6.12 6.26 

Notes: This table presents the estimations of the Z-score measures based on the four explored approaches. Zscore1 is the Z-score estimated with the Stable cumulative 

distribution function (eq. 3). Zscore2 is the Z-score estimated with the Skew Normal cumulative distribution function (eq. 4). Zscore3 is the Z-score estimated with the Normal 

cumulative distribution function (eq. 5). Zscore4 is the Z-score estimated with the traditional approach (eq. 6). 
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