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ABSTRACT
One of humanity’s grand scientific challenges is to create ar-
tificially intelligent robots that rival natural animals in intel-
ligence and agility. A key enabler of such animal complexity
is the fact that animal brains are structurally organized in
that they exhibit modularity and regularity, amongst other
attributes. Modularity is the localization of function within
an encapsulated unit. Regularity refers to the compressibil-
ity of the information describing a structure, and typically
involves symmetries and repetition. These properties im-
prove evolvability, but they rarely emerge in evolutionary
algorithms without specific techniques to encourage them. It
has been shown that (1) modularity can be evolved in neural
networks by adding a cost for neural connections and, sepa-
rately, (2) that the HyperNEAT algorithm produces neural
networks with complex, functional regularities. In this pa-
per we show that adding the connection cost technique to
HyperNEAT produces neural networks that are significantly
more modular, regular, and higher performing than Hyper-
NEAT without a connection cost, even when compared to a
variant of HyperNEAT that was specifically designed to en-
courage modularity. Our results represent a stepping stone
towards the goal of producing artificial neural networks that
share key organizational properties with the brains of natu-
ral animals.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Connectionism
and neural nets

Keywords
Artificial Neural Networks; Modularity; Regularity; Hyper-
NEAT; NSGA-II
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1. INTRODUCTION
An open and ambitious question in the field of evolution-

ary robotics is how to produce robots that possess the intel-
ligence, versatility, and agility of natural animals. A major
enabler of such complexity in animals lies in the fact that
their bodies and brains are structurally organized in that
they exhibit modularity and regularity, amongst other at-
tributes [22,30].

A network is considered modular if it contains groups of
highly interconnected nodes, called modules, which are only
sparsely connected to nodes outside the module [8, 17, 22].
In addition to such topological modularity, an even stronger
case for modularity can be made if such topological modules
correspond to the performance of sub-functions, a property
called functional modularity [22].

Theoretical and empirical evidence suggests that modular-
ity speeds up evolvability, which is the rate of evolutionary
adaptation [1, 8, 17–19]. Modularity improves evolvability
by allowing building blocks (modules) to be rewired for new
functions and—because the e↵ects of mutations tend to be
confined within a module—by allowing evolution to tinker
with one module without global e↵ects [17].

Regularity can be defined as: “the compressibility of the
description of the structure” [22]; as a structure becomes
more regular, less information is required to describe it.
Common forms of regularity include repetition, symmetry
and self-similarity. It has been shown that regularity im-
proves both performance and evolvability [5, 7, 14, 15], and
increasingly does so on more regular problems [10]. Legged
locomotion, for example, can greatly benefit from the reuse
of information [5, 10,14–16].

Despite the advantages of modularity and regularity, these
properties do not naturally emerge in evolutionary algo-
rithms without special techniques to encourage them [8–10,
17]. While these properties enhance evolvability and ulti-
mately performance, such long-term advantages do not typ-
ically grant an immediate fitness boost to individuals that
exhibit them. Evolution has been shown to forgo long-term
benefits in performance and evolvability if there is no short-
term benefit [7, 37,38].

Encouraging the evolution of modularity has been a long-
standing interest in the field, yielding a variety of strategies
to promote it [8,12,14,15,17,31,32,35,36]. One general strat-
egy is to design developmental systems featuring encodings
biased towards modular structures [14, 15, 31, 32, 35]. While
e↵ective, these heavily biased encodings often produce net-



works that adhere very closely to a specific structure, leaving
little room to adapt when circumstances require a di↵erent
topology. Another method was demonstrated by Kashtan
and Alon [17], who showed that alternating environments
with modularly varying goals can give rise to modular net-
works. Unfortunately, it can be di�cult to define modularly
varying goals for many tasks. Moreover, the frequency of al-
ternating between these environments must be finely tuned
for the e↵ect to emerge [8, 12]. Espinosa-Soto and Wag-
ner [12] found that modularity can be evolved by selecting
for a new task while retaining selection for previously ac-
quired functionalities. However, it is non-trivial to decide
on a sequence of sub-tasks that will eventually provide a
complex, functionally modular solution to a specific task.

In this paper we will build upon a di↵erent, recently pub-
lished method that yields the evolution of modular networks.
In 2013, Clune, Mouret and Lipson showed that applying a
cost for network connections leads to modular networks [8],
and does so in a wider range of environments than a previous
leading method [17]. This connection-cost technique (CCT)
is biologically plausible, as many connection costs exist in
natural networks, such as the cost to build and maintain
connections, slower propagation through long connections,
and the physical space occupied by long connections [30].
Connection costs may thus help explain the ubiquitous mod-
ularity found in natural networks [8, 30]. Furthermore, the
CCT is computationally inexpensive and can be easily in-
corporated into the fitness of any evolutionary algorithm,
especially multi-objective algorithms [11].

The most common method for producing regular networks
is to use a generative encoding (also called an indirect or de-
velopmental encoding) [10, 14–16, 27, 29, 31]. The encoding
of an individual defines how its genotype is mapped to its
phenotype, and a generative encoding implies an indirect
mapping such that elements in the genotype might describe
more than just a single element in the phenotype. Gener-
ative encodings are often based on natural developmental
systems, such as gene regulatory networks, cell division, or
chemical gradients, making them more biologically plausible
than direct encodings [29]. In generative encodings, compact
genomes describe a much larger phenotype via the reuse of
genomic information, giving rise to regular structures. In
fact, if we consider the genotype as a compression of the
phenotype, large phenotypes encoded by small genotypes
are regular by definition [22].

To generate regularity we employ the HyperNEAT [27]
algorithm, which encodes neural networks with a generative
encoding called Compositional Pattern Producing Networks
(CPPNs) [26]. CPPNs produce spatial patterns that ex-
hibit regularity with variation (Fig. 1a). These spatial pat-
terns define the connectivity across the geometric layout of
nodes, enabling HyperNEAT to produce networks that ex-
hibit structural regularity [9]. This paper demonstrates that
the combination of HyperNEAT with the Connection Cost
Technique –HyperNEAT-CCT– produces networks that are
both modular and regular.

2. METHODS

2.1 HyperNEAT
To generate a network, HyperNEAT requires a geometric

layout of nodes (see Fig. 1b-d for the layouts for problems
in this paper). Given one of these layouts and a CPPN, the
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Figure 1: Example CPPN and geometric layouts.
(a) A CPPN example (see section 2.1). (b) Geometric lay-
out for the Retina Problem. (c) Geometric layout for the
H-XOR problem. (d) Geometric layout for the 5-XOR
problem. Note that, the z coordinates of all nodes are 0.

connectivity of a network is determined by supplying the x,
y, and, z coordinates of two neurons as inputs to the CPPN,
after which the weight of the connection between those neu-
rons is set to the weight output of the CPPN (Fig. 1a). To
set the biases of neurons, the x, y and z coordinates of a
single node are supplied to the CPPN together with a null
position for the other inputs, and the bias is read from a
separate bias output node (Fig. 1a).

Because it has been demonstrated that the original Hyper-
NEAT has trouble creating modular networks [4], we have
implemented HyperNEAT with the Link-Expression Out-
put (LEO) [36], an additional output neuron determining
whether connections are expressed (Fig. 1a). This extension
allows HyperNEAT to separate network connectivity from
weight patterns, enhancing its ability to evolve sparsely con-
nected, yet functional, sub-units. Connecting a Gaussian
seed to LEO further increases HyperNEAT’s ability to pro-
duce modular networks [36].

The Gaussian seed consists of an additional hidden node
with a Gaussian activation function, added to the network
upon initialization. This node is connected to two inputs
by one inhibitory and one excitatory connection, such that
their sum represents the di↵erence along one axis. Because
the Gaussian activation function produces strong activations
only for values close to 0, it will ‘fire’ only when distances
between nodes are short, thus encouraging shorter connec-
tions, which may help in discovering modular solutions [36].

However, by planting the Gaussian seed inside the CPPN,
there is no guarantee that the seed will be preserved through-
out evolution. Whenever there is no immediate benefit for
shorter connections, which may occur at any point in a run,
the Gaussian seed might disappear completely from the pop-
ulation. We believe that, due to its persistence as a selec-
tion pressure, the CCT will generally outperform the locality
seed. That is because there exist many situations in which
the advantages of short connections are not immediate while
solving problems in challenging or changing environments.
To test that hypothesis we include a treatment featuring
HyperNEAT, LEO, and the Gaussian seed.



In our implementation the seed is exclusively employed for
the x inputs, which was reported to be the most successful
variant [36]. The weights from the input to the Gaussian
seed are �0.6 and 0.6, respectively. The LEO node starts
with a sigmoid activation function (a hyperbolic tangent)
and a negative bias (�1). A link is expressed when the LEO
node returns a value � 0, which provides a behavior similar
to the step function used in [36].

HyperNEAT evolves CPPNs genomes via the NeuroEvo-
lution of Augmenting Topologies (NEAT) algorithm [28].
The three important parts of the NEAT algorithm are (1)
an intelligent method for crossover between networks, (2)
protecting diversity through speciation and (3) complexifi-
cation, which means starting with networks that have few
nodes and connections, and adding them across evolution-
ary time. In this paper we have implemented HyperNEAT
within the PNSGA algorithm from [8], which is programmed
within the Sferes21 platform [23]. The resulting algorithm
di↵ers from NEAT in two ways. First, speciation, which
encourages genomic diversity in NEAT, is replaced by a be-
havioral diversity objective, an adaptation employed in sev-
eral other publications [20, 33]. Second, crossover has been
removed for simplicity. We follow previous publications by
the authors of HyperNEAT in maintaining the name Hyper-
NEAT to algorithmic variants that have its key components
(e.g. CPPNs, complexification, and diversity) [20,33].

2.2 Experiments
There are four di↵erent treatments: (1) HyperNEAT, (2)

HyperNEAT with the Gaussian Seed (HyperNEAT-GS) [36],
(3) HyperNEAT with the Connection Cost Technique
(HyperNEAT-CCT), and (4) a direct encoding with the Con-
nection Cost Technique (DirectEncoding-CCT), which is the
main algorithm from [8]. Each HyperNEAT treatment fea-
tures LEO (explained above). All treatments are evolved
according to the same evolutionary algorithm described in
section 2.3, and every treatment optimizes at least two ob-
jectives: performance on the test problem and behavioral
diversity. Treatments employing CCT add minimizing con-
nection costs as a third objective.

Behavioral diversity of an individual is calculated by stor-
ing the output for every possible input in a binary vector
(< 0 is false, � 0 is true) and then taking the average Ham-
ming distance to the binary vector of all other individuals in
the population. The connection-cost is calculated as the sum
of squared lengths of all connections in the phenotype [8].

2.3 Evolutionary Algorithm
We incorporate the CCT into the multi-objective PNSGA

algorithm [8], an extended version of NSGA-II [11]. These
algorithms optimize individuals on several tasks at once, and
try to preserve and select for all individuals that have some
unique trade-o↵ between between objectives, such as being
very good at one task but terrible at the others, or being av-
erage at all tasks. PNSGA extends NSGA-II by assigning a
probability to an objective, which determines the frequency
that this objective will factor into selection. By assigning a
lower probability to the connection cost objective, we can
implement the intuition that performance on the task is
more important than a low connection cost. For these ex-

1All of the source code used to perform these experiments
is available on EvolvingAI.com.

periments, following [8], the probability of the connection
cost factoring into a fitness comparison is 25%.

The population is initialized with randomly generated,
fully connected networks without hidden nodes, as is pre-
scribed for NEAT [28]. Parents are chosen via tournament
selection (tournament size of 2), where the winner is the one
that dominates the other, with ties broken randomly.

Parents are copied and the copies are mutated follow-
ing [8]. The mutation operators: add connection (9%), re-
move connection (8%), add node (5%), and remove node
(4%), are executed at most once. Change weight (10%) and,
for CPPNs, change activation function (10%) mutations are
performed on a per connection and per node basis. Mutation
rates were chosen as the result of a preliminary parameter
sweep for high performance. For CPPN-based treatments
the activation functions are randomly selected from the fol-
lowing set: Gaussian, linear, sigmoid and sine. Biases are
handled by an additional input that always has an activa-
tion of 1, meaning the connection between a node and this
input determines the bias for that node.

Survivors were selected from the mixed population of o↵-
spring and parents. For all experiments the population size
was 1000 and the only stopping condition was the maximum
number of generations, which was either 25000 or 50000, de-
pending on the problem.

2.4 Test problems
We have tested all treatments on three modular and reg-

ular problems from [8]: the Retina Problem (originally
introduced in [17]), the 5-XOR problem, and the Hier-
archical XOR problem.

The Retina Problem simulates a simple retina that re-
ceives visual input from 8 pixels (Fig. 2a). The left and right
halves of the retina may each contain a pattern of interest
known as an “object”. The patterns, shown in figure 2b,
are flattened versions of those from [8] and are defined such
that each pattern has a mirror image on the other side of the
retina, providing at least one symmetry that can be discov-
ered. The network is tested on all 256 possible patterns and
the task for the network is to indicate whether there is (> 0)
or is not (< 0) an object present at both the left and the right
side of the retina. Note that, while the problem is modu-
larly decomposable, there also exist perfect-performing, non-
modular solutions [8, 17].
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Figure 2: Experimental Problems. (a) The general
structure of the Retina Problem, where the network has
to answer whether there is both a left and a right object
present. (b) The patterns that count as objects for the
Retina Problem. (c) The H-XOR problem, consisting of
2 identical, hierarchically nested XOR problems. (d) The
5-XOR problem, which contains 5 separate XOR problems.



The 5-XOR problem (Fig. 2c) includes five independent
XOR problems that a network must solve in parallel. Per-
formance on this task is the average performance over all
five XOR tasks. The problem has regularity because of the
repeated XORs and it is modularly decomposable because
each XOR can be solved separately.

The Hierarchical XOR problem (H-XOR) (Fig. 2d)
consist of two separable, hierarchically nested XOR prob-
lems (the XOR of two XORs). As with the 5-XOR prob-
lem, separability and repetition make that both modularity
and regularity are expected to be beneficial in this problem.

2.5 Metrics and Visualizations
When reporting the performance across runs we always

consider the ‘best’ individual of the population, where ‘best’
means the first individual when sorting on performance first
and modularity second. Ties are broken arbitrarily.

The structural modularity of our networks is measured
by the widely-used modularity Q-score [24]. For functional
modularity we use two measures from [8]: modular decom-
position and sub-problems solved. To calculate modular de-
composition we split the network to maximize modularity,
as described in [24], with the maximum number of allowed
splits equal to the number of sub-problems, and test whether
inputs corresponding to di↵erent sub-problems end up in
di↵erent modules. To calculate the number of sub-problems
solved we check, for every sub-problem, whether there exists
a node in the network that linearly separates the positive and
negative classes of that sub-problem. If such a node exists
the sub-problem is considered solved.

Following [8], we visualize modularity by moving nodes to
the location that minimizes the summed length of their con-
nections, while holding inputs and outputs fixed (Fig. 3c).
This optimal neural placement (ONP) visualization is in-
spired by the fact that neurons in some natural organisms
are located optimally to minimize the summed length of the
connections between them [2, 3]. Nodes in the ONP visual-
izations are colored according to the best modular split. The
maximum number of splits performed depends on the prob-
lem: the Retina Problem and H-XOR problems are split
in two parts, while the 5-XOR problem is split in 5 parts.
Nodes that solve one of the sub-problems are depicted with a
large colored border surrounding them. Because modularity
di↵erences are not visually apparent at the lower and higher
levels (all treatments produce some modular and some non-
modular networks) the networks within each treatment are
sorted according to their modularity and those around the
middle of this list are depicted in this paper.

As mentioned in section 1, regularity can be defined as
the compressibility of the data describing a structure. How-
ever, since this minimum description length is impossible
to calculate exactly [21], we approximate the regularity by
compressing the network using the Lempel-Ziv-Welch com-
pression algorithm. To approximate regularity, we write the
network weights and biases to an ASCII string, compress it,
and test by which fraction the string size was reduced. Be-
cause order matters, we repeat this process for 500 di↵erent
permutations of the weights and biases and take the average
as the regularity value.

When visualizing regularity we leave nodes in their ac-
tual geometric locations so as not to distort regularities (e.g.
Fig. 4). In this visualization we color excitatory connections
green and inhibitory connections red. The width of the con-

nection indicates the strength of that connection. Similarly,
we depict the bias of each node as a circle inside each node,
where green circles indicate a positive bias, red circles indi-
cate a negative bias, and the size of the circle indicates the
strength of the bias.

Statistical tests are performed with the Mann-Withney-U
rank sum test, unless otherwise specified. Shaded areas in
graphs represent 95% bootstrapped confidence intervals of
the median, generated by sampling the data 5000 times. Tri-
angles below graphs indicate when values for HyperNEAT-
CCT are significantly higher than for the treatment with the
corresponding symbol and treatment color (p < 0.05).

3. RESULTS

3.1 The Retina Problem
In the retina experiment, the performance of HyperNEAT-

CCT is significantly higher at nearly every generation than
both HyperNEAT and HyperNEAT-GS (Fig. 3a); even af-
ter the medians of all treatments have reached perfect per-
formance, lower-performing runs in the HyperNEAT and
HyperNEAT-GS treatments make those treatments perform
significantly worse than HyperNEAT-CCT. In terms of mod-
ularity, the level for HyperNEAT hardly changes over time,
while the modularity of HyperNEAT-CCT progressively in-
creases; the di↵erence becomes significant after 12000 gen-
erations (Fig. 3b). The modularity of HyperNEAT-GS, on
the other hand, spikes during the first few generations, but
then it decreases over time to a significantly lower level than
HyperNEAT-CCT (Fig. 3b). This behavior is evidence for
our hypothesis that the Gaussian seed may not be an e↵ec-
tive way to promote modularity in cases where there is no
immediate fitness benefit.

To examine functional modularity we look at the best net-
works produced after 50000 generations. Our test for prob-
lem decomposition, which in this case is having the inputs
for the left and right sub-problems in di↵erent modules (sec-
tion 2.5), shows that 75% of the HyperNEAT-CCT runs are
left-right modular, which is higher than HyperNEAT, for
which 64% of the networks are left-right modular, but the
di↵erence is not significant (p = 0.124 Fisher’s exact test).
In addition, when considering the number of sub-problems
solved (section 2.5), HyperNEAT-CCT networks solve an
average of 0.67 (out of 2) sub-problems, which is significantly
(p = 0.024) higher than HyperNEAT networks, which solve
an average of 0.41 sub-problems.

The di↵erences in modularity are also visually apparent
(Fig. 3c). The networks of HyperNEAT-CCT look more
modular, demonstrate left-right modularity more often, and
have more nodes that solve sub-problems than the Hyper-
NEAT and HyperNEAT-GS networks.

The reason HyperNEAT-CCT performs better is proba-
bly because the problem is modular. Additionally, by guid-
ing evolution towards the space of networks with fewer con-
nections, fewer weights need to be optimized. As analy-
ses in [8] revealed, the reason treatments that select for
performance alone do not produce modularity despite its
benefits is because the benefits of modularity come in the
long term, whereas selection acts on immediate fitness ben-
efits. Interestingly, most of the modularity increases occur
after the majority of HyperNEAT-CCT runs have achieved
near-perfect performance. That is likely because once per-
formance is perfect, or nearly so, the only way a network
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Figure 3: Results for the Retina Problem. HyperNEAT-CCT significantly (a) outperforms and (b) has higher mod-
ularity than both HyperNEAT and HyperNEAT-GS. (c) ONP visualizations (see section 2.5) for networks 54 to 60 (out of
100) for HyperNEAT and HyperNEAT-CCT and networks 27 to 33 (out of 50) for HyperNEAT-GS (sorted on modularity).
Colored rings indicate neurons that solve the right (orange) and left (blue) sub-problems. HyperNEAT-CCT networks are
visually more modular, exhibit left-right modularity more often, and solve significantly more sub-problems than HyperNEAT
or HyperNEAT-GS networks.

(a) (b) HyperNEAT-CCT

DirectEncoding-CCT

Figure 4: HyperNEAT-CCT networks are more regular than DirectEncoding-CCT networks. (a) HyperNEAT-
CCT networks compress significantly more (p < 0.00001). (b) Four perfectly-performing networks with the highest modularity
scores from HyperNEAT-CCT and DirectEncoding-CCT. All four networks of HyperNEAT-CCT show some form of symmetry
with variation, including switching excitatory and inhibitory connections. The DirectEncoding-CCT networks are irregular.

can be selected over others is by reducing connection costs,
which tends to increase modularity [8].
While the results of HyperNEAT-GS are lower than ex-

pected, the figures shown are for the highest-performing ver-
sion of it that we found after experimenting with its key
parameters (Fig 4a, b and c). Initially we ran HyperNEAT-
GS with the default settings for the Gaussian seed [36] and
a negative bias on the LEO output of �2, which resulted in
fewer connections by enforcing stronger spatial constraints.
After analyzing our results, we hypothesized that the poor
performance of HyperNEAT-GS might have been because
the distances between our nodes are greater than in [36],
so we switched to settings (described in section 2.2) that
compensate for the increased distances. These settings sig-
nificantly improved performance (p < 0.05 for most gener-
ations), but did not improve modularity. We subsequently
changed the bias from �2 to �1, which is more suitable
when applying locality to only a single axis, and while this

change improved modularity to the level reported in Fig. 3b,
the overall results are still worse than those reported in [36].
This di↵erence in performance is likely due to di↵erences
in the evolutionary algorithm (section 2.1) and in the prob-
lem definition (in [36] the sub-problems did not have to be
combined into a single answer).

Since changing its seed improved the performance ob-
tained by HyperNEAT-GS, it is possible that it can be im-
proved to a level where it outperforms HyperNEAT-CCT.
However, the weights of the Gaussian seed were free to
evolve, yet evolution was unable to adapt the seed to im-
prove either performance or modularity, which shows that
HyperNEAT-GS can fail to produce modularity in absence
of direct rewards.

The di↵erences between the treatments with and without
a connection-cost are not as pronounced as those demon-
strated by Clune, Mouret and Lipson [8], indicating that the
beneficial e↵ects of CCT on HyperNEAT are not as great as



was the case for the direct encoding. The reason for this is
probably that HyperNEAT, even with the Link-Expression
Output, has trouble pruning individual connections.

Comparing HyperNEAT-CCT with DirectEncoding-CCT
(the main algorithm from [8]), the direct encoding is sig-
nificantly higher performing in early generations and signif-
icantly more modular throughout evolution. The indirect
encoding of HyperNEAT seems to struggle more with the
irregularities of this problem and is not as good at pruning
connections. That is expected, since removing connections
in the direct encoding is easy compared to doing so in Hy-
perNEAT, which has to adapt the patterns produced by the
LEO node such that it cuts o↵ the redundant parts while
keeping the rest of the network intact.

A main advantage of HyperNEAT is its ability to produce
regular patterns [9,10,27]. Compression tests (see methods,
section 2.5) reveal that HyperNEAT-CCT networks are sig-
nificantly more regular than the DirectEncoding-CCT (Fig-
ure 4): the direct encoding with CCT becomes 38% smaller
upon compression, but HyperNEAT-CCT compresses fur-
ther down by 43%, making it significantly more compress-
ible (p < 0.00001). Thus, HyperNEAT-CCT networks are
regular in addition to being modular.

The regularity of HyperNEAT-CCT is also visually ap-
parent (Fig. 4b). In many of its networks, the left side is
mirrored on the right side, even though the signs of the con-
nections are sometimes switched. Other networks feature
alternating or mirrored patterns in the biases or connec-
tions. While HyperNEAT-CCT networks also exhibit some
clear variations in each of its patterns, on balance they are
much more regular than the DirectEncoding-CCT networks
(Fig. 4b), which do not show any discernible patterns.

3.2 The 5-XOR and H-XOR problems
On the 5-XOR problem the treatments di↵er only slightly

until after 25000 generations, where the performance and
modularity of HyperNEAT-CCT becomes significantly bet-
ter than HyperNEAT (Fig. 5a,b). The visual di↵erence in
modularity is also clear for networks of intermediate modu-
larity (Fig. 5c); HyperNEAT-CCT networks perfectly divide
the problem into five individual networks while the networks
produced by HyperNEAT are entangled.

On the H-XOR problem, HyperNEAT-CCT significantly
outperforms HyperNEAT in both performance and modular-
ity for most of the first 15000 generations (Fig. 5d,e). Hyper-
NEAT eventually catches up, erasing the significant di↵er-
ences. Network visualizations reveal clear examples where
HyperNEAT-CCT networks modularly decompose the prob-
lem, whereas HyperNEAT networks have not managed to
disentangle the left and right problems (Figure 5f).

Due to computational and time constraints, we did not
test HyperNEAT-GS on the 5-XOR and H-XOR problem.
Given the results presented in section 3.1, it is likely that
HyperNEAT-GS would underperform HyperNEAT and Hy-
perNEAT-CCT. Also, because splitting the sub-problems is
necessary to obtain perfect performance on these problems,
there is no need to test for sub-problems solved as this will
be directly reflected in performance.

4. FUTURE WORK
While we have shown the advantages of HyperNEAT-CCT

on simple diagnostic problems, the real power of this method
lies in its ability to create large-scale, modular networks.

HyperNEAT can create functional neural networks with mil-
lions of connections, but the networks and tasks performed
were simple [13, 27]. In future research we will increase the
scale of networks that have both regularity and modular-
ity and test whether these properties improve the ability to
perform more complex tasks.

An other area to explore is to allow HyperNEAT to evolve
the number and geometric location of its hidden neurons [25].
Because the patterns of neural connectivity HyperNEAT
produces depend on the geometric location of nodes [9],
adding the CCT to Evolvable-Substrate HyperNEAT [25]
may further increase HyperNEAT’s ability to create func-
tional neural modularity and could reduce the need for users
to create geometric node layouts that encourage the appro-
priate modular decomposition of problems.

Lastly, a recent technique showed that the regular pat-
terns produced by a generative encoding, such as Hyper-
NEAT, aids the learning capabilities of networks [34]. We
will combine our method with intra-life learning algorithms
to investigate whether learning is improved when it occurs in
structurally organized neural networks. Such learning may
also ameliorate HyperNEAT’s inability to cope with irregu-
larity [6, 10].

5. CONCLUSION
One strategy to make robots more intelligent and agile is

to evolve neural network controllers that emulate the struc-
tural organization of animal brains, including their modular-
ity and regularity. Because these properties do not naturally
emerge in evolutionary algorithms, some techniques have to
be employed to encourage them to evolve. We have demon-
strated how HyperNEAT with the connection-cost technique
(HyperNEAT-CCT) can evolve networks that are both mod-
ular and regular, which increases performance on modular,
regular problems compared to both the default HyperNEAT
algorithm and a variant of HyperNEAT specifically designed
to encourage modularity. We have also shown that networks
produced by HyperNEAT-CCT are more regular than net-
works produced by adding the CCT to a direct encoding.

While other methods that lead to modular and regular
networks exist, this work demonstrates a powerful, general
way to promote modularity in the HyperNEAT algorithm,
which has recently become one of the leading generative en-
codings due to its ability to produce complex regularities,
evolve extremely large-scale neural networks, and exploit the
geometry of problems. Our work thus merges separate lines
of research into evolving regularity and modularity, allowing
them to be combined into a potentially powerful algorithm
that can produce large-scale neural networks that exhibit
key properties of structural organization in animal brains.
Our work thus represents a step towards the day in which
we can evolve computational brains that rival natural brains
in complexity and intelligence.
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Figure 5: A Connection Cost Also Increases Modularity and Regularity on the 5-XOR and H-XOR Problems.
(a) Median performance over time for the 5-XOR experiment. HyperNEAT-CCT performs significantly better than Hyper-
NEAT after 25000 generations. (b) Median modularity over time for the 5-XOR problem. HyperNEAT-CCT is significantly
more modular than HyperNEAT after around 22000 generations (and for periods prior). (c) A comparison of 5-XOR networks
18-22 (sorted on modularity) showing ONP visualizations (see methods). HyperNEAT-CCT networks decompose the problem
into the appropriate five modules while HyperNEAT without a connection cost makes unnecessary connections between the
separate XOR problems. (d) On the H-XOR problem, HyperNEAT-CCT performs significantly better than HyperNEAT for
most of the run. (e) HyperNEAT-CCT is significantly more modular for most early generations before HyperNEAT catches
up. (f) A visual comparison of H-XOR networks 24-28 (sorted on modularity) showing ONP visualizations (see methods).
HyperNEAT-CCT splits the problem perfectly while HyperNEAT makes unnecessary connections between the left and the
right problems.
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