O. Arino, A survey of structured cell population dynamics, Acta Biotheoretica, vol.18, issue.1-2, pp.3-25, 1995.
DOI : 10.1007/BF00709430

B. Ayati, A structured-population model of Proteus mirabilis swarm-colony development, Journal of Mathematical Biology, vol.52, issue.1, pp.93-114, 2006.
DOI : 10.1007/s00285-005-0345-3

G. Bell and E. Anderson, Cell Growth and Division, Biophysical Journal, vol.7, issue.4, pp.329-351, 1967.
DOI : 10.1016/S0006-3495(67)86592-5

R. Bellman and K. Cooke, Differential difference equations, 1963.

M. Besser, HIV In Pregnancy: Doing More with Less: Mothers2Mothers, 2010.

S. Bowong and J. J. Tewa, Mathematical analysis of a tuberculosis model with differential infectivity, Communications in Nonlinear Science and Numerical Simulation, vol.14, issue.11, pp.4010-4021, 2009.
DOI : 10.1016/j.cnsns.2009.02.017

S. Busenberg and K. Cooke, Vertically transmitted diseases, 1992.
DOI : 10.1007/978-3-642-75301-5

C. Castillo-chavez, H. W. Hethcote, V. Andreasen, S. A. Levin, and M. W. Liu, Epidemiological models with age structure, proportionate mixing, and cross-immunity, Journal of Mathematical Biology, vol.296, issue.3, pp.233-258, 1989.
DOI : 10.1007/BF00275810

A. Coale, The growth and structured of human populations, 1972.

J. Cushing, An introduction to structured population dynamics, 1998.
DOI : 10.1137/1.9781611970005

K. Dietz, Transmission and control of arbovirus diseases, SIAM, Philadelphia, pp.104-121, 1975.

R. , D. Demasse, and A. Ducrot, An age-structured within-host model for multi-strain malaria infections, SIAM Journal on Applied Mathematics, vol.73, issue.1, pp.572-593, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00992786

R. Djidjou-demasse, J. J. Tewa, and S. Bowong, Age-structured SEIL tuberculosis model, Journal of Nonlinear Systems and Applications

K. Dietz and D. Schenzle, Proportionate mixing models for age-dependent infection transmission, Journal of Mathematical Biology, vol.22, issue.1, pp.117-120, 1985.
DOI : 10.1007/BF00276550

Y. Emvudu, R. Djidjou-demasse, and D. Djeudeu, Optimal control using state-dependent Riccati equation of lost of sight in a tuberculosis model, Computational and Applied Mathematics, vol.206, issue.11, pp.191-210, 1007.
DOI : 10.1007/s40314-013-0002-1

W. Feller, On the Integral Equation of Renewal Theory, The Annals of Mathematical Statistics, vol.12, issue.3, pp.243-267, 1941.
DOI : 10.1214/aoms/1177731708

Z. Feng, W. Huang, and C. Castillo-chavez, Global behavior of a multi-group SIS epidemic model with age structure, Journal of Differential Equations, vol.218, issue.2, pp.292-324, 2005.
DOI : 10.1016/j.jde.2004.10.009

Z. Feng, C. Li, and F. Milner, Schistosomiasis models with density dependence and age of infection in smail dynamics, Math. Biosci, pp.177-178, 2002.

D. Greenhalgh, Analytical Results on the Stability of Age-Structured Recurrent Epidemic Models, Greenhalgh, Analytical threshold and stability results on age-structured epidemic models, pp.109-144, 1987.
DOI : 10.1093/imammb/4.2.109

G. Gripenberg, On a nonlinear integral equation modelling an epidemic in an age structured population, J.Reine Angew.Math, vol.341, pp.54-67, 1983.

H. J. Heijmans, The Dynamical Behaviour of the Age-Size-Distribution of a Cell Population, Lect. Notes Biomath, vol.68, pp.185-202, 1986.
DOI : 10.1007/978-3-662-13159-6_5

F. Hoppensteadt, Mathematical theories of populations: Demographics, genetics and epidemics, 1975.
DOI : 10.1137/1.9781611970487

D. Greenhalgh, Threshold and Stability Results for an Epidemic Model with an Age-Structured Meeting Rate, Mathematical Medicine and Biology, vol.5, issue.2, pp.81-100, 1988.
DOI : 10.1093/imammb/5.2.81

M. Gyllenberg, Nonlinear age-dependent population dynamics in continuously propagated bacterial cultures, Mathematical Biosciences, vol.62, issue.1, pp.45-74, 1982.
DOI : 10.1016/0025-5564(82)90062-1

K. Hampanda, Vertical Transmission of HIV in Sub-Saharan Africa: Applying Theoretical Frameworks to Understand Social Barriers to PMTCT, ISRN Infectious Diseases, vol.10, issue.2, p.420361, 2013.
DOI : 10.1006/pmed.1999.0609

H. Inaba, Threshold and stability results for an age-structured epidemic model, Journal of Mathematical Biology, vol.28, issue.4, pp.411-434, 1990.
DOI : 10.1007/BF00178326

H. Inaba, Mathematical models for demography and epidemics, 2002.

H. Inaba, Age-structured homogeneous epidemic systems with application to the MSEIR epidemic model, Journal of Mathematical Biology, vol.40, issue.1, 2005.
DOI : 10.1007/s00285-006-0033-y

H. Inaba, Mathematical analysis of an age-structured SIR epidemic model with vertical transmission , Discrete and Continuous Dynamical Sytems, pp.69-96, 2006.

J. Pa-ioannidis, T. E. Taha, N. Kumwenda, R. Broadhead, L. Mtimavalye et al., Predictors and impact of losses to follow-up in an HIV-1 perinatal transmission cohort in Malawi, International Journal of Epidemiology, vol.28, issue.4, pp.769-775, 1999.
DOI : 10.1093/ije/28.4.769

T. Kato, Perturbation Theory for Linear Operators, 1984.

W. Kermack and A. Mckendrick, Contributions to the Mathematical Theory of Epidemics. III. Further Studies of the Problem of Endemicity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.141, issue.843, pp.94-122, 1943.
DOI : 10.1098/rspa.1933.0106

N. Keyfitz, Intriduction to the mathematics of population, 1968.

M. A. Krasnoselskii, Positive Solutions of Operator Equations, 1964.

A. Lotka, The stablility of the normal age-distribution, Proc. Natl. Acad. Sci. USA, pp.339-345, 1922.

A. Lotka, A Contribution to the Theory of Self-Renewing Aggregates, With Special Reference to Industrial Replacement, The Annals of Mathematical Statistics, vol.10, issue.1, pp.1-35, 1939.
DOI : 10.1214/aoms/1177732243

F. Sharpe and A. Lotka, A problem in age-distribution, Philosophical Magazine, vol.6, pp.435-438, 1911.

I. Marek, Frobenius Theory of Positive Operators: Comparison Theorems and Applications, SIAM Journal on Applied Mathematics, vol.19, issue.3, pp.607-628, 1970.
DOI : 10.1137/0119060

. Mckendrick, Applications of Mathematics to Medical Problems, Proceedings of the Edinburgh Mathematical Society, vol.3, pp.98-130, 1926.
DOI : 10.1038/104660a0

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, 1983.
DOI : 10.1007/978-1-4612-5561-1

. Pfizer, Short-form Case Study for Media: Reducing Mother-to-Child Transmission of HIV through Corporate Volunteering: Pfizer, 2012.

R. Nagel, One-Parameter Semigroups of Positive Operators, Lect. Notes Math, vol.1184, 1986.

J. Pollard, Mathematical models for the growth of human populations, 1973.

I. Sawashima, On spectral properties of some positive operators, Nat. Sci. Report Ochanomizu Univ, vol.15, pp.53-64, 1964.

J. Stricwerda, Finite differential schemes and partial differential equations, SIAM, 2004.

E. M. Stringer, B. H. Chi, and N. Chintu, Monitoring effectiveness of programmes to prevent mother-to-child HIV transmission in lower-income countries, Bulletin of the World Health Organization, vol.86, issue.1, pp.57-62, 2008.
DOI : 10.2471/BLT.07.043117

URL : https://hal.archives-ouvertes.fr/inserm-00224862

S. Steinberg, Meromorphic families of compact operators, Archive for Rational Mechanics and Analysis, vol.124, issue.5, pp.372-379, 1968.
DOI : 10.1007/BF00251419

H. and V. Foerster, Some remarks on changing populations, in the kinects of cellular proliferation, 1959.

G. F. Webb, Theory of Nonlinear Age-Dependent Population Dynamics, 1985.