
HAL Id: hal-01300851
https://hal.science/hal-01300851

Submitted on 11 Apr 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Promoting mashup creation through unstructured data
extraction

Nassim Laga, Emmanuel Bertin, Noel Crespi

To cite this version:
Nassim Laga, Emmanuel Bertin, Noel Crespi. Promoting mashup creation through unstructured
data extraction. ICOIN 2012 : International Conference on Information Networking, Feb 2012, Bali,
Indonesia. pp.59-64, �10.1109/ICOIN.2012.6164349�. �hal-01300851�

https://hal.science/hal-01300851
https://hal.archives-ouvertes.fr

Promoting Mashup Creation through Unstructured Data Extraction
Nassim Laga

1, 2
, Emmanuel Bertin

1
, and Noel Crespi

2
,

1
Orange Labs Orange Labs - France Telecom R&D, 42, rue des Coutures, 14000 Caen France,

{{nassim.laga, emmanuel.bertin}@orange-ftgroup.com},
2
Institut TELECOM SudParis, 9 rue Charles Fourier, 91011, Evry Cedex, France,

 {{Nassim.Laga, noel.crespi}@it-sudparis.eu}

Abstract
Service composition tools are usually based on an

input/output mapping pattern. Inputs and output are

declared by the service developer when publishing his

service. However, services might also generate

unstructured data such as email and instant messages

content. That data are hardly expectable by developers.

Consequently, much data are unavoidably left out by

current service composition tools. In this paper we firstly

propose and implement an enhancement to current SOA

in order to facilitate capturing unstructured data.

Secondly, we define and implement a new service

composition pattern and tool in order to enable end-users

to easily create Mashups based on structured and

unstructured data (unstructured data are neither declared

nor formatted by the service developer when publishing

services). Finally, we validate this proposal by creating a

rich communication environment using the composition

tool we have implemented. As a consequence, this work

impacts significantly service composition research

communities by introducing a novel architecture and a

new pattern for composing services.

1. Introduction

Service Oriented Architecture (SOA) has encouraged lot

of research on service composition mechanisms. It enables

service developers to describe their services in term of

interfaces they provide and inputs and outputs they

expects, and service integrators to define composite

services by associating outputs of services with inputs of

others. Consequently, several frameworks have been

proposed. Some of them are manual, such PHP SOAP and

Java SOAP client, while others are automatic or semi-

automatic such as [1, 2, 3, and 4].

However, services in current Web platform are likely

to generate data that are not expectable by their

developers, and thus impossible to include in the service

description. This is especially true when considering Web

2.0 paradigm [5] from one hand, and the growing number

of communication services from another hand. Indeed,

Web 2.0 promotes user generated content; content which

includes text-based data (such as Wikipedia) and

multimedia-based data (such as Flickr and YouTube).

That data might contain information that would be useful

to compose with other services, but hardly expectable and

manageable by service developers. In addition, people are

more and more connected together. Thus, a great amount

of data is generated and exchanged between them; data

that also might contain information that would be useful to

compose with other services, but not expectable by

service developers. Consequently, a great amount of data

is missed by current service composition tools.

To tackle this limitation, we define and validate in this

paper a mechanism that enables service integrators to

easily make use of undeclared data when composing

services. Validated by an implementation and

experimentation, we propose an enhancement to current

SOA to enable integration between services based on data

that are not declared by developers. Thus, our main

contributions consist of:

 The integration of a new entity to SOA pattern,

which is a repository that contains data extraction

modules. These modules, when invoked, are in

charge of extracting unstructured data from a

specified service.

 The definition of a new service composition

pattern that enables the specification of service

execution sequence based on unstructured data.

 The implementation of a service orchestrator

engine that enables the execution of such pattern.

 The validation of this whole approach by creating a

rich communication environment using the

composition tool and the architecture we define.

This environment combines Web-based services

with Telecom-based services such as Telephony

and Instant Messaging.

In the following section we review existing approaches

for composing services. Then, we illustrate through a

scenario the motivations of our work. In section 4, we

describe the design of the framework we propose. We

detail the implementation and validate it in section 5. We

discuss the results of our implementation and the future

work in section 6, and conclude the paper in section 7.

2. Related Work

SOA was initially addressed for developers to facilitate

integration between services of the same or different

providers. It offers an infrastructure that decouples the

service description from the service implementation.

Consequently, developers can discover and use a third

party service without being dependent from its

implementation aspects.

In SOA, developers create services and publish their

description in a common registry; a description which

defines the interfaces, the type of the expected inputs, and

the type of the generated outputs. Web Service

Description Language (WSDL) [9] is an example of

service description syntax. Then, other developers can

search services within the common registry (discovery)

and invoke them using for example HTTP/SOAP [9].

Service composition is the process of combining

services with each other to create a more innovative one.

This can be performed either manually, or using facilities

provided by service composition tools. In both cases, the

composition is usually based on mapping outputs of

services with inputs of others. The manual approach is

characterized by the use of programming languages

libraries such as PHP SOAP and Java SOAP. Thus, to

compose two services, the developers firstly discover their

interfaces in the registry. Secondly, they invoke the first

service and get the outputs. Finally, they map one or

several outputs to the inputs of the second service. This

approach is however addressed only for developers; end-

users can not use programming languages.

In order to facilitate even more the combination of

services, service composition and Mashup creation tools

have emerged. Some of them are automatic such as natural

language based service composition [6], while others are

semi-automatic and require additional investment from

end-users [3 and 4]. End-users are indeed in charge of

defining the execution sequence of services, usually using

graphical tools. In both cases, the composition tool

generates a composition script, which makes call to the

corresponding services in a sequence which corresponds

to the logic of the created service. Figure 1 shows an

example of such composite service. It shows a News

service combined to a Send Email service.

The composition script is generally modeled as a graph

G <N,L> (see Figure 1) where nodes (N) represents the

invoked services, and links (L) represents a mapping of an

output of a service with an input of another (the inputs and

the outputs are those that were previously declared by the

developer when publishing his service into the registry).

Each link in L is a triplet <n1,n2,dataType>, where n1

and n2 are elements of N and refers respectively to the

source service and the destination service, and dataType is

an output of the source service which is transmitted to the

destination service as an input parameter. Yahoo Pipes

[15], BPEL (Business Process Description Language) [7]

and SPATEL (SPICE Advanced language for

Telecommunication services) [8] are examples of such

composition script language.

Fig. 1. BPEL Composite service.

3. Incentive Scenario and Limitations of

Current Service Compositions Approaches

In order to illustrate the motivation of our work as well as

to technically formulate the addressed issue, let’s consider

in this section a scenario where Alice, Bob, and Charlie

are all employees of the same company. Charlie and Bob

are currently discussing through IM (Instant Messaging)

about a new interesting project leaded by Alice. Bob do

not know Alice, but wants to contact her. He loads a

directory service, and makes a search. Once Bob gets the

contact information of Alice, he invites her to the IM

discussion, and asks her for more details about her

project. Alice, during her explanation, gives a reference to

a scientific article that contains more technical details

about the idea of the project. Bob and Charlie loaded the

Web search service (e.g. Google Search) in order to look

for that article. After having a general idea about the

project, Bob decided to have a face-to-face meeting with

Alice in order to discuss an optional collaboration. Using

the IM service, Bob propose to Alice to meet for example

on “April 5
th

 at 10AM”. Alice loads her agenda in order to

check her availability on that date, and agrees. Finally,

both Alice and Bob update their availability on the

agenda.

This scenario shows clearly the need for composing the

IM service with the directory service and the agenda

service. For example, when Bob receives the name of the

project leader (Alice), he loads the directory service in

order to search her contact information. Then, using the

email address loaded in the directory service, he invites

her to join the IM discussion using the IM service. Finally,

when Alice agrees on the meeting proposal, Bob updates

his availability on the agenda, using a date displayed on

the IM service. Figure 2 details the scenario by illustrating

the involved services and data that are transmitted from

one service to another. It illustrates well the need for

transmitting from a service to another data that were not

declared as outputs by services. For example, when Bob

searches for Alice in the directory service, he has

manually composed the IM service with the directory

service, even though the IM service did not declare that it

generates “names” as outputs. Also, when Alice receives,

by IM, a meeting proposal on “April 5
th

 at 10AM”, she

has manually composed the IM service with the agenda

service in order to check her availability on that date, even

though the IM service did not declare that it generates

“dates” as outputs.

Fig. 2. Alice and Bob’s actions during the scenario.

Current SOA and service composition tools addressed

for end-users do not enable them to automate such

behavior. Both automatic and semi-automatic service

composition are based on mapping legacy outputs of

services with inputs of others; inputs and outputs which

are declared by developers when publishing their services.

In the illustrated scenario, end-users need to compose

services based on data that are not, and can not be,

declared by service developers. For example, when Alice

checks her availability on the agenda service, she used

data of type “date” displayed on the IM service. However,

the IM service is not supposed to generate “date” data as

outputs. Therefore, the developer of the IM service is not

expected to declare that his service will generate “date”

data when publishing the IM service to a registry.

Consequently, current service composition tools do not

enable Alice to create a composite service that combines

the IM service with the agenda service based on “date”

data.

To tackle this limitation, we propose in the next

sections a new service oriented architecture associated to

a new service composition environment that enables the

end-user to specify composite services based on

unstructured data; data that can not be declared by service

developers.

4. Proposed Approach Design

In order to tackle the limitation we have previously

detailed, we propose in this section a service architecture

associated to a service composition language that enables

the specification of composite services based on

unstructured data. Our goal is to enable service integrators

to define transitions from a service A to a service B based

on data that were not previously declared as legacy

outputs when publishing service A.

The architecture we propose in this paper is

characterized by adding to current SOA a new registry

component that contains unstructured data extraction

modules. These modules, when invoked, are in charge of

extracting unstructured information from outputs of a

specified service. Figure 3 illustrates the new architecture,

in which:

 Service providers create basic services and publish

them to the service registry.

 Data extraction modules providers create the data

extraction modules and publish them to the

corresponding registry (practically, data extraction

modules registry might be the same as the service

registry, but the differentiation between the two

types of services is necessary). These modules can

be developed by the administrator of the

framework we propose.

 Data extraction modules are one-to-one associated

to a data type. This enables the platform to detect

which data extraction module to invoke for a

needed data type.

Fig. 3. Proposed architecture overview.

For manual composition of services, developers firstly

discover the source and the destination service. Secondly,

if the inputs of the destination service are different from

legacy outputs of the source service, developers discover

the data extraction module needed to extract the input

needed by the destination service from the output

generated by the source service. Then, they invoke the

discovered data extraction module. Finally, developers

invoke the destination service using the extracted data as

input parameters.

As we detailed in the related work section, service

composition languages, associated to service

orchestrators, aim to automate as far as possible the

service consumer actions. Both automatic and semi-

automatic service composition tools aim to facilitate the

creation of a composition script (which follows a

composition language). Therefore, we obviously need an

update to current service composition languages in order

to harness this new architecture. Consequently, we

introduce in this paper a new pattern for composing

services. Thus, as illustrated in Figure 4, instead of

modeling a composition script as a graph G <N,L>, it is

now a graph G <N,L,U> where nodes (N) is a set of

services that should be invoked by the orchestrator, links

(L) are the mapping between legacy outputs of services

with legacy inputs of others, and unstructured data based

links (U) are mappings between unexpected outputs of

services with legacy inputs of others. Each element of L is

a triplet <n1,n2,dataType> where n1 is the source node

(service), n2 is the destination node (service), and

dataType is the type of data generated by the source

service and transmitted as input parameter to the

destination service (output/input mapping). The dataType

must be a legacy output of the source service and a legacy

input of the destination service.

Each element of U is also a triplet <n1,n2,dataType>,

where n1 is the source node (service), n2 is the destination

node (service), and dataType is the data that should be

extracted from the source service and transmitted to the

destination service as an input parameter. Note that the

dataType in this case is not a legacy output of the source

service (this is the main difference links L and links U).

When such unstructured data based link (U) exists in a

composition, the framework detects automatically the

corresponding data extraction module to use (using the

one-to-one association between data types and

unstructured data modules).

Fig. 4. New composite service example.

Figure 4 shows a composite service that follows the

model we introduce. First, there are four services:

Directory, IM, Telephony, and Agenda. Second, there are

two legacy links (L): one that gets the email address

generated by the directory service to initiate an IM in the

IM service, and another that gets the source email address

of an IM in the IM service to search the corresponding

contact in the directory service. Finally, there are two

unstructured data based links (U): one that extracts phone

numbers from the IM service to make a call using the

telephony service, and one that extracts dates from the IM

service to check the availability of the end-user in that

date using the agenda service (note that the phone

numbers and dates are not legacy outputs of the IM

service).

Usually, at the execution time of the composite service,

the orchestrator reads the composition script, invokes the

initial basic service(s), retrieves the generated outputs,

maps them to inputs of other services according to the

defined links, and invokes those services. However, in the

pattern we introduce, the orchestrator is also in charge of

calling the data extractor module specified in the

unstructured data based links. This enables to retrieve the

actual data that will be transmitted as input parameter to

the destination service. The new sequence performed by

the orchestrator is thus:

 The invocation of the source service;

 if the link is a structured data based link (L), then

the orchestrator transmits the specified output as an

input parameter in the invocation of the destination

service;

 otherwise (if the link is an unstructured data based

link (U)), the orchestrator detects the data

extraction module corresponding to the dataType

needed by the destination service; then it invokes

the data extraction module in order to extract the

needed dataType from the outputs of the source

service;

 finally, the orchestrator invokes the destination

service with the extracted data as input parameters;

5. Implementation and Validation

The main contribution of this paper is the definition of

new service composition pattern, which enables service

integrators to define a link between a source service and a

destination service based on unstructured data; data that

are not declared as legacy outputs by the source service.

In this section, we detail the service composition

implementation, and validate it by creating the composite

service previously illustrated in Figure 4; the result

(composite service) is depicted in Figure 5.

The implementation we propose in this section is a

composition tool running at the Web browser level; a

Mashup creation tool. The framework enables end-users

to create links between two services loaded on their

environment. A link between two services might rely on

structured and unstructured data. For instance, if we

consider the composite service illustrated in Figure 4, it

embeds two structured data based links (from the

Directory to the IM and from the IM to the Directory) and

two unstructured data based links (from the IM service to

the telephony service, and from the IM service to the

Agenda service). The unstructured data based links aim to

enable the end-user to easily capture useful data (resp.

phone numbers and dates from the IM service) that are

neither formatted nor structured by developers, and

compose them with other services (resp. Telephony and

Agenda service). There is for example a link between the

IM service and the telephony service based on a phone

number (which is not a legacy output of the IM service),

and another between the IM service and the Agenda

service based on dates contained within messages

exchanged through the IM service.

As the composite service G <N,L,U> is running on the

Web browser, we have used JSON format (RFC 4627

[12]) to model it, and we have used JavaScript language to

execute the composite service. Table 1 shows the detail of

each element within the graph. Our interests are the legacy

(structured data based) links (L) and the unstructured data

based links (U).

Fig. 5. Execution of the composite service example.

TABLE I JSON REPRESENTATION OF COMPOSITE SERVICE GRAPH

 JSON format

N (node) { nodeId: nodeIdValue, serviceId:

serviceIdValue, operationName:

operationNameValue }

L (legacy link) { sourceNodeId: sourceNodeIdValue,

destNodeId: destNodeIdValue,

outputParameter: outputParameter,

inputParameter: inputParameter }

U (unstructured

data based link)

{ sourceNodeId: sourceNodeIdValue,

destNodeId: destNodeIdValue,

unstructuredDataExtractor:

unstructuredDataExtractorReference,

unstructuredDataType:

unstructuredDataType, outputParameter,

inputParameter: inputParameter }

Legacy links (structured data based links) are defined

by the source service identifier, the destination service

identifier, the output parameter name of the source

service, and the input parameter name of the destination

service. In addition to these properties, we add an icon

URL. The icon URL enables the framework to graphically

represent the link to the end-user [10 and 11], so that

when the end-user clicks on it, the destination service is

automatically invoked using the data generated by the

source service as input parameters. This icon is added by

the orchestrator we define to the source service in an area

defined by the service developer. Figure 5 shows how

legacy links (blue arrows) are represented through icons at

the presentation layer of the composite service. It

illustrates a legacy link from the directory service to the

IM service, which enables the end-user to invite a contact,

generated on the directory service, to join an IM

discussion. Figure 5 illustrates also another legacy link

between the IM service and the directory service. It

enables the end-user to search a contact on the directory

service based on an IM address generated by the IM

service.

Unstructured data based links are defined by the source

service, the destination service, the unstructured data

extraction module, the output parameter of the source

service, the input parameter of the destination service, and

the unstructured data type (the data type that are extracted

by the extraction module). We associate also an icon URL

to the link in order to present it to the end-user.

Each time the orchestrator finds an unstructured data

based link in the composite service, it associates a listener

to the source service. This listener uses the data extraction

module corresponding to the link in order to detect

unstructured data within the outputs of the source service.

Each time such unstructured data is detected, the

orchestrator adds the icon to the source service UI,

besides the extracted data. Figure 5 illustrates how

unstructured data based links (red arrows) are represented

through icons at the presentation layer. When the end-user

activates the link (clicks on the icon), the destination

service is automatically launched with the extracted data

as input parameters.

It illustrates a link going from the IM service to the

agenda service. It enables the end-user to check his/her

agenda availability on a date generated by the IM service

(note that a date is not a legacy output of the IM service).

Figure 5 shows also another unstructured data based link,

going from the IM service to the telephony service. It

enables the end-user to launch calls using phone numbers

generated by the IM service.

6 Discussion and Future Work

The work presented in this paper is a new SOA pattern

that aims to enable service integrators (developers or end-

users) to firstly capture unstructured data, and secondly to

use these data in the composition of services. Associated

to this architecture, we have proposed a new composition

pattern which is validated by implementing a Mashup

creation tool. The validation includes also the creation of

a Mashup that combines services using the unstructured

data they generate (see Figure 5).

However, SOA and composition tools are not limited

to Mashups creation. Indeed, they are also used in several

other fields such as implementation of business processes

[13], speeding up software development, and pervasive

application development [14]. As a consequence, a deeper

investigation is required to really validate and/or adapt our

proposal to these different fields.

Nevertheless, this paper shows that considering

unstructured data within composition platforms is

interesting in communication services. Indeed, users

exchange a great amount of unstructured data; data which

are not considered neither by SOA nor by current

composition approaches. In our implementation we have

used only text based unstructured data. Therefore, there

still remain interesting studies on how to use data

extractor modules which consider multimedia content. In

other words, can we use the same architecture, if we want

to extract data from multimedia content (e.g capturing a

postal address from a speech or audio conversation), and

compose them with other services (e.g Google Map)? The

answer to this question requires a deeper investigation on

scalability, performances, usage issues, and privacy

concerns.

The mechanism we define also provides an interesting

alternative to the common semantic that must be shared

between services when trying to automate the

composition. Indeed, by definition, the architecture we

introduce enables the extraction of unstructured data and

their usage in composition with other services. Therefore,

when the input required by the destination service does

not correspond to the outputs generated by the source

service, the orchestrator tries to extract the needed data

from the source service. As a consequence, it is not

necessary to describe the outputs of services exactly in the

same way that are described the inputs of other services.

7 Conclusion

This paper introduces an enhancement to current SOA in

order to enable service composition based on data that are

not declared by service developers. Our solution is

characterized by adding a new registry to SOA that

contains modules that enable extracting and formatting

unstructured data of a service. Then, we introduce a

service composition pattern that enables the specification

of an execution sequence based on unstructured data. We

validate this approach by firstly implementing an end-user

Mashup creation tool, and by secondly creating a rich

communication environment using the Mashup creation

tool we have defined and implemented.

Though our implementation validates the approach we

propose, it also shows that it requires the end-user

involvement when executing a composite service, as data

extraction techniques are still not accurate enough.

Consequently, the architecture, as it is, does not intend to

replace end-to-end service composition such as BPEL

tools, but instead it significantly facilitates the creation of

Mashups, where services communicate with each other

based on structured and unstructured data at the UI level.

Nevertheless, it is worthwhile to investigate more deeply

the idea of using unstructured data within the composition

tools.

8. References

[1] Wu, D., Sirin, E., Hendler, J., Nau, D., Parsia, B.:

Automatic Web Services Composition Using SHOP2.

13th International Conference on Automated Planning &

Scheduling, Workshop on Planning for Web services,

Trento, Italy, June 2003.

[2] Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic

Composition of Semantic Web Services”. WWW03,

Budapest, Hungary: 2003.

[3] Hierro, J.J., Janner, T., Lizcano, D., Reyes, M., Schroth,

C., Soriano, J.: Enhancing User-Service Interaction

through a Global User-Centric Approach to SOA. Fourth

International Conference on Networking and Services,

2008. ICNS 2008, vol., no., pp.194-203, 16-21 March

2008.

[4] Wong, J., Hong, J.I.: Making mashups with marmite:

towards end-user programming for the web. In

Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems, New York: NY, pp 1435-1444.

[5] O'Reilly, T.: What Is Web 2.0, Design Patterns and

Business Models for the Next Generation of Software.

[6] Cremene, M., Tigli, J.Y., Lavirotte, S., Pop, F.C., Riveill,

M., Rey, G.: Service Composition Based on Natural

Language Requests, IEEE International Conference on

Services Computing, 2009. SCC '09. vol., no., pp.486-

489, 21-25 Sept. 2009.

[7] Tony, A., et al. Business Process Execution Language for

Web Services.

[8] Belaunde, M., Falcarin, P.: Realizing an MDA and SOA

Marriage for the Development of Mobile Services. In

Proceedings of the 4th European Conference on Model

Driven Architecture: Foundations and Applications Berlin,

Germany, June 09 - 13, 2008.

[9] Newcomer, E.: Understanding Web Services: XML, Wsdl,

Soap, and UDDI. Addison, Wesley, Boston, Mass., May

2002.

[10] Laga, N., Bertin, E., Crespi, N.: A web based framework

for rapid integration of enterprise applications. In

Proceedings of the 2009 international Conference on

Pervasive Services London, United Kingdom, July 13 -

17, 2009.

[11] Laga, N., Bertin, E., Crespi, N.: Building a User Friendly

Service Dashboard: Automatic and Non-intrusive Chaining

between Widgets. World Conference on Services - I, 2009, vol.,

no., pp.484-491, 6-10 July 2009.

[12] IETF, RFC 4627.
[13] Arsanjani, A., Zhang, L., Ellis, M., Allam, A., Channabasavaiah,

K.: S3: A Service-Oriented Reference Architecture. IT

Professional 9, 3 (May. 2007), 10-17.

[14] De Deugd, S., Carroll, R., Kelly, K.E., Millett, B., Ricker, J.:

SODA: Service Oriented Device Architecture. Pervasive

Computing, IEEE, vol.5, no.3, pp.94-96, July-Sept. 2006.

