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4 place Jussieu, 75252 Paris Cedex,

Abstract. Genetic Regulation Networks (GRNs) are a model of the
mechanisms by which a cell regulates the expression of its different genes
depending on its state and the surrounding environment. These mech-
anisms are thought to greatly improve the capacity of the evolutionary
process through the regulation loop they create.

Some Evolutionary Algorithms have been designed to offer improved
performance by taking advantage of the GRN mechanisms. A recent hy-
pothesis suggests a correlation between the length of promoters for a
gene and the complexity of its activation behavior in a given genome.
This hypothesis is used to identify the links in in-vivo GRNs in a recent
paper and is also interesting for evolutionary algorithms. In this work,
we first confirm the correlation between the length of a promoter (bind-
ing site) and the complexity of the interactions involved on a simplified
model. We then show that an operator modifying the length of the pro-
moter during evolution is useful to converge on complex specific network
topologies. We used the Analog Genetic Encoding (AGE) model in order
to test our hypothesis.

1 Introduction

Evolutionary Algorithms (EA) are nowadays able to offer improved solutions for
many problems and sometimes outperform engineering methods. Though, we are
unable to obtain solutions as complex as what in-vivo evolution has produced.
Some of the evolutionary mechanisms behind biological evolution are still unex-
plained. It is believed EA could benefit from understanding these mechanisms
[1]. There are many of these mechanisms, as for example splicing, through which
a single gene can encode multiple proteins [2,3]. Genetic Regulation Networks
(GRNs) are a model of other of theses mechanisms by which a cell regulates the
expression of its different genes depending on its state[4]. A strong hypothesis
is that the complexity of the interactions obtained thanks to the GRNs is, at
least, partly responsible for the diversity increase of many living organisms [5],
as well as improvements in the genome evolvability and robustness [6]. Though,
the complexity of these mechanisms is still not fully understood [7].

We believe that understanding which in-vivo characteristics improve the per-
formance of biological evolution is a key to designing efficient EA. In order to do



S0, it is necessary to identify which elements of these mechanisms are necessary
and must be reproduced to improve performance. In this work, we investigated
if one of these mechanisms is relevant: a mutation operator adding or remov-
ing one base in string based evolutionary algorithms. This operator is usually
considered minor, as in-vivo RNA is read three bases at a time (codon) during
protein synthesis, and adding or deleting a base in DNA shifts the sequence,
creating a protein totally different from the original. Though, in the case of
non-coding DNA/ this operator may be more useful. In the following work, we
asked ourselves two questions. First, does the add/remove operator provide a
sufficient mechanism to obtain a correlation between the length of cis-regulatory
sequences as stated in [8]. And more important, does this operator improve the
performance of the algorithm in any way 7

2 Related Works

2.1 Gene Regulation Networks

GRNSs rely on multiple mechanisms. One of them is the possibility for a protein,
called a transcription factor to bind itself to a sequence of DNA located before
or after a given gene. When a relevant protein binds itself to the site, the ex-
pression of the gene will either be enhanced (enhancer) or blocked (inhibitor).
Most genes present such cis-regulatory sequences, which contain multiple bind-
ing sites for various proteins. These mechanisms can first be seen as a mean to
create “programs”, enhancing the cell capacity to order the synthesis of proteins
or reactions to adapt to specific stimuli [9].

GRNs are also believed to speed up evolution. A single mutation in a cis-
regulatory region can have varying impact on an organism without modifying the
gene itself, for example by removing or creating a new interaction between the
regulated gene cis-regulatory sequence and another transcription factor. Dupli-
cation of a transcription factor gene or binding site also creates new interactions
in a genome [10]. Therefore interactions provided by the GRNs provide another
level impacted by evolution.

2.2 Existing Methods

The objective to find ways to harness the properties of these GRNs to improve
the performance of evolutionary algorithms is stated in [1]. More precisely, the
goal is to understand which GRN properties improve the evolvability of living
organisms. Some properties have already been highlighted in several articles
[11-13]. Algorithms have been created to take advantage of them as Artificial
Ontogeny [14] or lately PBGA [15]. We tried to find a model closely related to
the biological mechanisms while avoiding the overhead of more complex biology
based models like HeRoN [16].



2.3 Research of relevant properties of GRNs

The first step to take advantage of the GRN capabilities is to understand their
properties and the implications for evolvability. Examples of these properties
are found in [11] which tries to understand how varying goals coupled to spe-
cific evolution mechanisms can change the evolvability of a genome to speed
up convergence on specific problems. It highlights the fact that the specificity
of transcription factors to multiple binding sites is, in itself, a way to encode
evolutionary information. The mechanisms behind GRNs are quite complex and
multiple parameters are still unknown. Here, we restrict our study to algorithms
using both a string based encoding while keeping simple enough matching mech-
anisms. AGE is the only existing example we could find to fulfill these conditions.
A work similar to this one was done by C. Mattiussi [17], who studied the im-
pact of a mutation operator allowing the duplication of sequences in a genome
to obtain convergence of the algorithm. Here, we do a similar work with the
possibility to incrementally modify the length of the cis-regulatory sequences.

24 AGE

Analog Genetic Encoding is an indirect encoding mechanism which was designed
to use some mechanisms of the GRNs [17] to generate networks by evolving a
string based EA. Tt has recently shown impressive results for the reverse engineer-
ing of existing in-vivo GRNs[18]. AGE features complex generation mechanisms,
many of which are not relevant to our problem, therefore, we chose to focus only
on part of these mechanisms which will be described here. Our goal, as in [11] is
to assess the capacity of a set of nodes to converge to a specific network topology.
In AGE, a network is composed by a set of genes. Each gene is equivalent to
a node in a network (see figure 1). Each gene is composed by output and in-
put sequences, each of which is located in the gene and located between a start
and an end sequence (which could be compared to start and stop codons). The
links in the network are defined by comparing the input and output sequences
of different nodes. Similar sequences will be considered as a strong link between
two nodes while two totally different sequences will be considered as an absence
of link. As expressed in [17], this is quite similar to the process by which micro
RNA can repress the expression of other genes by blocking their DNA or RNA
expression [19]. For this model, the strength of the link is computed using a local
alignment score [20].

3 Experiments

For our experiment, we considered a fixed set of nodes (three to five, depending
on the experiment). Each node is composed of two sequences of nucleotides. One
input sequence which models the promoter sequence, and one output sequence,
loosely modelling the transcription factor / microRNA. Our algorithm mutates
theses two sequences by using three possible operators. The first (second) one is
the addition (deletion) of a nucleotide at some point in the sequence. Another



point is that we do not extend our algorithm to differentiating inhibitory and
enhancing links.

The fitness of a network is obtained by comparing the network topology to
a reference network. An optimal link strength (1.0) is defined by two sequence
containing a common subsequence of three bases. The absence of link is defined
as two sequences with a longest common subsequence between two sequences of
one base. The intermediary is considered as a link with a strength of 0.5.

Input Sequence Node 1 output Sequence Input Sequence

RAREENRE
BIF|A|H|K]|Y]|T|R E|G|F|S|K]|Y|R
1t 131
GREEER
Input Sequence Node 2 output Sequence

output Sequence

RBFAHRYFL—O—FCHKYR Highest Score :
3

Fig. 1. Left: Two sample nodes in our simplified implementation of AGE; Right: the
sequence comparison algorithm for definition of the link between the output sequence
of the bottom node and the input sequence of the top node. Only contiguous bases are
considered, the longest subsequence for this comparison is therefore of 3 bases even if
both also have the F in common.

We made two different experiments related to the length of the sequence of
the binding sites. The first one is used to test the correlation between the length
of a sequence and the number of links this sequence has in the network. The
second experiment tests the effect of switching on and off the add/remove oper-
ator on the convergence speed for a “complex” network. All the runs were done
using the simplified version of AGE described previously where the only addi-
tional mutation operators possible are the exchange of a base in the sequence
for another and the addition / deletion operators. In order to improve the per-
formance, the size of the alphabet was set at 7 (this gives the best results for
our networks). There is no order relationship between the bases in the alpha-
bet (the replacing mutation operator switches randomly from one base to the
other). The selection algorithm used for all the experiments was NSGA 2 [21],
a commonly used tournament based multi objective selection algorithm as fur-
ther experiments required multiple objectives. Each run was repeated at least
10 times. Figure 2 sums up all the parameters used for the experiments.

3.1 Convergence of Sequence Length

The first experiment was done in two steps. In the first step, we tried to evolve
two simple networks of 3 nodes with homogeneous (2 output links and 2 input
links per node) or heterogeneous links (2 outputs for each node but 1 to 3 inputs



lParameters
alphabet size 7 ||population 200
maximum number of generation|10000| probability to delete base |0.01
probability to add base 0.02 ||probability to mutate base| 0.1
max sequence length 20

Fig. 2. Summary of the parameters.

per node) as shown in figure 3 and we analysed the length of all the sequences
of the first individual to reach the optimal fitness in each run.

Fig. 3. Left: homogeneous network of three vertex (the top circles show the outputs,
the bottom ones the inputs); Center: heterogeneous (different number of inputs and
same numbrer of outputs) network with 3 nodes; Right: heterogeneous network with 5
nodes.

The results of these experiments show a convergence to a size of 7 for each
sequence in the homogeneous network. In the experiment trying to converge
on a 3 node heterogeneous network (center box of figure fig:networkstype),we
obtained a correlation between the length of the sequence and the number of links
connected to the node. As the differences were not significant, we made a similar
experiment with a network containing 5 nodes and heterogeneous connections
(nodes had 3 outputs each and respectively 1, 2, 3, 4 and 5 inputs). All the results
(mean length of the sequences and standard deviation) are shown in figure 4.

For the results on the 5 nodes network, we have a significant difference (using
Wilcoxon T-test) as the probability of the two sequences being from the same
data is less than 1% between all the nodes having different numbers of inputs
apart from between sequences 2 and 3 where this probability is 7.5%. These re-
sults confirm our first hypothesis, which is that the length of the sequences illus-
trates the complexity of the interactions the node is involved in. The add/remove
mutation operator is therefore sufficient to obtain these results. This is also a
confirmation of the results stated in [8].

3.2 How the operator affects performance of the EA

The first experiment showed that the length of the cis-regulatory sequence de-
pends on the complexity of the interactions the node is involved in. Our next
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Fig. 4. Left: sequence length for an homogeneous network containing 3 nodes; Center:
sequence length for an heterogeneous network containing 3 nodes; Right: sequence
length for an heterogeneous network containing 5 nodes.

step was to test if a network correctly initialized could converge without length
modification during the run or if the modification of the length improves per-
formance. In evident cases (simple 3 nodes networks), the add/remove operator
doesn’t have a significant impact on the results unless initial parameters are ini-
tialized to abnormal values. Therefore, we experimented on a network which the
algorithm has difficulties to converge to. In order to place ourselves in the worst
possible scenario for our hypothesis (necessity of the add remove operator), we
took an homogeneous symmetric target network where each node has 4 inputs
and 4 outputs and tried to compare the performance. To do so, we first randomly
initialized a 5 node network and made it converge to the target network with the
addition / deletion operator enabled. It converged in all of the runs and showed
a mean length of 8 bases per sequence and a standard deviation around 1. We
then ran the same experiments with length modification operators disabled and
a fixed initial length of 8 corresponding to the ”optimal” length and compared
it to a similar network without the length modification enabled.

The results were that the runs without sequence length modification were sig-
nificantly faster than the runs with the operator enabled. However, this is a case
where we specified the optimal length before running the algorithm, which is an
unusual situation. Therefore, we made several additional runs of both algorithms
by changing only the initial sequence length to compare their performance. The
results are given in figure 5 and show that, if the initial length is not optimal,
the add/remove operator is a good way to avoid seeing the algorithm get stuck
because of insufficient initial complexity. It also helps the convergence rate in
non optimal bootstrap cases as can be seen in figure 6. Therefore, we believe
that, as the optimal situation of both an homogeneous network and predefined
optimal sequence length is unusual, it is usually a good idea to enable the se-
quence length modification. The alternative being to define the optimal length
by another mean before running the algorithm.
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Fig. 5. Performance of the EA on a complex network for different bootstrap lengths.
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Fig. 6. Convergence rate of experiments depending on bootstrap length and specified
operators.

4 Conclusion and Discussion

In this work we have first confirmed that there is a correlation between cis-
regulatory sequence length and the complexity of interactions the following gene
is involved in, but also that the dynamic modification of sequence length is a
useful operator (sometimes to allow convergence of the EA, or to facilitate con-
vergence in complex situations). We have also illustrated that a simple evolution
mechanism is able to take advantage of these operators, at least in certain cases.

The results shown in the first experiment converge around a length of 7 for
both the 3 nodes network while the 5 nodes network converge on a length of 8.
Therefore, it could be argued that the optimal length is usually around 8 and
that, as this length is sufficient, the add/remove operator can be disabled to
improve performance. This is partly true for these sandbox networks (in experi-
ment 2, the best performance is achieved for a bootstrap length of 9). The goal
of AGE and other EA is eventually to solve complex problems, with potentially
many more nodes and links. In these situations, using a default a length of 8 is
raises a risk that the network might not offer enough complexity to converge, as
was the case with the 5 bases long runs of the third experiment and therefore
be unable to converge.
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