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The class of the affine line is a zero divisor in the Grothendieck

ring: an improvement

Nicolas Martin,
Centre de Mathématiques Laurent Schwartz, École polytechnique, 91128 Palaiseau cedex, France

Abstract

Lev A. Borisov has shown that the class of the affine line is a zero divisor in the Grothendieck ring of algebraic

varieties over complex numbers. We improve the final formula by removing a factor.

Résumé

Lev A. Borisov a prouvé que la classe de la droite affine est un diviseur de zéro dans l’anneau de Grothendieck

des variétés algébriques complexes. Nous améliorons la formule finale en supprimant un facteur.

1. Introduction

The Grothendieck ring K0(VarC) of complex algebraic varieties is defined as the quotient of the free
abelian group generated by the isomorphism classes [X ] of complex algebraic varieties modulo the relations

[X ] = [Y ] + [X \ Y ]

for all closed subvarieties Y ⊂ X . The cartesian product of varieties gives the product structure.
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The class L = [A1(C)] of the affine line has a major role in the study of the Grothendieck ring. It has
been proved in [LL03] that X and Y are stably birational if and only if their classes [X ] and [Y ] are equal
modulo L. After Bjorn Poonen had shown in [Poo02] that K0(VarC) is not a domain, Lev Borisov has
made precise this result in [Bor14] by showing that L is a zero divisor. He has compared the two sides
[XW ] and [YW ] of the Pfaffian-Grassmannian double mirror correspondence, and obtained the following
formula:

([XW ] − [YW ]) · (L2 − 1) · (L − 1) · L7 = 0.

This result is not only an improvement of that of Poonen: it is crucial in motivic integration to under-
stand the kernel of the localization morphism K0(VarC) → K0(VarC)[L−1], since we consider classes in
the localized ring. In this paper, we improve this formula as follows.

Theorem 1.1 ([XW ] − [YW ]) · L6 = 0

Acknowledgements. The author is indebted to Johannes Nicaise and Claude Sabbah for their careful
reading and constructive comments on the preliminary version of the note written in September of 2015.
The note has particularly benefited from relevant comments of Antoine Chambert-Loir in November of
2015.

2. The class of Grasmannians

Proposition 2.1 For 2 ≤ k < n, we have the relation

[G(k, n)] = [G(k, n − 1)] + L
n−k · [G(k − 1, n − 1)].

Proof. Let e1, ..., en be the canonical basis of Cn, F the hyperplane orthogonal to en, U ⊂ G(k, n) the
open subset defined by {T ∈ G(k, n) | dim(T ∩F ) = k −1} and π : U → G(k −1, F ) the regular mapping
which sends T on T ∩ F . For S ∈ G(k − 1, F ), the fiber π−1(S) can be identified to

P(Cn/S) \ P(F/S) ≃ A
n−k.

Let H be a complementary subspace of S in F and the open subset V = {S′ ∈ G(k −1, F ) | S′ ⊕H = F}.
For all S′ ∈ V , we have the identification Cn/S′ ≃ H ⊕ Cen, hence π is a trivial fibration over V .
Consequently, π is a locally trivial fibration, therefore [U ] = Ln−k · [G(k − 1, n − 1)]. We have [G(k, n)] =
[Z] + [U ] with Z = G(k, n) \ U = {T ∈ G(k, n) | T ⊂ F} = G(k, F ), which shows the announced
formula. �

A simple induction gives the following formulas for n ≥ 4:

[G(2, n)] =



























[

P
n−2

]

·

(n−2)/2
∑

k=0

L
2k if n is even

[

P
n−1

]

·

(n−3)/2
∑

k=0

L
2k if n is odd.

For example, [G(2, 5)] = [P4] · (L2 + 1) and [G(2, 7)] = [P6] · (L4 + L2 + 1).
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3. Improvement of Borisov’s formula

3.1. Pfaffian and Grassmannian double mirror varieties

Let V be a 7-dimensional complex vector space and W a generic 7-dimensional space of skew forms
on V . We define XW as a subvariety of the Grassmannian G(2, V ) which is the locus of all T ∈ G(2, V )
with ω|T = 0 for all ω ∈ W , and YW as a subvariety of PW of skew forms whose rank is less than 6.
Smoothness of these two varieties has been shown by E. Rødland in [Rød00]. Furthermore, we know that
all forms in YW have rank 4 and all forms in PW \ YW have rank 6.

3.2. The formula

Let us define H as a subvariety of G(2, V ) × PW which consists of pairs (T,Cω) with ω|T = 0. In
order to obtain the explicit equations which define H , let us set T0 ∈ G(2, V ) with basis e1, e2 and H a
complementary subspace with basis e3, ..., e7. The neighborhood U = {T ∈ G(2, V ) | T ⊕ H = V } of T0

can be identified to L (T0, H) by considering the map f ∈ L (T0, H) 7→ {x + f(x) | x ∈ T0} ∈ U . If we
set (fi,j)(i,j)∈{1,2}×{3,...,7} the basis of L (T0, H) adapted to the two bases previously considered, we can

identify T ∈ U to {x +
∑

αi,jfi,j(x) | x ∈ T0}. Now, for ω =
∑7

i=1 βiωi ∈ W , the condition ω|T = 0 can
be expressed as

7
∑

i=1

βiωi



e1 +

7
∑

j=3

α1,jej , e2 +

7
∑

j=3

α2,jej



 = 0.

Looking at the projections onto the two factors G(2, V ) and PW will give us two ways to express [H ].
Theorem 1.1 will be a direct consequence of the two next propositions.

Proposition 3.1 [H ] = [P6] · (L4 + L2 + 1) · [P5] + [XW ] · L6

Proof. Considering the projection p : H → G(2, V ) onto the first factor, which is a trivial fibration in
restriction to p−1(XW ) and a locally trivial fibration in restriction to G(2, V ) \ p−1(XW ), Proposition 2.4
of [Bor14] proves that

[H ] = [G(2, 7)] · [P5] + [XW ] · L6.

The expression [G(2, 7)] = [P6] · (L4 + L2 + 1) gives the result. �

Proposition 3.2 [H ] = [YW ] · L6 + [P6] · [P5] · (L4 + L2 + 1)

Lemma 3.3 Let π : H → PW be the projection onto the second factor. Its restrictions to π−1(YW ) and
π−1(PW \ YW ) are piecewise trivial fibrations (see 4.2.1 in [Seb04]).

Proof of the lemma. The reasoning is the same for rank 4 (Y4 = YW ) and rank 6 (Y6 = PW \ YW ). For
i ∈ {4, 6}, let us set

Zi = π−1(Yi) = H ∩ (G(2, V ) × Yi).

In order to have piecewise triviality of π on Zi, it suffices, according to Theorem 4.2.3 in [Seb04], to prove
that there exists a uniform fiber Fi such that for all x ∈ Yi,

Zi ×Yi
{x} ≃ Fi ×C Spec(κ(x)).
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To achieve this, it suffices to note that a skew form of rank 4 or 6 with coefficients in a field K ⊃ C is
congruent to the skew form











0 I2 0

−I2 0 0

0 0 0











or











0 I3 0

−I3 0 0

0 0 0











with a base change having coefficients in K, an action that spreads on fibers. �

Lemma 3.4 Let Cω ∈ YW be a closed point. Then the class of its fiber is

[π−1(Cω)] = [P5] · (L4 + L
2 + 1) + L

6.

Proof. As rk(ω) = 4, there exists a basis e1, ..., e7 of V in which the matrix of ω is










0 I2 0

−I2 0 0

0 0 0











.

Denote F = Vect{e3, ..., e7} and H = F ⊕ Ce2. We have

[π−1(Cω)] = [{T ∈ G(2, V ) | ω|T = 0}] = [{T ∈ G(2, H) | ω|T = 0}] + [U ]

where U is the open subset {T ∈ G(2, V ) | dim(T ∩ H) = 1, ω|T = 0}, with the locally trivial fibration
π : U → PH = P

5. Note that ker(ω) = Vect{e5, e6, e7} ⊂ H and ker(ω|H) = ker(ω) ⊕ Ce3 ⊂ H .

Let D = Ce ∈ PH . There are three cases.

• First case: D ⊂ ker(ω). We have

[π−1(D)] = [{Cf ∈ P(V/D) | ω(f, e) = 0}] − [{Cf ∈ P(H/D) | ω|H(f, e) = 0}]

= [P5] − [P4] = L
5.

• Second case: D 6⊂ ker(ω) and D ⊂ ker(ω|H). In this case π−1(D) = ∅, because

{Cf ∈ P(V/D) | ω(f, e) = 0} = {Cf ∈ P(H/D) | ω|H(f, e) = 0}.

• Third case: D 6⊂ ker(ω|H). We have

[π−1(D)] = [{Cf ∈ P(V/D) | ω(f, e) = 0}] − [{Cf ∈ P(H/D) | ω|H(f, e) = 0}]

= [P4] − [P3] = L
4.

Consequently

[U ] = [P ker(ω)] · L5 + ([PH ] − [P ker(ω|H)]) · L4

= [P2] · L5 + ([P5] − [P3]) · L4

= ([P5] − 1) · L4.
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We can repeat the argument with H . As ω|F = 0, we have

[{T ∈ G(2, H) | ω|T = 0}] = [{T ∈ G(2, F ) | ω|T = 0}] + [P ker(ω|H)] · L4

= [G(2, 5)] + [P3] · L4

= [P4] · (L2 + 1) + [P3] · L4.

Finally, we get

[π−1(Cω)] = ([P5] − 1) · L4 + [P4] · (L2 + 1) + [P3] · L4

= ([P5] − 1) · L4 + ([P5] − L
5) · (L2 + 1) + (L3 + L

2 + L + 1) · L4

= [P5] · (L4 + L
2 + 1) + L

6.

�

A similar calculation gives the following result.

Lemma 3.5 Let Cω ∈ PW \ YW be a closed point. Then the class of its fiber is

[π−1(Cω)] = [P5] · (L4 + L
2 + 1).

Proof of Proposition 3.2. Let Cω1 ∈ YW and Cω2 ∈ PW \YW be two closed points. Lemma 3.3 implies
that











[π−1(YW )] = [YW ] · [π−1(Cω1)]

[π−1(PW \ YW )] = ([PW ] − [YW ]) · [π−1(Cω2)],

and consequently

[H ] = [YW ] · [π−1(Cω1)] + ([PW ] − [YW ]) · [π−1(Cω2)].

Using Lemmas 3.4 and 3.5, we have

[H ] = [YW ] · ([P5] · (L4 + L
2 + 1) + L

6) + ([P6] − [YW ]) · [P5] · (L4 + L
2 + 1)

= [YW ] · L6 + [P6] · [P5] · (L4 + L
2 + 1),

which concludes the proof. �
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