Automorphisms of rational surfaces with positive entropy

Abstract : A complex compact surface which carries an automorphism of positive topological entropy has been proved by Cantat to be either a torus, a K3 surface, an Enriques surface or a rational surface. Automorphisms of rational surfaces are quite mysterious and have been recently the object of intensive studies. In this paper, we construct several new examples of automorphisms of rational surfaces with positive topological entropy. We also explain how to define and to count parameters in families of birational maps of the complex projective plane and in families of rational surfaces.
Type de document :
Article dans une revue
Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2011, 60 (5), pp.1589--1622. 〈10.1512/iumj.2011.60.4427〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01301377
Contributeur : Aigle I2m <>
Soumis le : mardi 12 avril 2016 - 10:57:18
Dernière modification le : samedi 12 novembre 2016 - 17:17:49

Identifiants

Collections

Citation

Julie Deserti, Julien Grivaux. Automorphisms of rational surfaces with positive entropy. Indiana University Mathematics Journal, Indiana University Mathematics Journal, 2011, 60 (5), pp.1589--1622. 〈10.1512/iumj.2011.60.4427〉. 〈hal-01301377〉

Partager

Métriques

Consultations de la notice

72